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Abstract: Plant growth, development, and productivity are adversely affected by environmental
stresses such as drought (osmotic stress), soil salinity, cold, oxidative stress, irradiation, and diverse
diseases. These impacts are of increasing concern in light of climate change. Noticeably, plants have
developed their adaptive mechanism to respond to environmental stresses by transcriptional activation
of stress-responsive genes. Among the known transcription factors, DoF, WRKY, MYB, NAC, bZIP, ERF,
ARF and HSF are those widely associated with abiotic and biotic stress response in plants. Genome-wide
identification and characterization analyses of these transcription factors have been almost completed
in major solanaceous food crops, emphasizing these transcription factor families which have much
potential for the improvement of yield, stress tolerance, reducing marginal land and increase the
water use efficiency of solanaceous crops in arid and semi-arid areas where plant demand more water.
Most importantly, transcription factors are proteins that play a key role in improving crop yield under
water-deficient areas and a place where the severity of pathogen is very high to withstand the ongoing
climate change. Therefore, this review highlights the role of major transcription factors in solanaceous
crops, current and future perspectives in improving the crop traits towards abiotic and biotic stress
tolerance and beyond. We have tried to accentuate the importance of using genome editing molecular
technologies like CRISPR/Cas9, Virus-induced gene silencing and some other methods to improve the
plant potential in giving yield under unfavorable environmental conditions.
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1. Introduction

In their natural environments, plants are persistently and simultaneously confronted to diverse
biotic and abiotic stresses, whose impacts are enhanced by climate change resulting from anthropogenic
activities because of dramatic population increases which resulted in restraining the water availability
and upsurge the temperature [1]. The incidence of global drought is expected to grow beyond 20% by
the end of this century [2]. The potential outcomes of these changes are low rainfall (water deficiency),
increased marginal land and low water use efficiency, all of which would impact Solanaceous crops.
Extreme conditions such as water shortage (drought), salinity, extreme temperatures (low or high) and
diseases are the most impactful environmental stresses in terms of plant growth rate, crop production
quantity and quality utmost [3]. At the cellular level, these environmental extremes may lead to
cell injury or damage by generating reactive oxygen species (ROS) and change in temperature that
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directly or indirectly increases the viscosity of cellular contents, cell shrinkage (wilting, bleaching) and
chlorophyll degradation that finally ensures the demise of the plant growth [4].

The major Solanaceous food crops such as tomato (Solanum lycopersicum), potato (Solanum
tuberosum), eggplant (Solanum melongena) and hot pepper (Capsicum annuum) are in high demand
worldwide for their nutritional and medicinal values, high vitamin content and psychotropic effects
i.e., solanaceous crop can be used as a source of drugs and energy [5]. However, Solanaceous crops are
highly vulnerable to drought and salt stress due to their body mass (fruits and tubers), succulence
and high-water requirement particularly during the reproductive stages i.e., flowering, fruiting and
seed development [6–9]. Not only abiotic factors but also biotic stresses are severely impacting the
yield and quality of these crops. The most common pathogens that attack the solanaceous crops
are Tobacco mosaic virus (TMV), Pepper mottle virus (PepMov), Tomato spotted wilt virus (TSWV),
Phytophthora capsici, Fusarium species and Collectricum species [10]. These above-mentioned stresses led
to a change in protein-protein interactions, protein aggregation, and denaturation, which collectively
disrupt the plant life cycle and interfere with their survival and physiological activities [11].

To cope with different biotic and abiotic stresses, plants have developed different defense
mechanisms during their life cycle (growth, development and reproduction). Transcription factors
(TFs), which is also known as trans-acting factors, are proteins that identify and bind to specific DNA
sequences (often in the promoter region) and control cellular processes by sustaining and regulating
the expression of target genes during the transcription processes [12]. This means that, regulation of
gene expression at the transcriptional level is mainly mediated by the specific recognition of cis-acting
promoter elements by specific DNA-binding transcription factors which has capable of turning on/off

the gene when the plant gets exposed to the stress. It has been mentioned in different research finding
that transcription factors have principal roles in plant immunity and many other biological functions
by controlling the target gene function [13]. Most of the time, structurally, transcription factor has two
different functional domains which take place in DNA binding and transcriptional activation and/or
repression particularly when plant faced stresses [14]. These two domains together with other motifs
participate in the activation and/or repression of the transcription process in response to endogenous
and exogenous stimuli, which in turn mediate different physiological and biochemical processes [14].

Moreover, up-to-date more than 60 transcription factors have been identified in plants using
bioinformatics tools, next generation sequencing and other methods in plant genome-wide association
and other molecular studies [15]. But in this review, we have focused on the major and most studied
transcription factors in solanaceous including: WRKY, DOF, MYB, bZIP, ARF, ERF, HSF and NAC
transcription factors. These transcription factors are very important and play role in various biochemical
and developmental processes to activate or repress different plant metabolic activities depending on
the demands of the plant basically during the stress conditions [16].

2. Molecular and Physiological Mechanisms of Stress Tolerance in Plants

Research in tomato and potato have underscored that plants use different methods to hold out
the environmental stresses such as drought, salinity, oxidative stress, cold, heat, and diverse diseases
that affect the plant growth and development in different ways. Given the sessile nature of plants,
environmental stresses may lead to sub-optimal growth conditions, imposing plasticity in different
metabolic pathways that allows plants to function while resisting, tolerating or recovering from the
stress conditions. As shown in Figure 1, the plant response to different stresses (primary and secondary)
is a complex and different processes which involves the activation of various pathways, gene interplay
and different molecular ‘crosstalk’ [17]. On the other hand, when the plant gets exposed to multiple
stresses, they have got the ability to protect themselves from one or more stresses which directly help
in identifying the most resistant and tolerant varieties in developing a plant of desired characteristics.
In most cases, biotic stress resistance genes mediate pathogen recognition through stimulation of
a signal transduction pathway that leads to the manifestation of resistance level. The molecular
understanding of biotic stress response has relied heavily on the manipulation of single genes, such as
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over-expression or mutation analysis, to characterize the diverse components, including the sensor,
the signal transduction factors and genes that produce antimicrobial factors.
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Figure 1. Physiological and molecular mechanism of the plant response to the stresses.

The complexity of the abiotic stress response arises from its polygenic nature and the coupling of
signal transduction events with the production of stress response factors when the plant gets exposed
to stresses. Noticeably, abiotic stress factors such as drought(water stress), water logging( excessive
water), salinity, mineral toxicity, variation in temperature(frost, cold, heat) are unfavorably impact the
physiological components of plants by altering their metabolism, growth and development status as
plants are sessile (immobile) in nature and cannot escape from the environmental cues [18]. As it can be
seen from Figure 1, the first phase in abiotic stress response in plant cell is recognizing the stress stimulus
through sensors or receptors confined mostly at the cell membrane followed by signal transduction
events involving second messengers, e.g., cytosolic calcium leading to TF activation. TFs then bind to
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activate stress-response genes, resulting in the synthesis of stress-related gene components and the
expression of stress tolerance genes. To some degree, these complex cellular responses can be classified
into three different phases during the abiotic stress response: alarm, resistance and exhaustion [19].

Environmental stresses (primary and secondary) which have been mentioned in the Figure 1
causes the activation of different signaling pathways and transcription control processes. Biotic stresses
which are caused by pathogens were included under primary stresses. Stress-response mechanisms are
initiated to re-establish plant cellular homeostasis along with the defense against stress and mending
of damaged proteins and membranes. It shows that transcription factors and osmoprotectants aid
in withstanding the stresses during plant growth and development. The re-establishment of cellular
homeostasis is critical for the ability of plants to gain tolerance or resistance to stress.

3. Reverse Genetics: Improving Plant Traits against Stresses Using TFs

In plant breeding and improvement, creating variation in the gene pool is an important way of
improving plant traits and ensuring genetic diversity at prominent level. The conventional method of crop
improvement has many bottlenecks such as mutations, gene duplications/deletions and chromosomal
rearrangements and etc. However, nowadays, there is a conspicuous promise for addressing the evolving
challenges in plant production because of the ongoing climate change. To challenge the climate change
which is the big issue for the world right now, the currently emerged molecular technology, CRISPR/Cas9
may play pivotal role in improving the traits of plant against the climate change. It is sequence-specific
genome editing technology which is becoming a powerful tool in improving agronomic trait of crops and
play role in ward off pathogens and minimizing the risk of different stresses even at multiplex genome
editing techniques either by adding or removing the gene of interest [20]. Most importantly, it improves
plant’s valuable traits as climate change is affecting the plant growth and development parameters such
as seed germination, photosynthesis, source-sink relationships during growth, cell division, enzyme
activities, and secondary metabolites production (it helps in abiotic stress tolerance) [21]. In recent years,
many resistant and tolerant genes against stresses have been isolated from major food crops including
solanaceous and there are many important genes involved in stress tolerance but their function is not
well known yet. Therefore, studying the function of genes using this technology is very much important
because developing transgenic plant is time consuming, quite expensive and laborious compared to
reverse genetics which is available these days.

Basically, the CRISPR/Cas9 can cut or add the target regions of genes directly in a DNA sequence
in very specific way. This means that, it is easy to generate stable and heritable mutations without
affecting the existing valuable traits in plants or other organism. In this way, it is possible to develop
the homozygous modified transgene-free plants in only one generation and its stable transmission to
successive generations which can save time immensely [22,23]. Taken together, CRISPR-Cas9 system has
three very relevant stages in response to the invading foreign DNA: (i) acquisition/adaptation is stage
at which the invading DNA is known and a spacer sequence derived from the target DNA is inserted
into the host CRISPR array; (ii) expression stage is a procedure when expression of Cas9 protein and
transcription of CRISPR array into a precursor RNA transcript (pre-crRNA) is undertaken. A non-coding
CRISPR RNA (crRNA) then hybridizes to the pre-crRNA and Cas9 protein to produce mature RNA
(crRNAs); and (iii) interference stage then take place when the mature crRNA guides the Cas9 protein to
recognize the DNA target, leading to the cleavage and degradation of the invading foreign DNA [24,25].
Most recently, the review paper written on CRISPR-Cas9 has shown the developmental roles and different
environmental stresses tolerance and resistance genes of tomato such as MLO1, DMR6, MAPK3, BZR1,
CBF1, AGL6, IAA9, MPK20, GAD (2, 3), BOP (1, 2, 3) [26]. As a result, knocking out genes that confer
undesirable traits is the main role of CRISPR/Cas9. By the same token, traits such as quality of the crop,
yield, biotic and abiotic stress resistance, developing hybrid seed can be achieved using CRISPR/Cas9
system too. Regarding this, the genes mentioned in this manuscript can be used in stress studies using
CRISPR Cas9 system in further studies to develop more resistant and tolerant varieties.
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For instance, in tomato, chilling stress is the main restraint because it is tropical in origin and
very-sensitive to chilling stress, which can restrict the flowering and fruiting stage. But, currently, it has
been revealed that the mutant that has been made using the CRISPR/Cas9 gene system to understand
the functional relationship between SlCBF1 protein and chilling stress tolerance have shown that it
was positive, meaning that it helps in tolerating the chilling stress. On the other hand, the highly
conserved CBFs are cold-response system components found in many plant species. Therefore, it was
concluded that the generated SlCBF1 mutants using the CRISPR/Cas9 system has shown that SlCBF1
protein profoundly helped tomato in chilling stress tolerance [27]. Alternatively, SlMAPK3 gene is
responsible for drought in tomato, the knockout mutants produced by CRISPR/Cas9 has shown the
same thing on the drought stress [20,27]. According to the report of [28], MLO1 gene is also responsible
for powdery mildew vulnerability just that the mutant generated by CRISPR Cas9 has shown tolerance
to the disease comparing with the untreated tomato plant.

The other genome editing technology is Virus-induced gene silencing (VIGS) which is also the
most valuable tool to understand the functional confirmation of stress-responsive genes which shows
high transcript profile (high expression level) when the plant gets exposed to different kind of stresses.
Most importantly, the TRV-VIGS-mediated silencing method is very imperative in solanaceous crops
for studying the gene function at the transcription level. For instance, it has been pinpointed that
a GLUTAREDOXIN gene, SlGRX1 is responsible for drought stress in tomato as the satellite-virus-based
vector, DNAmβ was used for confirmation at physiological level by measuring chlorophyll and relative
water content (RWC) which both of them have shown low content compared to the control plant in
addition to phenotypic differences [29]. On the other hand, an extracellular PEROXIDASE 2 (CaPO2)
gene in Capsicum annum is responsible for osmotic stress in which bleaching was displayed more
than the control plant. The research that has been done on the silencing of the ABI3/VP1 transcription
factor (CaRAV1) alone or together with OXIDOREDUCTASE (CaOXR1) was shown the same thing in
the plant [30,31]. Most strikingly, we want to point out that it is better if each transcription factor is
evaluated and studied under different stress conditions to boost and improve the yield which helps in
utilizing the marginal land where water deficiency is a problem.

4. DOF in Solanaceous Food Crops

The plant-specific multigene DOF (DNA-binding one finger) transcription factor family is highly
involved in many growth and developmental processes such as phytohormone regulation, light signaling,
and seed germination. It plays major role in assisting protein-protein interaction in addition to aiding in
DNA-binding activities [32]. Importantly, DOF TFs also interact with non-histone nuclear high-mobility
group (HMG) proteins [33,34], which accelerate and facilitate various DNA-related biochemical activities
including replication, transcription, recombination and DNA repair when an error has been made.

DOF proteins can physically cooperate with each other or modulate transcription in the genome
at defined sites [34] and can also interact with other classes of TFs, such as basic leucine zipper (bZIP)
TFs [35], zinc finger protein (ZFP) TFs [35], WRKY TFs [36,37] and MYB TFs [38,39]. The characterization
of stress-related genes and their regulation at the transcriptome level is critical for target gene selection
and the engineering of stress-tolerant or resistant transgenic plants. Some of the Dof DNA-binding
proteins can interact with a specific sequence in the very commonly used cauliflower mosaic 35S promoter,
and the sequence was understood to function as a cis-regulatory region in directing transcription [40].
The structure of Dof transcription factor has about 200–400 amino acids in length with two major domains:
(1) an N-terminal Dof domain with a highly conserved 50–52 amino-acid domain, and (2) a variable
domain at C-terminal end for transcriptional regulation (gene expression activities) of different metabolic
activities [34,41].

The Zinc finger motif has 29 amino acid residues and another 21 amino acid residues at its
C-terminal region just that the residues can participate between Dof domain and DNA interactions.
Because of the strong similarity among the Dof DNA binding domain, it is characterized by a C2C2-type
zinc finger motif that distinguishes the specific regulatory elements of four nucleotide bases of
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“AAAG” or “CTTT” in the promoters of the specific genes as it has been studied in vivo and in vitro
experiments [42–44]. One exception from this principle is the pumpkin Dof protein named as AOBP,
which distinguishes an AGTA repeat sequence [45]. Basically, in the same way to other zinc fingers,
the DNA-binding domain has dual functions: DNA-binding and protein-protein interactions [32].
It also plays a very imperious role in the regulation of secondary metabolic activities like biosynthesis
of glucosinolates and flavonoids, which contribute to the defense mechanism when plant faced their
pathogen [46,47]. The identifying feature of Dof protein families that distinguishes it from other TFs is
that it has four cysteine residues in the conserved Dof domain with a single C2–C2 type zinc finger,
which binds to (A/T) AAAG or its inverse CTTT (A/T) sequence as the recognition core [44].

TFs belonging to the same family may exhibit various activities owing to the occurrence of
a transcriptional regulatory domain that may act as a repressor or activator during the gene expression [42].
The repression of gene expression typically involves the prohibition of activators from target promoters
by the role of competitive binding between TFs for the alike cis-acting element [43,48]. Alternatively,
gene expression repression may result from the masking of regulatory domains by the dimerization
of TFs or the interaction of repression domains with TFs. Research on a Dof protein in barley (BPBF)
showed that it normally activated the transcription of a putative target, but a mutation disrupting one of
the BPBF cysteine residues resulted in its inactivation [49]. Nowadays, genome editing methods are
helping widely to modify abiotic stress response in plants and increasing the yield under a stressed
environment which can be a great contribution in minimizing the marginal land [50].

Heat maps showing the global transcription patterns of hot pepper Dof genes were generated
based on publicly available RNA-seq data for the plant tissues in different developmental stages and
varieties [51] (Table 1). On the other hand, the expression analysis Dof genes undertaken in eggplant
varieties, some genes were not expressed (SmeDof25 and SmeDof4), and others were extremely low
(SmeDof19, SmeDof20, and SmeDof22) and high (SmeDof17, SmeDof23) which may be promising for
the development of transgenic lines [52]. Similarly, the StDof gene expression profiles in potato were
analyzed in leaves, shoots, roots, stolons (hooked apex stolon), swelling stolons and mature tuber.
Most strikingly, the StDof genes were expressed in all potato tissues, although the expression levels
of individual genes varied in tomato, eggplant, and hot pepper. Seventeen of 33 genes have shown
relatively high expression levels in the root. In the same way, 22 SlDofs in tomato and 22 GmDofs in
soybean were expressed at relatively high levels in the root [53]. Therefore, it is very important using
the expressed genes in developing the transgenic plant under different stress condition. There were
other DOF genes information in major solanaceous food crops [54–58] (Table 1).

Table 1. Dof genes in major solanaceous crop under different stress conditions.

Genes Functions Plants Ref.

DOF

StDof1 Guard cell specific expression Potato [54]

NtBBF1 It controls the vascular development Tobacco [55]

TDDF1 It regulates flowering time accelerator, circadian regulation. Act
as regulator of different stresses Tomato [56]

CDF3 Increases salt tolerance, photosynthetic rate and improves yield
(biomass production) Tomato [57]

StCDF1 It regulates the tuber formation Potato [58]

SlCDF1, 3 Improves drought, salt and low temperature tolerance.
It controls flowering time Tomato [58]

CaDof17 Governs the biotic stress tolerance Pepper [51]

CaDof10, 11 Take part in defence against Phytophthora capsici, Pepper mottle
virus and TMV Pepper [51]
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5. WRKY Transcription Factor in Solanaceous

This transcription factor is widely studied in different plants including the solanaceous crops
and it is considered as one of the largest and important transcription factors in connection with the
environmental stresses both biotic and abiotic stresses. The WRKY protein has one WRKY domain
which includes 60 amino acid residues like most the other transcription factors. Structurally, its N
terminus has the WRKYGQK motif and the C-terminal has metal-chelating zinc finger motif, either
C2H2 or C2HC as carbon and hydrogen play an important role in defining its structure. Therefore,
the WRKY family has three groups depending on the number of WRKY domains and number of
zinc finger it has in its structure. Among the three groups, Group I and II WRKY domains placed
in the C- and N-terminus, respectively [59,60]. Alternatively, it is possible to say that group I and II
have the C2H2-type zinc finger, and only Group III has the C2HC-type structurally. The most studies
have shown that WRKY proteins have the ability which makes it specifically bind to the W-box motif
(TTGAC/T) that regularly found in the promoter region of the stress related genes when the plant
gets exposed to the stress conditions [14,61]. For instance, SlWRKY30, SlWRKY83 and SlWRKY75
genes in tomato have been upregulated in drought [62]. Similarly, SlWRKY72 gene has a significant
role in basal immunity and makes the plant withstand the pathogen attack when the pathogen gets
conducive environment and has shown a positive role in abiotic stress tolerance. The WRKY genes
studied so far in major solanaceous crop have mostly shown upregulation under different extremities
like drought, salt, heat, cold and other different stresses which obstruct the plant from finishing their
life cycle and producing the genetically expected yield as shown in Table 2 [63–73]. Therefore, these
genes can be used in developing drought tolerant transgenic plant in areas where water shortage is
very troublesome.

Table 2. WRKY genes in major solanaceous crop under stress condition.

Genes Function in Plants Plants Ref.

WRKY

StWRKY58 It enhances salt and drought tolerance Potato [63]

StWRKY1 It improves tolerance to Phytophthora infants Potato [64]

StWRKY22 Take part in tolerance to drought, heat and salt stress
treatment Potato [63]

StWRKY8 Conferring in severe late blight of potato Potato [65]

SlWRKY58, 72 Play role in drought tolerance under water deficiency Tomato [62]

SlWRKY24, 37 Regulates fruit repining and maturity Tomato [62]

SlWRKY45 Nematode responsive genes and it has shown
resistance to it. Tomato [66]

SlWRKY39 Resistance to drought, salt and Pseudomonas
syringae pv. tomato DC30000 Tomato [67]

SlWRKY3 Involved in salt tolerance Tomato [68]

CaWRKY27 Positively regulates Ralstonia solanacearum infection Pepper [69]

CaWRKY30 Pathogen stress response (biotic stress tolerance) Pepper [51]

CaWRKY58 Responsible for Botrytis cinerea tolerance Pepper [51]

NtWRKY50 Take part in resistance to Ralstonia solanacearum
It changes the level of SA and JA level Tobacco [70]

NtWRKY6 Involved in salt and drought stress tolerance Tobacco [71]

NtWRKY3, 69, 70 Responsible for abiotic stress such as drought and
cold Tobacco [72]

TGA2.2 Play vital role in Plant defence response and
development Tobacco [73]
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Most importantly, signaling molecules which are endogenous to plants such as SA, JA, ET and
ABA play a tremendous role in regulating the signaling pathways which subsequently has capable of
changing the transcription level of stress related genes and protein post-processing which as a result
help as a mediators in basal defense systems [74,75]. This was revealed from the fact that CaWRKY27
gene from Capsicum annum, has shown positive role in regulating the stress resistance to Ralstonia
solanacearum infection by modulating and regulating SA, JA and ET mediated signaling pathways in
tobacco (Nicotiana tabacum) after the plant has been exposed to the mentioned pathogen [69,75]. Thus,
salicylic acid and other signaling molecule is a major signaling molecule in response to biotic stresses
in cross communication with WRKY and other transcription factors which is mostly related to stress
conditions. The moment the plant gets infected by a pathogen, the level of SA increases in dramatic
fashion that leads to the expression of genes encoding for the pathogen proteins and activating the
disease resistance gene in the plant to make it withstand the stresses. This is the reason why SA is used
regularly to study how stress affects the plant growth and development [75]. Importantly, StWRKY72
gene in potato has been also highly up-regulated under stress treatment that sounds its importance
better in developing a resistant transgenic line in solanaceous crop to make sure that the developed
plant can grow under a water shortage and help in marginalized land utilization utmost [62].

By and large, WRKY protein has many functions in regulation of plant growth and development in
response to different stresses such as salinity, drought, heat and cold [76–78]. It is also involved in plant
defense against different bacterial, fungal and viral pathogens which are considered as biotic stresses [79].
The research that has been done on solanaceous and Arabidopsis has explained that a WRKY protein can be
used in trichomes development [80], seed development and germination [81], embryogenesis [75] biosynthesis
and hormonal signal regulations and leaf senescence [82]. Importantly, to understand the complete family of
WRKY transcription factor in major solanaceous crops, its gene and protein sequences can be retrieved from
databases like Solgenome (https://solgenomics.net/), NCBI (https://www.ncbi.nlm.nih.gov/) and PLANTTFDB
(http://planttfdb.cbi.pku.edu.cn) which are major databases for many plant transcription factors.

Solgenome database is very common for major solanaceous crops and provides all the information
for genomes, genes and protein sequences whereas PLANTTFDB database has all 60 plant transcription
factors. Most prominently, the WRKY protein and gene sequences can be downloaded from the
PGSC database (http://solanaceae.plantbiology.msu.edu/pgsc_download.shtml). In Table 2, the studied
WRKY transcription factor in each major solanaceous food crops were summarized briefly [78–89].

6. MYB Transcription Factor

It is a very common transcription factor and widely studied in solanaceous crops most recently.
It plays a major role in fighting against abiotic and biotic stresses in plants. Basically, it has two
distinct features, an N-terminal which has a conserved region of MYB DNA-binding domain with
about 52 amino acid residues and a diverse C-terminal region which is in charge of regulating the
protein activities. Depending on its conserved MYB domain, it consists of four classes: 1R, R2R3,
3R and 4R-MYB proteins. Among these four classes, R2R3 constitutes the largest TF gene that studied
broadly under different environmental extremities [83].As shown in Table 3 [84–88], among the
isolated MYB transcription factor in eggplants, SmMYB1 and SmMYB6 genes were positively regulated
anthocyanin biosynthesis which in turn plays a very vibrant role in different growth regulation
and promotion mechanisms [84]. The significant accumulation of anthocyanin in eggplant because
of the overexpression of the SmMYB1 gene revealed that this gene has a key role in anthocyanin
production. On the other hand, anthocyanin structural genes were upregulated in eggplant which
naturally correlated with the color in its fruits and other parts of the plant [85]. By the same token,
the StMYB113 gene which is homologous to AtMYB113 gene plays a significant role in positively
regulating the phenylpropanoid metabolism in Arabidopsis thaliana [86]. A recent study suggested
that anthocyanin structural genes and the R2R3-MYB expression level positively regulated by light
exposure which in turn help in anthocyanin biosynthesis enormously [87,88]. On the other hand,

https://solgenomics.net/
https://www.ncbi.nlm.nih.gov/
http://planttfdb.cbi.pku.edu.cn
http://solanaceae.plantbiology.msu.edu/pgsc_download.shtml
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PhMYB27 and PhMYBx genes of petunia are also the two most indicators of R2R3-MYB, and R3-MYB
repressors, respectively [89].

Table 3. MYB genes in major solanaceous crop with their function.

Genes Function in Plants Plants Ref.

MYB

SlMYB14, 28, 65, 66, 77, 116, 22 Regulate and responsible for SA and JA. Tomato [88]

SmMYB1 and 6 It regulates anthocyanin biosynthesis Eggplant [84]

StMYBA1 Control the anthocyanin biosynthesis in tobacco Tobacco [87]

StMYB113 Regulate the phenylpropanoid metabolism Arabidopsis [86]

Additionally, R2R3 MYB family aids in regulating the expression of different catalytic enzymes
such as the pathway of anthocyanin, a chemical which makes the eggplant colorful and advantageous
for human health [90–92]. However, several MYB transcription factors have capable of negatively
regulating or repressing the expression of anthocyanin biosynthesis structure genes which can be
checked by the reduction of color it shows after the gene repression. Most strikingly, it is possible to
pinpoint that MYB regulates anthocyanin biosynthesis structure genes negatively through the inhibition
of the formation of the MBW complex [93]. In eggplant, phenylpropanoids are also the major secondary
metabolites in its fruits, the palatable part. Fundamentally, chlorogenic acid (CGA) which has more
than 70−60% of total phenolic in its tissues is considered as the main phenylpropanoid metabolite in
most of the solanaceous crops as it plays a pivotal role in cardiovascular diseases treatment [94–96].

It is very important to study CGA molecules in other vegetables and fruits to know much more about its
healthy functions. Tomato and potato’s skin and flesh tissues are characterized by its distinctive metabolite
content whose phenylpropanoid profile differs in different tissue parts demonstrating that their level of
accumulation is tightly maintained [96]. Therefore, this molecule is highly regulated by MYB transcription
factor in plants including solanaceous crops [97]. Hence, the productions of phenylalanine-derived
compounds are largely regulated by R2R3-MYB proteins, which are noticeably considered as the largest
class of secondary metabolism regulators [98].

For instance, in tomato, MYB transcription factor encoded by two paralogs of tomato’s anthocyanin
genes; SlANT1 and SlAN2 which has the potential of regulating fruit’s anthocyanin pigmentation
and color [99]. These two genes induce anthocyanin synthesis in its fruit when their expression is
driven by the 35S promoter (35S: SlANT1 and 35S: SlAN2) and both of them have shown the high
expression levels of SlDFR which has capable of encoding a key enzyme in anthocyanin biosynthetic
pathway. The study that has undertaken on the silencing of the SlAN2 gene using virus-induced gene
silencing has normally shown the anthocyanin biosynthesis in the fruits and the transcription of the
SlDFR, SlAN1, and SlJAF13 levels were reduced tremendously. But the change was not observed
following the silencing of the SlANT1 gene [100]. Anthocyanin is a natural antioxidant compound
that has the potential to protect leaves from high light intensity, irradiation and different stressful
conditions that hinder photosynthetic efficiency at large [101]. Moreover, the two genes play a very
crucial role in enhancing anthocyanin accumulation in tomato’s fruit which clearly shows that both
MYB TFs activate anthocyanin biosynthetic genes. These two genes can add values to tomato, eggplant
and hot pepper in developing varieties that have attention-grabbing skin colors to satisfy consumers
comparatively. The two MYB important genes, SlMYB7-like and SlMYB48-like are also positively
regulators of anthocyanin synthesis in tomato and targets of using miR858 is that it helps as a negative
regulator of the same pathway of anthocyanin synthesis [98,102,103].

The expression of miRNAs has been regulated most of the time during the pathogen infection or
when the plant gets attacked by the pathogen. Most importantly, miRNA58 regulate the expression of
numerous genes taking part in a specific pathway including the phenylpropanoid pathway which
plays major roles in the production of antifungal compounds to increase the plant’s ability to stand
against pathogen infection massively [104].The most recent research that has been done on chilli pepper
revealed that the CaMYB31 gene regulates capsaicinoid and its pungency. The gene silencing system
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(Virus-induced gene silencing) has been also used to understand the function of CaMYB31 gene by
suppressing it. After the CaMYB31 gene was silenced, the plant has shown a substantial decrease in
capsaicinoid accumulation compared to the control chilli pepper plant [88]. The information provided
about MYB genes functions in major solanaceous crop was shown in Table 3.

7. Heat Shock Transcription Factor

This transcription factor was discovered 30 years ago and participates in transcriptional activation
of the genes controlled by thermal stress (heat stress), which has capable of encoding heat shock proteins
i.e., it shows a high level of gene expression under thermal stress. On the other hand, the expression of
heat-shock genes increases when the plant gets exposed to thermal stress which results in the rapid
accumulation of heat-shock proteins (HSPs). Understanding heat transcription factor started when it
was first isolated from tomato [105] and has shown a remarkable role in helping the plants including
Solanaceous in withstanding heat stress which is literally between 5–10 ◦C differences above the normal
growing temperature of the plant. The fact that global warming is increasing the marginal land and
posing a threat to the production of very important food and cash crops including solanaceous, it is
very important to study heat shock transcription factors which can surely make the plant withstand
the heat stress at possible levels.

Therefore, when the plant gets exposed to high temperature (thermal stress), heat transcription
factor which is also known as the central regulator of heat shock stress response, regulate the expression
of many heat-stress-inducible genes at transcription level by recognizing the conserved binding motifs
(heat stress element, HSE) that exist in the promoter region so that plant can withstand thermal stress.
Additionally, HSPs guard the cells against thermal and other environmental stresses which at the same
time participate in protein folding that helps in protein function, cell differentiation, dimensional structure
and conformation [106,107]. Noticeably, it also aids the plant to withstand the high temperature and
prevent the protein denaturation and cell differentiation. On the other hand, heat shock transcription
factors take part in the initiation of genes responsive to different abiotic stresses such as heat, drought
stress and in different chemical stresses such as Cd2+ and salicylate which is highly toxic to human
health [108,109].

Although the solanaceous plant could survive in a different range of agro-ecological conditions,
both vegetative and reproductive growth is severely affected by heat (thermal) stress which resulted
in low yield and/or poor quality fruits [110,111]. Exposure to heat stress, make the heat-labile proteins
denature easily and the ROS elements increase in plant cells which finally kill the plant by drying
it [112,113]. Different researches have underscored that HSFs also regulate different abiotic stresses
such as salt and drought and other regulatory molecules in the complex network of stress response
pathways [114,115]. Most noticeably, the heat transcription factor of tomato (HSFA1a) has shown a unique
function in master regulator for acquired thermotolerance which cannot be replaced by any other HSFs
families [116]. This role of HSTs has been checked by co-suppressing tomato plant (CS-SlHsfA1a),
in which the expression levels of HSPs were decreased under normal conditions and this plant has shown
more sensitivity to thermal or heat stress. Hence, it is helpful in developing solanaceous transgenic plant
to improve heat stress resistance so that it is possible to use the marginal land where thermal stress is
problematic. HSF gene sequences of each major solanaceous food crops can be obtained from the Plant
Transcription Factor Database [115]. The complete list of HSF gene and proteins can be identified using
bioinformatics tool like Hidden Markov Model (HMM) and the conserved domain can be downloaded
from the Pfam database (http://pfam.xfam.org/search).

The protein sequences of HSF conserved domains are aligned by BLAST in the NCBI (http:
//blast.ncbi.nlm.nih.gov/blast.cgi) and Spud DB for major solanaceous food crops (Potato, tomato,
hot pepper and eggplant) and Genomics Resources database (http://solanaceae.plantbiology.msu.edu/)
with E-value of 0.001 to screen candidate Hsfs with homologous amino acids sequences. These candidate
genes can be analyzed using the domain identification function of the Pfam database (E = 1.0) to
remove the Hsfs without the conserved domain sequences. This helps in the multiple protein sequence

http://pfam.xfam.org/search
http://blast.ncbi.nlm.nih.gov/blast.cgi
http://blast.ncbi.nlm.nih.gov/blast.cgi
http://solanaceae.plantbiology.msu.edu/
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alignment using Clustal W and MEGA 4.0 to remove repetitive sequences. Depending on the genome
wide identification and characterization of heat shock transcription factor in solanaceous crops, the total
lists of HSTs were listed in Table 4. By and large, Hsps has dual functions in both stress and non-stress
conditions, which plainly indicates the role it has on the stress response and physiological response by
regulating complex regulatory processes which was checked by the gene expression pattern to evaluate
its function and tolerance to stresses [117–123].

Table 4. HSTs genes in major solanaceous crop and their function.

Genes Function in Plants Plants Ref.

HsF

StHsf4, 7, 12 Responsible for heat, drought and cold stress
tolerance. Potato [117]

SlTCP12, 15, 18 It enhances and regulates fruit ripening. Potato [117]

StHsf4, 7, 9, 14 Take part in cold and drought tolerance Potato [117]

StHsf5 Play role in heat stress tolerance Potato [117]

HsfA1a Regulates thermotolerance during growth under
heat stress Potato [118]

CaHsfA2
Govern the thermotolerance and regulates the plant’s
ability to resist other environment stresses such as

highlight hypoxia, high salt, and osmotic stress
Pepper [116,

119]

SlyHSF5, 7, 13, 18, 23 It enhances heat stress tolerance Tomato [120]

SlyHSF-02 Responsible for triggering the heat response Tomato [120]

SlHSFA1 Regulates the thermotolerance in transgenic tomato Tomato [121]

SlHSFA3 It Increases thermotolerance and salt hypersensitivity
during seed germination in transgenic Arabidopsis Tomato [122,

123]

8. NAC Transcription Factor

It is noticeable that the transcription factors and cis-elements function in the promoter region of
stress-related genes which can prevail whether the genes are overexpressed or suppressed to take part
in improving the plant’s tolerance to any stresses. Having subfamilies such as the NAM, ATAF, and
OsNAC3, this transcription factor has got its name from abbreviations of the three proteins NAM,
ATAF1&2 and CUC2 which has similar DNA-binding domains [124]. Therefore, NAC transcription factor
is among the largest transcription factor in plants which is responsible for both biotic and abiotic factor
stress conditions. NAM proteins are responsible for shoot apical meristem development in plants [125].
Two arabidopsis genes ATAF1 and ATAF2 have got the ability to activate CaMV 35S promoter in yeast and
overexpression of ATAF1 and ATAF2 have regulated drought tolerance during water shortage [126–128].
On the other hand, CUC2 (cup-shaped cotyledon 2) is also responsible for shoot meristem initiation and
aids in the formation and stable positioning of carpel margin during growth and development [129].
Two decades ago, the NAC TFs were isolated and first described in Petunia, a solanaceous crop [127].
Afterward, many studies have been done on its function against biotic and abiotic stress tolerance and
growth promotion [128]. Besides, this transcription factor aids in signal transduction, innate immune
systems, basal defense and systemic acquired resistance in solanaceous crops and other plant species [128].
Hence, it is possible to say that most of the defense and stress related genes are activated by NAC genes
to cause multiple immune responses as long as the plants encountered different stresses [129].

When the plant gets attacked by the pathogen (biotic stresses), there are at least three signaling
mediators such as SA, JA) and ET that can be harmonized to generate the plant defense system [129,130].
Most strikingly, NAC of tomato (SlNAC1, SlSRN1, and SlNAC35), eggplant (SmNAC), potato (StNAC4,
5, 18, 48, 81) and hot pepper (CaNAC1) are take part in different signaling pathways to induce local and
systemic disease resistance in which most of them are discussed in Table 5. The other most important
thing is that JA and ABA are responsible for abiotic stresses such as drought, salinity, cold and thermal
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stress [129,131]. Generally, the NAC transcription factors play such a tremendous role in seed and
embryo development [132,133], shoot apical meristem formation and fiber development [127,133]
and developmental processes and cell divisions [134,135]. The studied NAC transcription factors in
solanaceous food crops were shown below in Table 5 [136–154].

Table 5. NAC genes in major solanaceous crop and their function.

Genes Function in Plants Plant Ref.

NAC

SlNAC1 Take part in salt stress tolerance Tomato [136]

Enhances defense against Pseudomonas infection
Chilling and Heat stress tolerance Tomato [137]

SlNAC4
Govern salt and drought tolerance,

Responsible for fruit ripening and carotenoid
accumulation

Tomato [138,139]

SlNAC3 Control young embryo and endosperm
development Tomato [140]

SlNAP2 Regulates ABA mediated leaf senescence and help
in augmenting fruit yield Tomato [141]

SlNAC5–10 It improves salt tolerance (NaCl) treatment Tomato [142]

JUNGBRUNNEN1 Responsible for drought stress tolerance Tomato [143]

SlNAC35 Govern the root growth and development and
Resistance to bacterial pathogen Tomato [144]

StNAC17, 30, 86, 97,
85, 71 Improves salt and heat stress tolerance Potato [145]

StNAC2, 25, 87, 91 Responsible for salt and drought tolerance Potato [145]

StNAC24, 59, 67, 72,
108, 101 It enhances salt stress tolerance Potato [145]

StNAC262 It increases the root size (more lateral roots) Potato [146]

StNAC4, 5, 18, 48,
81 Resistance to Phytophthora infestans infection. Potato [147]

NtNAC1 Increases the number of lateral roots and nicotine
contents. Tobacco [148]

NtNAC2 Take part in salt stress tolerance Tobacco [148]

CaNAC1 Play crucial role in drought stress and BAX
tolerance in CaNAC1 transgenic tobacco. Pepper [150]

CaNAC2 Responsible for cold stress tolerance, root growth
and seed maturation. Pepper [151]

SmNAC Increase the susceptibility of plant to bacterial wilt. Eggplant [152]

SlSRN1 Response against Biotic Stress (Botrytis cinerea) Tomato [153]

SlNAM2 Take part in floral whorl and boundary
morphogenesis Pepper [154]

The research that has been done on Arabidopsis has shown that the expression of the AtNAC1
gene was induced by lateral root development and it is also regulated by auxin which at the same
time enhances the cell division and regulates the leaf senescence [135,155,156]. Moreover, NAC TF
is also involved in the detoxification of ROS during biotic stress and different defense systems [157].
Most strikingly, the SlNAC1 gene play an important role in chilling stress resistance in tomato (4 ◦C),
heat stress (40 ◦C), and different osmotic (drought) stresses. This gene also aids the plant against the
mechanical wounding and other kinds of similar stresses which directly or indirectly help plant’s
tolerance against these kinds of stresses [136,157,158].
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9. bZIP Transcription Factor in Major Solanaceous Crop

It is also one of the largest transcription factors found in all eukaryotes including plants. It has
a bZIP domain that regulates gene expression in response to different abiotic and biotic stresses. As the
name suggests, the basic region/leucine zipper (bZIP) domain consists of persistent α-helix involving
a basic region (BR) which is very important in binding the DNA followed by a C-terminal leucine zipper
(LZ) motif accountable for the dimerization [159]. In plants, as shown in Table 6, this transcription
factor is involved in different biological functions like pathogen defense [160] abiotic stress and hormone
signaling pathways [161]. It is also taking part in plant developmental processes like seed maturation and
flower development [162,163] and senescence [164]. It is a very important transcription factor because
of the fact that abiotic stresses such as drought, salinity, temperatures and thermal stress adversely
affect the biochemical, physiological and morphological components of the plant which in turn causes
wilting, drying and finally dying of the plant. The genome wide identification and characterization of
this transcription factor has not been completed in all major solanaceous food crops such as eggplant and
hot pepper. Therefore, it is very important to study the genome wide identification and characterization
of bZIP genes in the mentioned vegetable crops to improve the abiotic and biotic stress tolerance in
solanaceous crops as shown below in Table 6 [27,165].

Table 6. The studied bZIP genes in potato and tomato under stress condition.

Genes Function in Plants Plants Ref.

bZIP
SlbZIP10, 32, 33 It improves plant tolerance to water deficiency(drought) Tomato [27]

SlbZIP06, 32, 46, 12, 6 It regulates phytohormones such as SA, JA and ACC in plants Tomato [27]

StABF1 Abiotic stress tolerance (ABA treatment) Potato [165]

10. Ethylene-Responsive Factors (ERF) TFs

Ethylene is a recognized gaseous plant hormone that plays crucial and regulatory roles in plant
growth and development. It is also functioned as a stress-related hormone required in biotic and
abiotic stress responses in different ways. Hence, the Ethylene Responsive Factor family which was
first isolated from tobacco two decades ago is one of the largest transcription factors that involved in
the ethylene signaling pathways and lead to the expression of various defense-related genes such as
pathogenesis-related (PR) genes and abiotic stress-responsive genes [166]. ERFs also play a part in
plant development processes such as seed germination and different developmental processes [167].
ERF proteins are important in plant responses to both abiotic and biotic stresses by binding to multiple
cis-acting elements found in the promoter regions of ET-regulated genes, including the GCC box and
DRE/CRT (dehydration responsive element/C-repeat) [166,168,169]. Thus, it is characterized by the
presence of a GCC-box (GCCGCC) or a dehydration responsive element/C-repeat element (DRE/CRT,
CCGAC) located in their promoter sequences and a conserved 58–59 amino acids and DNA binding
domain that specifically bind to GCC cis-elements [170]. It also participates in a variety of biological
processes of plants, such as metabolism, growth, development and responses to different environmental
stresses [171].

By the same token, it was reported that the ERF transcription factor family members are responsive
to drought, ABA, and saline conditions and can serve as activators or repressors of ABA signaling
under salt stress [172]. Jasmonate Ethylene Response Factor 1 also has a potential role in plant abiotic
stress responses such as salinity, low temperature, dehydration in tomato, transgenic tobacco [173].
For this Jasmonate Ethylene Response factor, Methyl jasmonate (MeJA) is a major derivative and also it
is an important endogenous regulator that plays a critical role in inducing resistance against fungal
pathogen [174]. The information about ERF genes functions in major solanaceous food crops were
shown in Table 7 [175–182].
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Table 7. ERF genes in major solanaceous food crop and their functions.

Genes Function in Plants Plants Ref.

ERF

SlERF1

Responsible for abiotic stress (salt) tolerance
and pathogen such as

Botrytis cinerea, Xanthomonas campestris and
Plectosphaerella cucumerina.

It enhances resistance of tomato fruit to
Rhizopus nigricans

Tomato [175,176]

SlERF2
Associated with MeJA-mediated defense and

enhance tomato fruit resistance against Botrytis
cinerea.

Tomato [177]

SlERF3 Responsible for salt stress and Ralstonia
solanacearum (biotic stress) [178]

SlERF4 It plays important role in reduction of ethylene
production Tomato [177]

SlERF84
Take part in drought and salt stress tolerance.

Negatively regulates immunity against P.
syringae pv.DC3000

Tomato [179]

StERF3

Responses to abiotic stress such as SA, ABA,
and NaCl.

Negatively regulate resistance to Phytophthora
infestans,

Potato [169]

NtERF5 It enhances the plant resistance to Tobacco
Mosaic Virus Tobacco [180]

StERF37 Tolerance to abiotic stress such as NaCl, ABA,
and heat treatments. Potato [181]

NtERF114,
202, 218, 228

It is involved in response to low temperature,
drought, and abscisic acid Tobacco [72]

StERF71, 47, 67, 70 It is responsible for biotic stress such as
Phytophthora infestans infected leaves. Tobacco [181]

TERF1 Regulate ROS (H2O2) in tobacco during
seedling development. Tobacco [182]

StERF147, 169, 120, 110 Responsible for heat stress (temperature above
35 ◦C) Tobacco [181]

11. Auxin Response Factors (ARF) Transcription Factor

Auxin is one of the most important plant hormone that plays significant roles in plant growth and
developmental processes such as cell division, expansion, and differentiation. It regulates the expression of
early auxin-responsive genes under different developmental processes and stress conditions. Thus, the ARF
proteins are a plant-specific transcription factor, which structurally consists of three components: a conserved
amino-terminal DNA binding domain (DBD), a highly conserved carboxyl-terminal domain (CTD) and
a variable middle region (MR) [183]. The ARF gene family plays a crucial role in response to indole-3-acetic
acid (IAA) by regulating expression of down-stream target genes. The promoter of this transcription factors
have a number of conserved motif (TGTCTC) or some variant of auxin-responsive element (AuxREs) [184].
ARF genes are expressed in dynamic and different patterns during growth and development of plants and
it has been proved that individual ARFs has capable of controlling distinct developmental processes [185].
On the other hand, ARFs regulate the expression levels of auxin response genes by binding to the promoters
of auxin response elements (AuxREs): TGTCTC/TGTCCC/TGTCAC) [186]. Most strikingly, it can activate
or repress the expression of auxin response genes by binding particularly to auxin-responsive elements
(AuxREs) in the promoter regions as shown in Table 8 [186–191].
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Table 8. ARF genes in major solanaceous food crops and their functions.

Genes Function in Plants Plants Ref.

ARF

SlARF3 It plays multiple roles in the formation of epidermal cells and trichomes Tomato [187,188]

SlARF7 It acts as a negative regulator of fruit set until pollination and fertilization Tomato [186]

SlARF10 Involved in chlorophyll and sugar accumulation Tomato [189]

CaARF18 Take part in flower development and fruit set Pepper [190]

CaARF10 Regulates auxin-induced leaf expansion Pepper [190]

SlARF9 It regulates the cell division during early tomato fruit development Tomato [191]

12. List of Major Transcription Factors in Major Solanaceous Food Crops

The genome wide identification and characterization of a major transcription factors in solanaceous
food crops have been almost completed and the lists have been shown in the following Table 9.
Specifically, in eggplant, transcription factors such as MYB, HST and NAC have not been completed
genome wide, which should be studied to increase the chance of abiotic and biotic stress tolerance not
only for eggplant but also other solanaceous crops by developing transgenic plant using the resistant
genes. MYB which is a very important transcription factor also has not been completed in potato
genome wide. This is very inquisitive because studying the genome-wide gene expression patterns
could help the plants adapt to different kinds of environmental stresses by developing the transgenic
plant or using different gene silencing technologies. The number of each transcription factor in each
solanaceous crop (eggplant, tomato, potato and hot pepper) after genome wide analyses have been
shown below in Table 9. The genome wide analyses of each transcription factor have been completed
and “–“indicates the genome wide analysis was not done yet. Potato’s WRKY [63] Dof [58], NAC [145];
ARF [192]; ERF [181] Pepper WRKY [193] ERF [194]; Dof [51] MYB [103]; ARF [190]; NAC [195]
Tomato WRKY [62] Dof [53] MYB [88] HSF [120] ARF [196] ERF [171]; Eggplant’s WRKY [197] Dof [52]
MYB [84].

Table 9. Number of major transcription factor in solanaceous food crops.

Solanaceous Crops Transcription Factors

WRKY HSF MYB NAC DOF ERF ARF

Potato 79 27 - 110 35 210 20

Tomato 83 26 127 101 34 146 17

Hot pepper 71 25 91 106 33 175 22

Eggplant 50 - 73 - 29

13. Measuring Chlorophyll and Relative Water Content during Gene Silencing

The effects of abiotic stresses such as drought and salinity on photosynthesis are multifaceted
and are directly interrelated with stomatal closure and mesophyll limitations for the diffusion of
gases, which ultimately changes the net photosynthesis process. It is therefore very significant to
measure the chlorophyll content of plants using spectrophotometric analysis to know how much
the plant is affected physiologically. Acetone and DMSO are the two most commonly used in the
extraction of Chlorophyll a, chlorophyll b and carotenoid in plants and are measured at 665, 643 and
470 nm respectively [198]. Most of the time, the rate of excitation of chlorophyll molecules surpasses
the conversion of energy in the reaction centers of PSII under stress condition, excited chlorophyll
molecules then can generate singlet oxygen molecules, which resulted in promote photo-oxidation.
As a result, carotenoids which are also components of PSII, take action as non-enzymatic antioxidants,
they scavenge excited chlorophyll molecules and drive away energy as heat [199]. To evaluate the
physiological role of a particular gene under different abiotic stress conditions (mostly drought and
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salinity stress), the total chlorophyll of the silenced plants and the control plants should be measured to
make sure that particular gene of interest play a role in a tolerance or resistance to the defined stresses
depends on the silencing efficiency [200]. On the other hand this means that the membrane damage
and leaf senescence of the silenced gene plant might be higher under stressed treatments.

On the other hand, measuring the relative water content [201] is very important in understanding
how much the gene silencing is effective, most of the time using Phytoene Desaturase gene (PDS)
by virus induced gene silencing or other silencing method under abiotic stress such as drought and
salinity. The PDS gene which also called marker gene is used in gene silencing methods because
photo-bleaching phenotype is easily detectable visually. The other important thing is that if RWC
and chlorophyll is higher in transgenic line, it is an indicator of how that particular gene inserted is
beneficial compared to the wild type. Thus, when the stressed plant with silenced gene has shown low
relative water content and chlorophyll content (highly bleached) compared the control, it is possible to
say that particular gene under study is responsible for drought of other kinds stresses.

14. Conclusions and Future Directions

Genome-wide studies of transcription factors such as WRKY, MYB, DOF, HSF, bZIP and NAC in
solanaceous plants play a vital role in understanding the genes responsible for different stresses i.e.,
transcription factors might help in boosting up the yield and developing a tolerant plant to different
environmental stress conditions. A major future challenge is the mitigation of climate change effects
on crop production despite reduced water availability in which the systems of drought resistance may
vary depends on the climate change and soil condition with variation in temperature. The advantage of
focusing on plant TFs lies in the potential production of the genetically modified cultivar in which plant
stress response pathways and factors can be fine-tuned to make the plant tolerate the environmental
stresses. Increasing the water use efficiency of solanaceous crops is very important particularly in arid
and semi-arid areas in most developing countries like in Africa because of the fact that solanaceous
crop demand more water. There are no many transgenic plants developed using TF candidate genes
in solanaceous crops to the wanted extent, but it may represent a good strategy in improving the
production and productivity in the area of water shortage and where the disease is very severe.

The currently available genome editing technologies like CRISPR-Cas9, VIGS and other gene editing
and silencing technologies are invaluable in improving the traits of not only solanaceous plant but also
other very important food crops. This has at least two major functions: firstly, it is worth emphasizing
that a single TF can regulate the expression of multiple genes to help in withstanding different stresses
and secondly it may also use for developing a transgenic plant of desirable characteristics. This regulatory
capacity might, therefore, be useful for improving water use efficiency and yield. The expression analyses
of the mentioned eight transcription factors in different solanaceous crops by testing the upregulation
in different tissues (developmental regulation) or under different abiotic or biotic treatments (stress
regulation). This could promise in understating the role of each gene as the potential of each specific gene
is unique in terms of environmental stresses and the conditions facing dry land agriculture. Therefore,
the development of transgenic plants harboring TF genes that improve stress tolerance in field conditions
represents a gap that will need to be filled by future research which would be environmentally friendly.

There are still a lot of transcription factors that need to be characterized and the variation in each
gene with its function in solanaceous crop sounds better in developing better traits. Another challenge
is the difficulty of ‘pyramiding’ drought-tolerance related genes in highly heterozygous tetraploids
plants like potato cultivars because most abiotic stress like drought and salinity are controlled by
many genes. Therefore, TF genes need to be further studied to identify suitable candidate genes to
improve different stress tolerance and water use efficiency through reverse genetics analyses, gene
expression studies, transgenics and using different available molecular assays technologies to keep
the food security. By and large, genome editing technologies should get better attention as climate
change is ongoing and number of populations is also dramatically increasing which as a result giving
attention to improve the yield in quality and quantity is so much important.
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