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18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET) is an important
tool in oncology. Its use has greatly progressed from initial diagnosis to staging and patient
monitoring. The information derived from 18F-FDG-PET allowed the development of a
wide range of PET quantitative analysis techniques ranging from simple semi-quantitative
methods like the standardized uptake value (SUV) to “high order metrics” that require a
segmentation step and additional image processing. In this review, these methods are
discussed, focusing particularly on the available methodologies that can be used in clinical
trials as well as their current applications in international consensus for PET interpretation
in lymphoma and solid tumors.
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1. INTRODUCTION
Positron emission tomography (PET) with 18F-FDG plays a major
role in the assessment of therapy response and in patient follow-
up for oncology applications (1–3). More specifically, PET is being
increasingly used to monitor response to therapy in solid tumors
(4) and in lymphoma (5). Furthermore, PET imaging is often
considered as a quantitative imaging technique since it offers the
possibility of measuring in vivo the radiopharmaceutical concen-
tration expressed in Bq/mL. As a consequence, one may benefit
from this quantitative information to obtain metrics that may
enhance (or probably replace) the visual interpretation that is
still widely used in everyday clinical practice (6). In an interesting
review, Tomasi and colleagues (7) advocate the use of quantitative
metrics in PET for two main reasons: (i) those metrics are less user-
dependent, calculated semi-automatically, and allow multi-center
trials if acquisition and reconstruction parameters are carefully
chosen (8, 9), and (ii) the development of novel radiopharmaceuti-
cals targeting relevant biomarkers (10) imposes the use of an opti-
mal quantitative approach as conventional quantitative metrics
(including visual analysis) may not always be adapted for extract-
ing relevant information. Additionally, beyond the usefulness of
quantitative imaging for therapy response or prognosis, those met-
rics are expected to play a pivotal role for tumor characterization
in line with the development of personalized medicine.

This short review provides an overview of the current use
of quantitative metrics and discusses promising methodological
developments in the context of therapy response and patient
follow-up using 18F-FDG PET imaging. For this purpose, this
review is divided into three sections. The first section is dedicated
to a brief description of the main issues of quantitative metrics
that are being used in clinical studies. It focuses on quantitative
methodologies that have been already investigated and assessed for
therapy response and patient follow-up. The ideas developed in
this section can be seen as the depiction of “a perfect world,” given

that the limits and usefulness of such quantitative approaches
can be fully understood without being necessarily implemented
in routine practice. Some of those metrics are promising tools
while others are already employed clinically. The second section
discusses the use of quantification for treatment monitoring and
response-adapted therapy in lymphoma from a more clinical point
of view. It is now well-established that 18F-FDG PET has great
value for monitoring therapy and a tremendous international
effort has resulted in an unified interpretation criteria in lym-
phoma (11). It is impressive that quantitative metrics’ role gains
more and more importance in these regularly updated consensual
criteria in lymphoma. In this respect, the use of 18F-FDG PET
in lymphoma can be considered as an “almost perfect world” as
far as quantitative approaches are clinically relevant for assessing
therapy response in lymphoma. In contrast, up to now, there is no
international consensus in using PET-based quantitative metrics
for assessing therapy response in solid tumors (third section). The
most recent attempt to standardize interpretation criteria has been
proposed by Wahl and colleagues with the PET response criteria in
solid tumors (PERCIST) (12), and paves the way toward an unified
approach in solid tumors that is not yet used clinically.

2. METRICS FOR QUANTIFICATION IN PET: A PERFECT
WORLD

Quantitative metrics derived from PET images are now recog-
nized as valuable tools to improve the robustness of diagnosis
especially in the area of therapeutic follow-up. The standardized
uptake value (SUV) is now the most popular metric routinely used
and is included in 90% of PET reports (13). However, other PET-
derived quantitative metrics have emerged to be potentially useful
in analyzing PET images or helping nuclear medicine specialists
to diagnose patients with confidence. The aim of this section is
not to discuss the technical limitations of all quantitative met-
rics but to highlight the assessment and use of those metrics
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Carlier and Bailly PET quantification for therapeutic follow-up

under clinical situations. The metrics that can be derived directly
from reconstructed volume without post-processing are termed
hereafter “first order metrics”. SUVmax and SUVpeak are included
in this category and are briefly detailed in the first part. “Second
order metrics” fall under the category of those measurements that
in addition to “first order metrics ” require a segmentation step to
be computed, and include SUVmean, total lesion glycolysis (TLG),
and the associated metabolic tumor volume (MTV). These are out-
lined in the second part. In the third part,“high order metrics” that
require a segmentation step and additional image processing are
briefly detailed. Tumor textural features are typically included in
those metrics. Lastly, the usefulness of a new parametric approach
exploring the benefit of tracking tumor uptake changes between
longitudinal examinations is presented.

2.1. FIRST ORDER METRICS: SUVMAX AND SUVPEAK

The SUV is widely adopted as a surrogate of the overall net rate of
18F-FDG uptake. The underlying limitations of this assumption
can be found, for instance, in the review of Bai and colleagues (6).
The SUV is defined as the ratio between the radiopharmaceuti-
cal concentration (expressed in Bq/mL) and the decay corrected
injected activity normalized by a given factor. Three main nor-
malization factors are used: the widely used body weight (SUVbw

expressed in kg/mL), the body surface area (SUVbsa expressed in
m2/mL) computed with specific equations (14), and the lean body
mass (SUVlbm or SUL expressed in kg/mL). This latter metric
is recommended by Wahl (12) when using the PERCIST criteria
because of its less dependent variation on body weight especially
for obese patients. A recent work discussed the use of appropriate
equations for computing the lean body mass (15).

The precise description of technical variabilities of SUV is
beyond the scope of this short review and has been widely dis-
cussed in the literature. Readers interested in a thorough insight
can refer to several excellent studies dealing with this issue (16–
20). This paper focuses on the two most used metrics: SUVmax

defined as the SUV value of the maximum intensity voxel within
a region of interest (ROI) and SUVpeak defined as the average
SUV within a small ROI (usually, a 1-cm3 spherical volume). Only
these properties assessed with patients’ data are reported, which
represents limited studies in spite of their widespread application
and description on phantoms data. Additionally, all the follow-
ing studies share the strong hypothesis that both SUVmax and
SUVpeak are not affected by the partial volume effect (PVE). It is
well known that this hypothesis is invalidated when the lesion size
is less than three times the reconstructed image resolution (21).
The PVE results from the combination of the tissue fraction effect
due to the point-spread function of the PET system, and the sam-
pling effect due to the finite voxel size of the reconstructed images.
An overview of partial volume corrections (PVC) can be found in
a recent paper by Erlandsson et al. (22).

In a study including 26 patients with various clinical indica-
tions (23), Nahmias et al. reported the reproducibility of SUVmax

by acquiring two PET/CT scans within 3±2 days. They concluded
that the SUV variability increased when SUVmax increased, but
contributed <0.5 (in SUV unit) in 95% of repeated studies. This
indicates that an SUV change superior to 0.5 may be clinically
relevant in most cases. De Langen et al. extended the study with

a meta-analysis based on four studies representing 86 patients
and 163 analyzed tumors (24). The main relevant conclusions
reported by the authors were that if ∆SUVmax > 30% and
∆SUVmax > 2 or if ∆SUVmax > 25% and ∆SUVmax > 3
between two exams, then the SUV change can be considered as
relevant (i.e., the difference is not likely an error measurement)
within the 95% confidence limit. The conclusions published by
Nahmias et al. (23) were thus partially invalidated or at least more
restrictive.

A potential important feature of the SUVmax measurement
is that this metric is susceptible to be strongly affected by noise
due to its single-voxel determination. Lodge et al. focused on this
issue analyzing data from 20 patients acquired by a phase-based
respiration gated protocol (total duration: 15 min) for known or
suspected malignancies in the chest or abdomen (25). Data were
reconstructed in five independent phases and reproducibility was
evaluated on two consecutive phases. They also studied SUV bias
using different time frame lengths from 1–15 min. They reported
several interesting conclusions: (i) the variability of SUVmax that
can be attributed to image noise accounts for half of the overall
variability, (ii) a ∆SUVmax < 30% is still within the uncertainty
of repeated measurement, and (iii) a positive bias of SUVmax can
be as high as 30% for short acquisition time (i.e., high noise level),
evaluated as 1 min per bed position for the system used in their
study. The authors also reported the properties of SUVpeak in
this work. As expected, they found that SUVpeak was less biased
than SUVmax (positive bias of 10% for the same 1-min acquisi-
tion per bed position), and the impact of noise was two times less
for SUVmax . They also concluded that SUVpeak was not greatly
affected by the voxel size (that is directly related to image noise
for a same number of counts recorded). This last conclusion
may be of particular interest as a recent study suggested that
lesion detectability could be improved using small voxel size (typ-
ically, 2 mm× 2 mm× 2×mm) (26), or for multicenter studies,
in which different voxel size can be used. However, as mentioned
by Lodge et al., it is worth noting that SUVpeak is likely more
sensitive to PVE than SUVmax . Additionally, Vanderhoek et al.
raised the important issue of the SUVpeak computation as many
authors used their own ROI definition for calculating this metric
(27). Their study was based on the analysis of 17 patients that
underwent 2 PET/CT 18F-FLT. They surprisingly found that the
ROI definition alone could change the tumor response assessment
in approximately half the population studied when choosing the
response threshold proposed by PERCIST (±30% ). Their con-
clusions underline the need to use a unique ROI definition for
computing the SUVpeak such as the one proposed by Wahl (12): a
fixed 1-cm3 spherical ROI centered on the high-uptake part of the
tumor (which does not necessarily embed the SUVmax value).

Finally, although not directly related to SUVmax or SUVpeak

measurements but more generally with first order metrics, we
report the recent study of Boktor et al. that aimed at assessing
the intrapatient variability of SUV measured in the liver (28).
This is a relevant topic as there is an increasing interest to extend
visual analysis to semi-quantitative analysis especially in the area
of interim 18F-FDG response in lymphoma where the liver is
often considered as a reference region (29). A total of 132 patients
that underwent two or more PET/CT scans were retrospectively
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enrolled. The reference range for SUV liver intrapatient variability
was found to be [−0.9, 1.1] indicating the intrinsic limit of SUV
measurement in the liver when considered as a reference organ.

2.2. SECOND ORDER METRICS: SUVMEAN, TLG, AND MTV
When using SUVmax or SUVpeak , all of the tumor information is
reduced to the measurement within a very limited region of the
tumor (a single voxel for SUVmax). It has been speculated that
taking measurements from the whole tumor may better reflect
the overall tumor burden than SUVmax or SUVpeak . The SUVmean

is the average measure of SUV within calculated boundaries of
a tumor. Once this region is determined, it is straightforward
to derive the metabolic tumor volume (MTV) and the product
SUVmean ×MTV which defines the total lesion glycolysis (TLG),
first introduced by Larson et al. for evaluating the response of
locally advanced aerodigestive tracttumors (30). Obviously, the
delineation of tumor involves the use of a segmentation approach.
Only automatic methods will be briefly discussed in this section
as a manual segmentation is often associated with a higher degree
of variability. Automatic segmentation is directly impacted by sev-
eral image properties that, theoretically, must be accounted for: (i)
noise, (ii) spatial resolution (highly post-smoothing level depen-
dent), (iii) voxel size, (iv) heterogeneity in the tumor, and (v)
uptake gradient within and outside the tumor. Zaidi et al. recently
published an overview of available segmentation approaches (31).
The methods used for deriving MTV and the derived SUVmean

and TLG could be basically categorized into two groups, namely
those that are:

1. available routinely in a clinical environment, from which we
can distinguish:
(a) methods that do not need a calibration,
(b) methods that need a calibration,

2. still under development and not routinely available.

Segmentation approaches that fall under the group 1a can be
SUVn% where a threshold based on the percentage of the SUVmax

is chosen (typically, n ∈ [41− 70]) or SUVk where all voxel values
that are superior to SUV= k (typically, k= 2.5 or k= 3) delin-
eate the tumor. Segmentation techniques that need a calibration
(sub-group 1b) are those developed for instance by Schaefer et al.
(32) or Vauclin et al. (33). Those methods are often termed as
contrast-oriented and need prior calibration. In that respect, they
can be considered as specific of a given PET scanner, reconstruc-
tion algorithm, and voxel size. Methods that belong to group 2 are
advanced automatic methods using only the intrinsic properties
of reconstructed images. They do not need a calibration phase
and are currently under development and/or assessment. The
most popular, as far as PET only datasets are considered, includes
edge detection (34), watersheds (35), gradient-based (36), Fuzzy
C-Means (37), or fuzzy locally adaptative bayesian (FLAB) (38).

The intrinsic performances of those different approaches have
been extensively evaluated with phantom experiments (39–42).
The different studies underlined that more advanced methods,
such as those falling under group 2, allowed higher accuracy
than those of group 1b or 1a (41, 42). All methods were more
or less affected by physiological and imaging parameters (40).

Cheebsumon et al. avoided the use of SUVk-based segmentation
as this may lead to strong bias (40). Interestingly, few studies
assessed the repeatability of different segmentation algorithms
using clinical data (43–46). For example, Cheebsumon et al. ret-
rospectively enrolled 19 patients (10 patients underwent 18F-FDG
and 9 18F-FLT) with non-small cell lung cancer (NSCLC). They
were scanned twice 1 week apart. The repeatability was assessed for
ten segmentation algorithms (representing all groups previously
described) and different noise and spatial resolution properties
in reconstructed images. They concluded that all methods per-
formed generally equally for the test-retest variability but some
tumor delineation methods are more sensitive to image noise
(gradient-based and SUV2.5). While SUV2.5-based method tended
to dramatically overestimate volume, contrast-oriented methods
appeared to be robust enough against noise and spatial resolution
properties. Hatt et al. (44) performed a similar study for patients
with esophageal cancer (18F-FDG) and breast cancer (18F-FLT).
The segmentation algorithm that led the smallest test-retest vari-
ability was always the techniques that rely on group 2 techniques,
while the worst were those based on manual delineation.

While the limits were clearly highlighted with both phantom
and clinical data, it is striking to note that numerous studies used
known-biased method (i.e., SUV2.5) to compute MTV or TLG.
An overview of the different segmentation algorithms used in the
literature to assess the prognostic value of MTV or TLG for solid
tumors is mentioned by Van de Wiele et al. (47) for patients suf-
fering from squamous cell carcinoma of the head and neck, lung
carcinoma, esophageal carcinoma, and gynecological carcinoma.
A meta-analysis was also recently published by Pak et al. (48)
for assessing the prognostic value of MTV and TLG for patients
with head and neck cancer and also pointed out the pre-eminence
of biased algorithms for computing MTV or TLG. Nevertheless,
although the limits of the different tumor delineation techniques
used in these studies were reported, most of the studies showed
that, whatever the segmentation algorithm used, a higher MTV or
TLG in head and neck cancer is associated with a higher risk of
adverse events or death (48). The conclusions were almost identical
when considering the review published by Van de Wiele (47). MTV
and TLG calculation based on basic algorithms (threshold-based
or hrmSU Vk -based segmentation) succeeded in correctly predict-
ing outcome and were found to be a relevant and independent
prognostic biomarker for survival.

It is interesting to note that in the last 2 years, there has been
a growing interest in assessing the prognostic value of MTV
and/or TLG for solid tumors. For instance, MTV defined by
threshold-based algorithms were found to be associated with
progression-free survival (PFS) and overall survival (OS) in sali-
vary gland carcinoma (49). Another study showed that MTV
and TLG computed with the SUV2.5 technique provided use-
ful prognostic information for patients suffering from pancreatic
cancer with curative intent (50). TLG computed with a threshold-
based algorithm (40% of the SUVmax) was also an independent
prognostic factor for disease progression in epithelial ovarian
cancer (51).

There is also a recent tremendous effort to compare the
results of MTV, as computed with PET reconstructed images,
with the MTV measured after tumor resection. Hatt et al (52)
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compared four segmentation algorithms with pathological find-
ings (measuring the maximum diameter of the tumor) after lobec-
tomy for 17 patients suffering from NSCLC. They underlined that
in a case where tumors tended to be very heterogeneous, all delin-
eation algorithms underestimated the maximum diameter. This
result advocates the use of advanced segmentation approaches
(group 2) to account correctly for uptake heterogeneity. Zaidi
et al. enrolled seven patients suffering from pharyngolaryngeal
squamous cell carcinoma (53). Ten PET segmentation methods
were compared to surgical specimens after total laryngectomy.
The surgical specimens were frozen, cut, and then digitized. This
enabled a remarkable 3D-reconstruction to be compared directly
with the results based on PET segmentation. Their main findings
were that advanced segmentation methods (Fuzzy C-Means-based
algorithm) and adaptive thresholding techniques (sub-group 1b)
gave the best approximation of volumes measured on surgical
specimens. A study conducted by Schaefer et al. (54) after lobec-
tomyand mediastinal lymph node dissection in the context of
lung cancer yielded the same conclusions for an adaptive-based
thresholding technique.

While MTV and TLG have proven to provide useful prognostic
metrics in essentially solid tumors when computed on the primary
lesion, many authors suggest that a “whole-body metabolic bur-
den” may best reflect the stage of the disease. This idea has been
put forward recently with two interesting editorial commentaries
related to evaluation of treatment response in hematological dis-
ease (55, 56). This approach was successfully assessed in 19 patients
with non-Hodgkin’s lymphomas (NHL) by Berkowitz and col-
leagues (57). The authors pointed out the potential superiority
of whole-body-based metrics over conventional indices in man-
aging NHL patients. Following this, Fonti and colleagues found
that total MTV computed with the threshold-based algorithm
(40% of the SUVmax) was predictive of survival (PFS and OS)
in multiple myeloma patients in a retrospective study including 47
patients (58). Similar results were recently reported by Sasanelli
et al. (59) for 114 patients with diffuse large B-cell lymphoma
(DLBCL). They also used a threshold-based algorithm (41% of
the SUVmax) and found in multivariate analysis that total MTV
was the only independent predictor of OS. In a study focusing
on 59 patients with hodgkin lymphoma (HL), Kanoun et al. (60)
also showed that baseline total MTV (computed with 41% of the
SUVmax) was predictive of patients outcome for PFS. Interestingly,
they showed that when combining the baseline total MTV and
∆SUVmax between initial and interim PET, an identification of
three subsets of patients with different outcomes could be derived.
They highlighted the important benefits of such categorization for
tailoring therapeutic strategies in HL patients and strengthened
the interest of interim PET analysis with a quantitative approach.
The sum of TLG for all lesions was also investigated in a study of
Kim and colleagues for 140 patients diagnosed with DLBCL (61).
They used a threshold-based algorithm (50% of the SUVmax) and
found that the sum of TLG was highly predictive of survivals for
both PFS and OS. However, as pointed out by Basu et al. (56), the
use of a whole-body metric involving TLG could be highly depen-
dent on the severity of PVE. Not accounting for PVE for small
lesions could dramatically underestimate the total TLG making
the validity of this metric questionable.

Therefore, there is an acute need for defining a robust delin-
eation method, associated with PVC when required, that makes a
reliable extraction of those second order indices possible (62).

2.3. HIGH ORDER METRICS: TEXTURAL FEATURES
A new class of metrics has recently emerged in PET imaging and
is currently being clinically investigated. Those metrics intend
to quantify the heterogeneous intra-tumoral uptake which must
in turn be correlated with clinical outcome. They are calculated
on reconstructed images and are often referred to as “textural
features.”The image texture characteristic is not new,and was orig-
inally proposed in the early 1970s by Haralick (63). The underlying
concept relies on a possible direct relation between heterogene-
ity at the cellular and macroscopic levels which in turn remains
still unclear (64, 65). Biological heterogeneity of a tumor is con-
ventionally associated with different histological features such as
metabolism, proliferation, necrosis, vascular structure, degree of
hypoxia. These properties may greatly affect the prognosis and
the treatment response. Therefore, extracting textural features
directly at the macroscopic level may be of great importance for
personalized management of disease.

The computation of heterogeneity in medical imaging has been
already applied in a wide variety of indication for several imag-
ing modalities. Interested readers are referred to the recent review
of Davnall et al. (66). In PET imaging, textural feature analysis
is mainly based on statistical approaches (67). Several steps are
required including: (i) tumor segmentation, (ii) derived ROI con-
tent resampling (using typically 32, 64, or 128 discrete values),
(iii) desired matrix computation (cooccurrence matrix, gray-level
run length matrix, neighborhood gray-level different matrix, or
gray-level zone length matrix), and (iv) associated textural indices
computation. Ideally, the number of resampling values must be
reported to avoid misinterpretation.

Galavis et al. (68) investigated the intrinsic performances of
textural indices by comparing several metrics to each other and
derived a set of indices that are the most independent from matrix
size and reconstruction parameters. Several other recent studies
reported the significance and robustness of texture metrics using
clinical data. Tixier et al. (69) studied the reproducibility of 25
indices using two PET scans acquired within 4 days. They consid-
ered 16 patients with esophageal cancer and lesions were delineated
with the FLAB algorithm. Only three of their indices were robust
and reproducible enough between the two scans (namely: entropy,
homogeneity and dissimilarity). The impact of PVC and different
tumor delineation were also investigated by Hatt et al. (70) for
eight textural metrics. They found that heterogeneity parameters
were more dependent on the segmentation algorithm than PVC.
Although a significant absolute difference was found as a function
of tumor delineation, they also concluded that this difference does
not change the predictive value of each parameter (at least for
entropy, homogeneity and dissimilarity). The robustness of tex-
tural indices with respect to the number of discrete values used
for the resampling and the tumor delineation algorithm was also
investigated by Orlhac et al. (71) using 28 patients (for a total of
188 tumors) with metastatic colorectal cancer, NSCLC, and breast
cancer. They argued that at least 32 gray levels are mandatory and
found that only 17 indices out of the 31 studied are robust enough
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against the segmentation algorithm. Only one study assessed the
correlation between heterogeneity evaluated numerically and visu-
ally (72). They found a moderate correlation (0.4 < r < 0.6)
and underlined the poor inter-observer agreement for the visual
assessment of heterogeneity. These results strengthen the need for
numerical computation of textural features.

Additionally, controversy remains regarding the number of
voxels used for computing reliable textural features (i.e., not
dependent on the number of voxels used). Very few authors
mentioned this crucial information in their studies. Brooks and
Grigsby recently published an interesting study (73) based on 70
cervical cancer tumors. They showed that for a specific metric
(entropy), a minimum number of voxels was required (700 voxels)
to minimize the dependence with the number of voxels. Another
study speculated that the minimum number of voxels must be
larger than 3 cm3 (72) without precisely justifying this value. Orl-
hac et al. (71) suggested that the limit must not be less than 4×4×
4 = 64 voxels and must also take into account the spatial resolution
of the PET system (at least three times the measured full width at
half maximum). It is worth noting that this methodological aspect
must be carefully investigated in future studies.

Another matter for debate is the potential correlation of tex-
tural indices with each other and with first or second order metrics
described in Sections 2.1 and 2.2 (65). The idea behind this issue is
the real additional value brought by textural features with respect
to other metrics. Several studies were focused on this problem
(70, 71, 74–76). In the work of Orlhac et al. (71), the correlated
indices were classified in a same group. The authors succeeded
in bringing up several groups of independent texture metrics. The
first and second order metric were obviously highly correlated with
each other but poorly correlated with the majority of textural met-
rics. They also focused on the correlation of MTV with textural
features and found that some texture indices were strongly cor-
related with MTV. They concluded that this correlation must be
accounted for when using such indices. Hatt et al. (70) came to the
same conclusions for a more limited number of textural features.

Whilst the significance and robustness of textural features are
not currently fully understood or investigated (65), there is a grow-
ing interest for using those metrics in a clinical setting. Studies were
dedicated mainly to solid tumors. Tixier et al. (77) reported that
textural analysis can differentiate three groups of patients (non-
responder, partial-responder, and responder) with a very good
sensitivity for 41 patients with esophageal cancer before external
radiotherapy and chemotherapy. They showed that few textural
metrics performed better than any SUV-based measurements.
Cheng et al. (78) also confirmed that one of their analyzed textural
metrics, uniformity calculated with the cooccurrence matrix, was
an independent prognostic factor for PFS and OS for 70 patients
with advanced T-stage oropharyngeal squamous cell carcinoma. In
another interesting study, Cook et al. (79) retrospectively enrolled
53 patients with NSCLC and found that three textural metrics
can better stratified patients treated with radiochemotherapy than
SUV parameters, MTV, or TLG. Two studies recently addressed
the use of textural features in response assessment (80, 81). Yang
et al. (80) were interested in the temporal evolution of 22 textural
metrics during the course of treatment of 20 patients with cer-
vical cancer (three PET/CT scans). They concluded that textural

features may be considered as an alternative to SUV changes for
better understanding the tumor response. Bundschuh et al. (81)
assessed three textural metrics in 27 patients that underwent 3
PET/CT scans in the context of locally advanced rectal cancer
treated by neoadjuvant chemotherapy. The coefficient of varia-
tion metric was highly correlated to histopathologic response and
could predict the disease progression better than any conventional
parameters (SUVmax , SUVmean, MTV, or TLG).

Finally, it is worth noting that a better understanding of biologi-
cal basis of textural features is crucially needed. Multicenter studies
must be also be conducted in the future to assess the robustness
of textural metrics and associate textural analysis with genomics
studies (82). Additionally, the association of textural features with
conventional parameters may represent a good opportunity to bet-
ter stratify patients and trend toward a personalized management
of disease (72).

2.4. PARAMETRIC IMAGING: NUCLEAR MEDICINE SPECIALIST’S BEST
FRIEND?

The therapeutic response assessment with PET imaging is cur-
rently based on tumor uptake change by measuring only one value.
This value may reflect the change of a small number of voxels (one
voxel for SUVmax) within the tumor as discussed in Section 2.1, or
the whole tumor using metrics mentioned in Sections 2.2 and 2.3.
None of these approaches take into consideration the heterogene-
ity of change within the tumor on a voxel-per-voxel basis. These
local changes may reflect a heterogeneous response of the tumor
or the development of a necrotic area for example.

A method that takes benefit of significant intratumoral evolu-
tion was recently proposed by Necib et al. (83) using parametric
imaging. This approach relies on the difference of SUV between
two PET scans at a voxel level. The local changes are identified by
a Gaussian mixture model. The authors applied this methodology
to 78 pairs of tumor images acquired at baseline and follow-up for
28 patients with metastatic colorectal cancer. They found that their
approach correlated well with RECIST and performed better than
the European organization for research and treatment of cancer
(EORTC) criteria when RECIST is considered as the gold stan-
dard. An example of images yielded by the parametric approach
is illustrated in Figure 1. The parametric imaging approach can
be extended to more than two PET exams using factor analysis. In
this approach, each voxel evolution is modeled by a weighted sum
of two or three basis functions representing respectively a stable,
decreasing and/or increasing trend. This methodology is cur-
rently under investigation and is shown in Figure 2 for illustrative
purposes.

Another approach proposed by David et al. (84) uses paradox-
ical theory. This approach models imprecision, uncertainty, and
conflict between sources. It can be applied to two PET exams and
was found to result in more consistency for partial responders
than using conventional methodology that involved SUV or MTV
change.

3. PET SCANS FOR THE MANAGEMENT OF LYMPHOMA: AN
ALMOST PERFECT WORLD

The use of 18F-FDG PET for evaluation of HL and NHL has
increased dramatically during the last decade both for staging
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Carlier and Bailly PET quantification for therapeutic follow-up

FIGURE 1 | (A) PET1 showing five tumors, superimposed with CT1. (B) PET2
superimposed with CT2. (C) Parametric image (superimposed with CT1)
showing only voxels with significant tumor changes between PET1 and PET2.
These voxels are shown in green, meaning that SUV decreased between the
two scans. For the two biggest tumors, the EORTC-based approach found a
responding lesion (SUV decrease of 27% for tumor 1) and a stable lesion
(SUV decrease of 10% for tumor 2). Parametric imaging found two

responding lesions (∆SUV = −5.9 and −2.6 for tumors 1 and 2, respectively),
which were consistent with RECIST classification derived from late CT.
(D) Biparametric graph fitted by the gaussian mixture model, for which three
clusters can be distinguished: noise (blue), physiologic changes (pink), and
tumor changes (green). This research was originally published in Journal of
Nuclear Medicine. Necib et al. (83). ©by the Society of Nuclear Medicine and
Molecular Imaging, Inc.

FIGURE 2 | Left: 3D visualization of two tumors (T2 and T3) using parametric
imaging with three basis functions: stable (blue), decreasing (green), and
increasing (red) represented in the left corner of each image (the number of
chemotherapy courses between each PET exam is mentioned). Parametric
imaging using 2 (A), 3 (B), 4 (C), and 5 (D) exams. Right: SUVmean evolution

(calculated within a ROI defined by 40% of SUVmax) for the two tumors. Note
that the non-responding T2 tumor was detected with parametric imaging
earlier (exam 2) than applying EORTC criteria that concluded to a stable
disease between exam 2 and 3. Reprinted by permission of Necib (Ph.D
Thesis).

and response assessment. Concerted efforts have been made to
standardize practice and according to Cheson’s recommendations
recently published (11), 18F-FDG PET should be realized at initial
staging in all FDG-avid lymphoma histologies. Moreover, since
the International Harmonization Project (IHP), which first pub-
lished guidelines for the application of 18F-FDG PET in lymphoma
in 2007 (85), international consensus recommendations for uni-
form PET interpretation criteria are regularly updated based on
published PET literature (11, 86–88). In this scenario, the Lugano
recommendations validated the use of the visual Deauville scale
for response assessment in all histological FDG-avid types of lym-
phoma. Nevertheless, some data suggest that quantitative metrics
could be used to improve visual analysis for response assessment
in lymphoma and thus, metrics such as SUVmax have been fully
integrated in recent standardized response criteria used in clinical
trials.

In the 1990s, the first reports of semi quantitative measures
in lymphoma staging demonstrated that the degree of uptake
was largely dependent on the histology of lymphoma (89). In
2005, Schöder et al. showed that the different levels of 18F-
FDG uptake between low-grade and aggressive lymphomas on
metabolic imaging could be considered as a useful tool for

assessing the transformation of a low-grade lymphoma to a more
aggressive disease (90). Based on these conclusions, a prospec-
tive study was carried out to assess the value of 18F-FDG PET
for guiding biopsies in patients with low-grade lymphoma and
with clinical, radiological, or biological signs of aggressive trans-
formation (91). This study confirmed that 18F-FDG PET can be
used as an accurate guide for biopsies in suspected transformed
tissues: a SUVmax < 11.7 was always associated with indolent
lymphoma, whereas a SUVmax > 17 was always associated with
histological transformation. Moreover, the 18F-FDG uptake gra-
dient, observed on metabolic imaging recorded at initial DLBCL
staging, could suggest transformation of unidentified low-grade
lymphoma patients. Multiple authors have also studied the predic-
tive prognostic value of early 18F-FDG on the outcomes of patients.
If the Lugano recommendations validated the use of the visual
Deauville scale for response assessment, some data suggested that
quantitative metrics could also be used to improve visual analysis.
The contribution offered by the development of SUVmax has been
a great step forward and particularly investigated in DLBCL. Lin
et al. were the first, in this histological subtype of lymphoma to
measure the reduction of SUVmax in the“hottest”lesion before and
during treatment, referred to as ∆SUVmax (92). This continuous
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variable may represent the dynamic process of tumor log-kill more
accurately than a visual scale or a SUV cut-off value. As discussed
above, SUV measurement is affected by numerous factors and
therefore, it seems difficult to rely on one single SUV at a given time
point to appreciate the therapeutic response and to predict out-
come. Indeed, the measurement of an inter-scan SUV reduction
performed under identical conditions within the same institution
is probably a better and more reproducible approach. Despite the
intrinsic limitations of SUV, when measured rigorously, it pro-
vides a reasonably reproducible measure of uptake that can be
used to objectively assess changes related to the tumors only. This
is confirmed by the published data which suggest that ∆SUVmax

predicts outcome better than visual assessment in DLBCL in terms
of progression-free survival and with better interobserver repro-
ducibility (92–96). The optimal threshold to discriminate between
good and poor treatment response groups varies between studies
with cut-offs ranging from 66 to 91%, suggesting that consistency
in scanning protocols and timing are mandatory for general appli-
cation. Recently, the role of SUVmax reduction was also explored
in HL with minimal residual uptake that was regarded as equivocal
for the presence of disease. In a study by Rossi et al., ∆SUVmax was
more accurate than visual analysis based on the Deauville criteria
to predict outcomes of patients with HL (97), and was thought to
be more particularly useful in patients with Deauville scores 3–4
in order to characterize the significance of the minimal residual
uptake. Hasenclever et al. also described the use of semi-automatic
quantification for interim 18FDG-PET response in HL (29). The
authors methodology named qTEP extended Deauville scoring to
a continuous scale by translating visual categories into thresholds.
Yet, as seen before, the use of quantitative metrics rather than visual
grading in HL is actually subject to controversy and requires fur-
ther study. This could be explained by the difference in the cellular
architecture and physiological features between HL and aggressive
NHL. In HL, neoplastic cells account for <1% of the overall cel-
lularity of the neoplastic tissue, whereas in NHL, they contribute
more than 90% of the total cell population. In HL, non-neoplastic
lymphocytes produce a cytokine network that ensures the immor-
talization of the neoplastic cells and works as an amplifier of the
PET detection power. This non-neoplastic cellular compartment
is switched-off very early by chemotherapy. On the other hand, in
DLBCL, a progressive fraction of neoplastic cells are lysed by the
chemotherapy, and the percentage of the cell destruction is predic-
tive of the final response to the chemotherapy. For these reasons,
a visual assessment seems preferable in HL, whereas a quantita-
tive approach by SUVmax measurement seems more appropriate
in DLBCL.

Because even SUVmax is, for a number of reasons described
previously, not a reliable metric, other quantitative metrics have
been proposed, including MTV or total TLG. In previous analyses,
a variety of pre-therapy clinical markers were consistently associ-
ated with outcome in lymphoma patients. For example, in NHL,
several patient characteristics were analyzed to determine whether
they were associated with survival, and the factors that emerged
as significant were, in addition to the Ann Arbor stage: age, ele-
vated serum lactate dehydrogenase (LDH), performance status,
and number of extranodal sites of disease. These were combined in
the International Prognostic Index (IPI), a clinical tool developed

by oncologists to aid in predicting the prognosis of patients with
aggressive NHL (98). Some of these features reflect the tumor’s
growth and invasive potential, to what is currently named tumor
burden. Thus, from a clinical point of view, calculation of a global
three-dimensional tumor burden with PET could be an important
predictor of outcome in almost any type of lymphoma similar to
disease bulk at initial presentation which has long been a known
adverse prognostic factor, particularly in early stage HL (11). The
prognostic value of tumor size using conventional imaging has
previously been demonstrated and as functional imaging is more
sensitive, it may be used to evaluate tumor burden more accu-
rately. Several studies have evaluated baseline PET-based volume
metrics but with very heterogeneous data caused by the lack of
standardization on the calculation method. Song et al. evaluated
the prognostic impact of MTV in stage II/III DLBCL without
extranodal involvement (99), in primary gastrointestinal DLBCL
(100), in extranodal T cell lymphoma (101) and in HL (102),
using a fixed SUVmax threshold of 2.5. As seen previously, this
methodology may overestimate the metabolic tumor volume espe-
cially when the background around the tumor has high activity
leading to the inclusion of voxels from the background in the cal-
culation. On the other hand, as discussed above, Kanoun et al.
in HL (60), Sasanelli et al. in DLBCL (59), and Meignan et al.
in both HL and DLBCL (103), all used a SUVmax threshold of
41%, as recommended in European guidelines. This threshold
generally determines functional volumes accurately under spe-
cific imaging conditions of homogeneous activity “tumor-like”
distribution with homogeneous background activity in phantom
studies. In clinical practice, however, the lesions are often highly
heterogeneous. When the lesion has low uptake, the volume can
be overestimated if background activity is erroneously included.
Moreover, in lesions with a very high SUVmax , there might be the
risk that the 41% threshold would eliminate a fraction of the vol-
ume with high SUV but a lower SUV than the threshold. Thus,
even if pre-treatment MTV and TLG seem to be negatively cor-
related with progression-free survival in both HL and NHL, as
exposed previously, more sophisticated segmentation algorithms
are clearly needed.

Because of its enhanced sensitivity, PET imaging now plays a
pivotal role in the management of lymphomas. The impact of
quantitative measurement in the management of patients with
lymphomas is currently being defined. The methodological con-
cerns related to quantitative metrics are well-identified and studied
and could be in a near future of valuable interest and chiefly PET
center independent. Recent data suggest that quantitative mea-
sures such as SUVmax and more particularly ∆SUVmax could be
used to improve visual analysis for response assessment. These lat-
ter have been incorporated into recent uniformly adopted response
criteria for clinical trials. Recent guidelines enacted to standardize
PET protocols and to ensure more reproducible analyses between
scans and centers will hopefully soon lead to the full integration
of these quantitation tools into daily practice.

4. PET SCANS FOR THE MANAGEMENT OF SOLID TUMORS:
TOWARD A PERFECT WORLD

Over the past decade, there has been an expansive growth in the
use of 18F-FDG for solid tumors as a tool for therapy assessment
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in oncology. This spread of the PET technique was particularly
enabled by its quantification ability based on SUV to allow the use
of a reproducible metric for cancer management.

One of the initial roles of SUV was in the differentiation
between benign and malignant lesions. This was especially used
in indeterminate solitary pulmonary nodules where the standard
approach was that nodules with an SUVmax <2.5 could be con-
sidered benign with enough confidence to avoid an immediate
biopsy; these nodules could safely be monitored with CT. For
example, Lowe et al. studied 89 patients and found a sensitivity of
92% and a specificity of 90% with an SUV threshold of 2.5. With
visual assessment, sensitivity was 98% and specificity was 69%
(104). This method of thresholding with an absolute value was
also applied to different tissues. Vansteenkiste et al. found that the
optimum SUV threshold for identifying malignant lymph nodes in
non-small cell lung cancer was 4.4 (105). In pancreatic carcinoma,
Delbeke et al. found an SUV threshold of 3.0 to be appropriate
(106). Yet, many data discarded the use of a SUV based “magic
line,” above which the malignant character can be affirmed. First
of all, as outlined previously, many variables affect the measure-
ment of SUV, limiting its accuracy and reproducibility (20, 107).
Moreover, using a predefined absolute SUV value may result in the
exclusion of small positive lesions because of a low SUV due to par-
tial volume effect. Additionally, some well-differentiated tumors
have low intrinsic SUV, whereas some inflammatory processes may
have SUV levels higher than 2.5. Undoubtedly, the use of an arbi-
trary value for malignancy may give an impression of objectivity
over visual interpretation. But, in practice, selection of a threshold
involves assessing the trade-off between sensitivity and specificity.
It could certainly be argued that very high sensitivity is appropriate
because the clinical consequences of a false-negative interpretation
are much more serious than those of a false-positive result. In this
regard, visual analysis has been reported to be equivalent (104).

In the early 1990s, quantitative measurement of early
treatment-induced changes in SUV also became an attractive tool
for monitoring response to therapy. The feasibility of detecting
small changes in tumor glucose metabolism quantitatively was
first demonstrated in studies of neoadjuvant treatment of primary
breast cancer, for which declines in 18F-FDG uptake were seen with
each successive treatment cycle in good responder patients (108).
Soon after, the comparison of pre and post treatment SUV for
monitoring the effects of therapy was demonstrated to be corre-
lated with response to treatment for advanced breast cancer (109),
liver metastases from colorectal cancer (110), for colorectal cancer
(111), glioma (112), and head and neck cancer (113). Thereafter,
the percentage of SUV decrease (∆SUVmax) was recommended in
1999 by the EORTC position paper as a method to assess metabolic
response of tumors with PET (114). Yet, given the limited data
available at that time, the need for updated criteria and further
standardization of PET response through quantitative parame-
ters gradually increased. In this scenario, the PERCIST 1.0 criteria
were drafted by Wahl et al. (12) as a framework that may be use-
ful in daily practice and for harmonizing international studies.
PERCIST can be considered as an attempt to validate quantita-
tive and semi-quantitative approaches for metabolic treatment
response assessment in which cancer responses assessed by PET
is a continuous and time-dependent variable. The framework

has the advantage of being easily applied, and with high repro-
ducibility. Furthermore, it can be generalized to a wide variety of
malignancies and situations and avoids the conceptual limitations
associated with defining an optimal SUV threshold. PERCIST
criteria include definitions of “lesion measurements at baseline,”
“normalization of uptake,” “complete metabolic response,” “par-
tial metabolic response,” “stable metabolic disease,” “progressive
metabolic disease,” “overall response” and “duration of response”
and pave the way toward an international consensus. Yet, in spite
of these important efforts, currently only about 10 studies have
used these criteria for response assessment in different types of
solid tumors: colorectal (115–118), breast (119), esophageal (120),
and lung (121–123) cancers. Some interesting considerations have
arisen from these latter studies. In the three studies comparing
EORTC and PERCIST criteria for response assessment (115, 119,
120), no significant difference was observed between both, but
PERCIST criteria, because of clear definitions, was considered
more straightforward to use. It is also important to point out
that PERCIST definitions of response to therapy are based on the
calculation of SUV normalized for the lean body mass. Unfortu-
nately, SUVlbm values are not easily reproducible because there
is yet no agreement on the way in which this index should be
determined as nine different predictive equations exist for calcu-
lating lean body mass. For this reason, four of the studies used
modified PERCIST criteria with SUVmax instead (116–118, 123).
Moreover, as pointed out by Maffione (117), there are limitations
in the complete metabolic response assessment. For the PERCIST
1.0 version, it should be done visually, with complete resolution of
18F-FDG uptake in the target lesion, less than the mean liver activ-
ity, and indistinguishable from surrounding blood pool activity.
Yet, in rectal carcinoma for example, 18F-FDG uptake within the
tumor site after neoadjuvant chemo-radiotherapy may be higher
than the surrounding background blood-pool levels probably due
to residual inflammation, or physiological tracer washout via the
intestine (117). These considerations lead to the possibility that a
single definition of residual disease after therapy may not be valid
for every type of tumor. This issue led to the proposal of a new set
of criteria to assess metabolic response in rectal cancer called PET
residual disease in solid tumor (PREDIST) (124).

On the other hand, even if 18F-FDG PET imaging can substan-
tially benefit from using quantitative measures of uptake, some
authors discarded the tendency to analyze imaging data by trusting
quantitative parameters and cut-offs. Soon after the publication
of the PERCIST criteria, Hofman discussed the advantages of
pattern recognition (125). The authors believe that the experi-
enced observer can accurately assess whether a site of increased
uptake is probably tumor from knowledge of anatomy and prior
observations of the distribution of FDG in normal tissues.

As discussed above, other potential quantitative parameters
have also been developed to evaluate patient prognosis and assess
therapeutic response in solid tumors. Among these parameters,
volume-based PET parameters such as MTV and TLG are espe-
cially promising by quantifying tumor burden. Van De Wiele (47)
and Moon (126) presented the available data in patients suffer-
ing from squamous cell carcinoma of the head and neck, lung
carcinoma, esophageal carcinoma, and gynecological malignan-
cies. These reviews of the literature suggested that MTV and TLG
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have the potential to become valuable as prognostic biomarkers,
adding value to clinical staging or for assessment of response to
treatment. However, the authors also highlighted the main diffi-
culty of these approaches. As already explained, the lack of robust
segmentation techniques for delineating tumor volume makes it
difficult to draw general guidelines. However, significant results
were observed in the area of prognostic and treatment response
assessment in cancer patients even if most reported studies have
included heterogeneous groups of patients presenting different
disease stages receiving different chemotherapy regimens and used
different methods for tumor delineation. However, further large-
scale prospective studies are needed in order to confirm the validity
of these parameters.

If an approach for response assessment of solid tumors is finally
adopted by an international consensus, one should not forget that
the expert reader has the task of making the last judgment call
for imaging interpretation. Regardless of which system is used,
EORTC, PERCIST, or PREDIST criteria, or even if visual interpre-
tation is used, without contradicting the need for standardization
for harmonizing PET response in solid tumors and without under-
stating the importance of the efforts already achieved, quantitation
remains a key tool but is not a substitute for thinking. In daily
practice, referring clinicians expect to find a conclusion in the
PET report in terms of “complete metabolic response,” “partial
metabolic response,”“stable metabolic disease,”“progressive meta-
bolic disease” rather than a simple percentage of SUV decline or
qualitative terms like “mild,”“moderate,” or “severe” uptake.
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