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Crosslinking mass spectrometry (XL-MS) is becoming an
increasingly popular technique for modeling protein
monomers and complexes. The distance restraints gar-
nered from these experiments can be used alone or as
part of an integrative modeling approach, incorporating
data from many sources. However, modeling practices
are varied and the difference in their usefulness is not
clear. Here, we develop a new scoring procedure for mod-
els based on crosslink data—Matched and Nonaccessible
Crosslink score (MNXL). We compare its performance
with that of other commonly-used scoring functions
(Number of Violations and Sum of Violation Distances) on
a benchmark of 14 protein domains, each with 300 corre-
sponding models (at various levels of quality) and asso-
ciated, previously published, experimental crosslinks
(XLdb). The distances between crosslinked lysines are
calculated either as Euclidean distances or Solvent Ac-
cessible Surface Distances (SASD) using a newly-devel-
oped method (Jwalk). MNXL takes into account whether a
crosslink is nonaccessible, i.e. an experimentally ob-
served crosslink has no corresponding SASD in a model
due to buried lysines. This metric alone is shown to have
a significant impact on modeling performance and is a
concept that is not considered at present if only Euclidean
distances are used. Additionally, a comparison between
modeling with SASD or Euclidean distance shows that
SASD is superior, even when factoring out the effect of
the nonaccessible crosslinks. Our benchmarking also
shows that MNXL outperforms the other tested scoring

functions in terms of precision and correlation to C�-
RMSD from the crystal structure. We finally test the MNXL
at different levels of crosslink recovery (i.e. the percent-
age of crosslinks experimentally observed out of all the-
oretical ones) and set a target recovery of �20% after
which the performance plateaus. Molecular & Cellular
Proteomics 15: 10.1074/mcp.M116.058560, 2491–2500,
2016.

Protein structure determination is key to the mechanistic
understanding of proteins and by extension, the cell. How-
ever, determining the structure of a given protein is often very
challenging. Traditional techniques like x-ray crystallography,
NMR spectroscopy or cryo-electron microscopy, which can
lead to high-resolution structures, cannot always be used or
require a large amount of experimental effort (1–3). Protein
structures can instead be modeled computationally, incorpo-
rating a variety of experimental information from different
sources to arrive at a consensus model (4). This process can
start by creating a comparative model of the target protein if
the structure of a homologous protein (template) is available
(5–6). Even with sequence identity as low as 15% the struc-
ture of the protein is often conserved (7) and comparative
modeling can be used.

The difficulty however, is in measuring the accuracy of the
resulting models. In order to identify accurate models, exper-
imental data can be used. Such an approach has been shown
to be useful, for example, in constraining comparative models
with electron microscopy density maps, leading to the first
model of a mammalian ribosome (6, 8). One increasingly
popular source of constraining information comes from chem-
ical crosslinking mass spectrometry (XL-MS) (9, 10). The
method has some major advantages compared with conven-
tional methods. It is much less sensitive to protein contami-
nation, only a small amount of protein is needed (11) and even
in vivo crosslinking can be performed (12). Although it only
provides low-resolution restraints, recent applications have
given deep insights into the structure of various proteins and
protein complexes (5, 9, 12–15).
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The basic concept behind chemical crosslinking is simple
and well established. A crosslinker consists of two reactive
groups joined together by a carbon linker of a specified
length. The reactive groups can be designed to target a
variety of amino acids including those with amino or carboxyl
side-chains or they can be less specific. The most commonly
used crosslinkers, bissulfosuccinimidyl suberate (BS3) and
disuccinimidyl suberate (DSS) (11), target amino groups, i.e.
lysine residues and the N terminus. The soluble protein is
reacted with a crosslinker, which covalently links two residues
that fall within the linker-length distance from each other (16).
After enzymatic digestion the linked peptides can be detected
by MS. Due to the low abundance of crosslinked peptides
compared with noncrosslinked peptides, the detection of
crosslinks is not straightforward. The percentage of experi-
mentally observed crosslinked peptides, compared with the
total theoretically possible can be low. We refer to this per-
centage as the recovery rate and previous studies suggest
that this rate varies between 8% to 20% (17). However, a
variety of methods, e.g. enrichment by means on SCX or SEC
peptide fractionation, are being developed to increase such
recovery rates (18).

Crucially, in order to react with the linker reagents, the side
chains also need to be surface accessible and the linker must
traverse the surface of the protein to reach the other side
chain. Simply calculating the Euclidean distance between two
lysine residues does not provide an accurate description of
the distance over which a crosslink will form as most of the
time other parts of the protein will obstruct this path (19, 20).

Previous studies have used the solvent accessible surface
distance (SASD)1 instead, as implemented in the Xwalk soft-
ware (http://www.xwalk.org/). The SASD is defined as the
shortest possible path between two amino acids without pen-
etrating the protein’s surface. Another approach of calculating
the distance between crosslinked residues is to make an
approximation of SASD (21). Here the protein surface is sub-
stituted by a sphere and the SASD approximated by the arced
distance between the two crosslinked residues.

Despite currently being the most popular tool for calculating
SASDs, Xwalk has some major drawbacks; the first being
speed. The average time taken to run a 10 kDa protein with 10
lysines is 40 s using a 3.1 GHz Intel Core i7 MacBook Pro.
While this is not a problem for validating crosslinks gathered
experimentally, it is prohibitively slow when being used for
large scale modeling purposes that generate tens to hundreds
of thousands of models. The second drawback is that, during
the running of experiments detailed herein, Xwalk was ob-

served to generate solvent accessible paths that travel
through the protein mass. This reduction in the confidence
one is able to put in Xwalk’s output compelled us to write
our own SASD calculation algorithm, based on the same
theoretical principles, called Jwalk (see Materials/Methods)
which parallelizes the problem to achieve significant speed
increases.

The maximum SASD between two amino acids about which
a crosslink can form has not yet been unambiguously defined.
As it is more robust to measure inter-residue distances from
the backbone rather than the side chain, the crosslink will
have a maximum physical length resulting from the linker
length plus the length of the side chains. For example, DSS,
which has a length of 11.4 Å, will have a maximal physical
length of 22.4 Å, given the length of a lysine side chain is �5.5
Å (11.4 � 2*5.5). However, much longer distances between
crosslinked residues are commonly observed (17) and recent
publications use a maximum-bound of 35 Å as a restraint
when modeling (5, 11, 22). This discrepancy between theo-
retical and observed lengths has been explained by the struc-
tural flexibility of the protein, but molecular dynamics simula-
tions challenge the extent of this flexibility, suggesting a
maximum-bound of 30 Å (23). As of yet there is no full expla-
nation or consensus within the field.

The XLdb, a database of experimentally observed cross-
links, contains information curated from several crosslinking
experiments in the literature. From this database the distribu-
tion of the distances between crosslinked residues, both Eu-
clidean distances and SASD can be visualized as a density
distribution (10, 17). This experimental distribution therefore
provides additional information that can be exploited when
developing a scoring method. All distances in the database
were calculated with Xwalk. We also provide our own recal-
culated version of the database using Jwalk.

Most examples in the literature use crosslinking restraints
by totaling up the number of times the distance between
crosslinked residues exceeds the maximum-bound (Number
of Violations) (5, 14, 22, 24). Variations on this scoring method
employ a smoothing function around the maximum bound to
avoid having a distinct cut-off distance (21, 25). Summing the
excess distance for each pair of crosslinked residues if the
distance between them exceeds the maximum-bound (Sum
of Violation Distances) has also been used as a complemen-
tary approach (9). There is however no consensus in the
literature to which distance type should be used. Even though
using the Euclidean distance is theoretically flawed, it is sig-
nificantly easier to compute than the SASD. To our knowl-
edge, no direct comparison to judge the effect of using one
distance over the other has been performed.

In order to better model proteins using crosslinks, we have
developed a new scoring method to evaluate models, which
takes advantage of the experimentally observed distribution
of distances between crosslinked residues in XLdb, and used
it to investigate the effects of using SASD over Euclidean

1 The abbreviations used are: SASD, solvent accessible surface
distance; MNXL, matched and non-accessible crosslink score; NoV,
number of violations; SoVD, sum of violation distances; XLdb, cross-
link database; XL-MS, crosslinking coupled to mass spectrometry;
BS3, bissulfosuccinimidyl suberate; DSS, disuccinimidyl suberate;
SEC, size exclusion column; SCX, strong cation exchange.
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distance. We begin by giving an overview of our SASD cal-
culation algorithm, Jwalk (Methods). We then describe our
scoring function, matched and non-accessible crosslink
score (MNXL), that scores each crosslink gathered from
crosslinking experiments based on its calculated SASD. The
scoring procedure takes into consideration the probability
that a crosslink of a given length will appear in a protein
structure, while also penalizing crosslinked residues that ex-
ceed the maximum-bound or are not solvent exposed. We
then compare the performance of this scoring function with
previously used approaches by applying it to a benchmark of
proteins (from XLdb), each containing multiple models of vary-
ing quality generated by comparative modeling (Results). The
implications of these results are then discussed as well as
why some proteins appear to be more amenable to crosslink
guided modeling than others (Discussion).

Experimental Procedures—
Jwalk—In order to accurately calculate the SASD between

two residues, the Jwalk algorithm was written. The ap-
proach our algorithm takes is similar to that of Xwalk, al-
though our parallelized implementation is more efficient (see
Results). Jwalk is standalone software and can be down-
loaded either as part of TEMPy software (26) or from
http://topf-group.ismb.lon.ac.uk/Jwalk/Jwalk.tar.gz.

The calculation of the SASD between two residues by Jwalk
can be divided into three main phases (Fig. 1): (1) placement
of the protein(s) onto a grid; (2) calculation of the solvent
accessible surface; and (3) a Breadth-First Search of the grid
to calculate the shortest possible SASD between the all res-
idues of interest.

First, the atomic coordinates of the protein are parsed and
a surrounding grid of zeroes is generated by taking the max-
imum and minimum values in each xyz plane to create an
array just large enough to contain the protein - 4 voxels each
way (Fig. 1A). Each atomic coordinate is then mapped to the
nearest grid point. The default voxel size is 1 Å.

The solvent accessible surface (SAS) is then approximated
by expanding a sphere around each atom in the structure
except those of the lysine and N-terminal side-chains (Fig.

1B). The radius of the sphere is the VDW radius of the atom in
question plus half the VDW radius of a water molecule (1.4/
2 � 0.7 Å) rounded to the nearest voxel size (to avoid missing
borderline exposed residues that would be marked as buried
due to the blurring that occurs at 1 Å voxel resolution). All grid
points within these spheres are given a value of 1 and no
inter-residue path is able to travel through this space. Solvent
accessible lysines and N termini are then identified by ex-
panding a similar sphere around the N� (and C� atoms in case
the sidechain is missing) of each lysine side-chain (C� only for
N termini). If any voxels within the sphere have a value of zero,
then the residue is defined as solvent accessible and the voxel
is added to a list of potential starting voxels for that lysine with
regards to the later search.

A Breadth-First Search algorithm is then performed be-
tween solvent accessible lysines as well as between the N-
terminal residue and lysines (Fig. 1C). The whole grid is iter-
atively searched, adding adjacent voxels to the queue each
time, with the iterations ending once the whole grid has been
searched or a maximum distance has been reached (in this
study we set no maximum limit to SASD calculation in order
calculate all possible SASDs). This search is performed start-
ing from each surface accessible lysine and the N terminus.
An additional connection is made between the surface acces-
sible voxel and the C� containing voxel. The shortest paths
between each are then extracted from the full grid search.

Jwalk outputs two files: (1) A list of all inter-lysine/N-termi-
nal SASDs; and (2) a .pdb file containing the shortest paths
between each residue pair C�. The code has been imple-
mented to allow for parallelization if a multi-core processor is
used. This results in significant speed gains over Xwalk (an
approximate 1:1 ratio of proportional decrease in calculation
time against number of processors used e.g. 36.37 s in Jwalk
versus 119.5 s in Xwalk for benchmark example 1BLF5–333

with 25 lysines running on a 3.1 GHz Intel Core i7 quad core).
2.2 Matched and Non-accessible Crosslink Score—Given a

protein model in an ensemble of models, the SASD between
all possible lysine pairs (C� to C�) are calculated to create the
test data set. These are then compared with the experimental

FIG. 1. Overview of the three main phases of the Jwalk algorithm. A, placement of the protein(s) onto a grid; B, calculation of the solvent
accessible surface by expanding a sphere around each atom; and C, a Breadth-First Search of the grid to calculate the shortest possible SASD
between the all residues of interest. The search is initiated from one of the surface lysines (blue square) with potential paths (black lines)
searching the whole grid. Paths between the starting lysine and targets lysines (green squares) are retained and output as a .pdb file (yellow
paths). Fig. 1. (location: Experimental Procedures - Jwalk).
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MS data set of residue pairs that have experimentally ob-
served crosslinks or a theoretical MS data set of residue pairs
that have an SASD of less than 33 Å. The cut-off of 33 Å was
determined empirically (see Results). Matched and Nonac-
cessible Crosslink Score (MNXL) scores crosslinks by placing
them in one of two categories, matched crosslink or nonac-
cessible crosslink, with scores depending on the distances
between crosslinked residues (Eq. 1). The categories are
taken from the four possible outcomes of the comparison
between SASDs of the modeled data (test data set) and the
experimental data (MS data set), described below. In each
model, the scores (described below) corresponding to each
crosslinked residue pair are totaled into a final score.

Matched Crosslink—If the SASD between a pair of lysines in
the MS data set can be calculated in the model, then it is
defined as a matched crosslink and scored as follows:

Score�SASD� � �N�18.62,35.94� if SASD � 33 Å
	0.1 else

(Eq. 1)

If the SASD is under 33 Å, it is scored positively, taking into
account its probability distribution, which is given by a normal
distribution (the mean and variance are calculated from all the
SASDs �33 Å from the XLdb). If the SASD exceeds 33 Å
(indicating inconsistency with the native structure) it is scored
with a flat penalty of 	0.1.

Nonaccessible Crosslink—If the SASD between a pair of
lysines in the MS data set cannot be calculated, then it is
defined as a nonaccessible crosslink. This will happen if there
is a loss of surface accessibility caused by minor conforma-
tional changes, resulting in a “blocked” path. Alternatively,
this could also be the result of the SASD exceeding the
maximum distance calculated by Jwalk, however in this study
no maximum distance was used. This category therefore cap-
tures information separate to the distance information typi-
cally used from crosslinking data. To penalize for a nonac-
cessible crosslink a flat penalty of 	0.1 is used.

Other Possible Outcomes—There are two more possible
outcomes when comparing the data set with the model. One
of these considers pairs of lysines that have a calculated
SASD but are not present in the experimental data (MS data
set). It can be risky to penalize such events because MS
experiments only detect the most abundant crosslinks, with a
typical coverage of below 20% (9, 10, 17). Thus, a crosslink
between these two residues might actually be viable in the
native structure. Therefore, we decided not to use this
possibility.

The final outcome is if a crosslink is present in neither the
model nor the data set that could possibly exist in the cross-
linked protein. This outcome has no informational value.

For the purposes of this study, the total score is normalized
between 0 and 1, with 0 given to the best score in the

ensemble, in order to make direct comparisons between the
different scores easier.

Other Crosslink Scoring Methods—Previously in the litera-
ture, two different crosslink scoring approaches have been
used, number of violations (NoV) (24) and sum of violation
distances (SoVD) (9). We applied both of these approaches in
order to compare them to our newly developed scoring
function.

Number of Violations—Crosslinks are scored with either 0
or 1 depending on whether the distance between crosslinked
residues is below or above the cut-off, respectively. In this
study, we used an SASD cut-off of 33 Å. The distances
between each crosslinked residue pair in the model are
scored and totaled into one final score, with a lower score
pertaining to a more near-native model.

Sum of Violation Distances—Here, crosslinks are scored by
taking the violating distance over 33 Å for each violating
crosslink. These are then totaled for the model into the sum of
violation distances, also with a lower sum pertaining to a more
near-native model.

Experimental Design and Statistical Rationale—Our scoring
function MNXL groups crosslinks into either matched or non-
accessible crosslinks, which are then scored based on their
SASDs or given a flat penalty, respectively. We then compare
MNXL to two other scoring functions seen in the literature,
NoV and SoVD, using an experimental benchmark taken from
XLdb.

Comparative Model Test Benchmark—In order to evaluate
our scoring function, we tested it on a benchmark of 10
proteins, dividing some cases into individual domains/sub-
units to give 14 single domains in total. All the proteins are
from XLdb with the criterion for selection being only mono-
mers or dimers with a minimum of five crosslinks (per subunit).
For each protein, 300 models were generated in MODELLER
(27). The models were purposefully generated at different
levels of accuracy using the ‘suboptimal alignment’ function
combined with the ‘automodel function’ to span a range of
0–30 Å C�-RMSD (28). Single chain proteins that were made
up of two domains attached by a flexible loop (1BLF and 2D3I)
were divided into two and each domain was modeled sepa-
rately (interdomain crosslinks were removed from the data
set). Four cases in the benchmark are protein dimers; in these
cases, each subunit was modeled separately and no attempt
was made to model the final complex (intersubunit crosslinks
were removed from the data set).

Testing Crosslink Coverage Dependence—We wanted to
evaluate what influence the crosslink coverage has on scoring
function performance. Therefore, we tested all three scoring
functions on each benchmark protein using MS data sets of
90/80/70/60/50/40/30/20/10/5 and 1% of all possible cross-
links. To ensure that we obtained a representative sample of
possible MS data sets, 1000 random data sets were boot-
strapped for each percentage value. We scored all the models
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against all data sets. This was done for all three scoring
methods (MNXL, NoV, and SoVD).

Score Assessment—For a scoring function to be effective,
there needs to be a good correlation between the score and
how native-like the models are. To assess the latter, C�-
RMSD was used. The Pearson product-moment correlation
coefficient was used to assess the correlation. An “ideal”
scoring function should have the following characteristics: a
correlation coefficient of 1.0 between C�-RMSD and the
score toward the correct fit, the native structure scoring best,
and the score of the best model being significantly separate
(�2�) from the mean score of the ensemble (29).

In addition to the C�-RMSD, the precision of each scoring
function was calculated. We define Precision as TP/(TP�FP).
A true positive (TP) is defined as a model that is ranked in the
top-20 and has an RMSD � 4 Å. A false positive (FP) is
defined as a model that is ranked in the top-20 but has an
RMSD value of 
 4 Å. These were then averaged across the
benchmark. If many models cluster on the same score they
will all be ranked the same, which makes selecting the top-20
and calculating the precision problematic. Therefore, 20 ran-
dom samples were taken from the cluster and the precision
calculated; this was repeated 1000 times to generate an av-
erage result.

Results—
Recalculating SASDs from XLdb—XLdb is a database of

experimentally observed crosslinks that has been curated
from the literature (10). The original published database con-
tains information on 571 crosslinks across 57 atomic struc-
tures. This includes the residue and chain IDs of the cross-
linked residues, whether the crosslink is intra- or inter-
subunit, the Euclidean distance, the SASD and the crosslinker
used (all crosslinkers used were 11.4 Å in length). Distribu-
tions of both SASD and Euclidean distances between exper-
imentally observed crosslinked residues therefore provide in-
formation that can be used to predict the probability of

observing a given inter-residue distance within a model and is
the basis for the positive scoring aspect of our crosslink
scoring function.

Given that we found Xwalk to calculate some erroneous
SASDs, we ran Jwalk on all the proteins in XLdb. This revealed
that many entries in the database, which contained residues
that neither existed nor were present in the crystal structure,
were crosslinked to themselves, or were not lysines or N
terminus, or were listed as duplicates. In all of these cases,
Euclidean distances and SASDs were still listed. These entries
were subsequently removed to create a Jwalk-curated XLdb.
Additionally, nearly all of the distances in the XLdb (Euclidean
and SASD) were calculated from Lys-C� to Lys-C�, however,
most crosslink cut-off distances used in the literature refer to
C�-C� distances (10, 13, 17, 24).

The two distributions (XLdb and Jwalk-curated XLdb) are
statistically different (p value 2.251 � 10	5 and supplemental
Fig. S1), with the Jwalk distribution being slightly shifted to the
right (i.e. longer SASDs). This is mainly because of the fact that
the distances are now exclusively between C�-C�, with no
C�-C�. There is also a notable difference at �10 Å where in the
original XLdb there are two separate populations, which merge
into one distribution in the Jwalk-curated XLdb. This population
is attributed to crosslinks between neighboring lysines on alpha
helices. Inspection of these SASDs shows that many are
calculated incorrectly by Xwalk with the path traveling through
the protein instead of across its surface (supplemental Fig. S2).
The Jwalk-curated XLdb can be downloaded from
http://topf-group.ismb.lon.ac.uk/Jwalk/XLdb_curated.xlsx.

Filtering Comparative Models Using MNXL—In order to
evaluate our scoring function—matched and non-accessible
crosslink score (MNXL)—and compare it to the other scoring
methods available, we ran it on a benchmark of 14 single
protein domains/subunits taken from XLdb, each with corre-
sponding 300 comparative models (Table I), using their ex-
perimentally observed crosslinks. MNXL was initially tested

TABLE I
Location: Results - Filtering comparative models using MNXL

PDB Chain (Residue Range) No. of Lysines
Correlation Precision

MNXL NoV SoVD MNXL NoV SoVD

1BLF A (5–333) 25 0.65 0.03 0.11 0.75 0.07 0.05
1BLF A (334–689) 28 0.62 0.22 0.02 0.55 0.05 0.05
1HRC A (1–104) 19 0.42 0.22 0.36 0.50 0.10 0.15
1MBO A (1–153) 19 0.39 	0.03 0.01 0.20 0.06 0.06
1JM7 A (1–103) 10 0.25 0.01 0.08 0.40 0.17 0.17
1U6R A (1–380) 34 0.57 0.33 0.21 0.25 0.19 0.19
1U6R B (1–380) 35 0.51 0.07 	0.26 0.20 0.00 0.00
1UJZ B (447–573) 18 0.44 0.17 0.19 0.60 0.16 0.16
2D3I A (5–335) 28 0.65 	0.08 	0.01 0.50 0.00 0.00
2D3I A (342–686) 30 0.74 0.03 	0.05 0.70 0.03 0.05
2HGD A (3–230) 18 0.79 0.70 0.63 0.35 0.07 0.07
4FGF A (20–143) 12 0.27 0.14 0.25 0.10 0.00 0.00
4F5S A (1–583) 59 0.80 0.53 0.51 0.35 0.25 0.00
4F5S B (1–583) 59 0.55 0.01 	0.07 0.10 0.10 0.00

AVERAGE 0.55 0.17 0.14 0.40 0.09 0.07
S.D. 0.17 0.21 0.23 0.20 0.07 0.07
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against two other scoring methods: number of violations
(NoV) and sum of violation distances (SoVD) (see Methods).

Despite a few difficult cases, MNXL performs reasonably
well, with an average correlation against C�-RMSD of 0.55
and average precision (i.e. the proportion of models ranked in
the top-20 with an C�-RMSD � 4 Å) of 0.40. Overall, MNXL is
the best performing score both in terms of correlation with
C�-RMSD and precision systematically performing better on
every test-case over the benchmark (Table I).

Fig. 2 shows for three cases in the benchmark (PDB ids:
1BLF5–333, 1JM7:A, and 4FGF) the C�-RMSD of each model
to the corresponding experimentally determined structure
versus the crosslink score, for the three different crosslink
scores (MNXL, NoV, and SoVD). 1BLF5–333 is the best per-
forming protein in the benchmark because of having 25 sur-
face lysines and 10 crosslinks distributed across the whole
protein, which provides a comprehensive set of restraints to
successfully model with. 1JM7:A is a protein that performs
badly primarily down to having only four experimentally ob-
served crosslinks (recovery of 16.12%) all concentrated within
one region of the protein. Therefore, large deviations from the
experimentally-determined structure are tolerated as no
crosslinks are violated. (Fig. 2B: blue versus. beige structures
- both satisfy all the experimental crosslinks). 4FGF is the
worst performing protein in the benchmark, despite having 17
experimentally observed crosslinks across 12 surface lysines.
The reasons for this are not obvious but it is likely to be a
result of several factors; (1) 7 of the 17 recovered crosslinks

exceed the SASD maximum-bound of 33 Å—suggesting na-
tive flexibility; (2) 10 of the crosslinks involve either Lys110,
Lys119 or Lys125, all of which are in the same long loop region;
(Fig. 2B: loop highlighted in red) and (3) the crosslinks only
cover one half of the protein.

By breaking down MNXL into its constituent components,
the increase in performance over NoV and SoVD was revealed
to be primarily down to the non-accessible crosslink aspect
(see Methods). Scoring the benchmark by totaling just the
non-accessible crosslinks gives a correlation of 0.39 and pre-
cision of 0.21 (Fig. 3). When this total is added to the number
of violating crosslinks and used to score the benchmark, the
correlation becomes very similar to MNXL (0.55 versus 0.53).
However, the complete MNXL score is still better in terms of
precision (0.40 versus 0.35).

Euclidean Distance versus SASD—If only the Euclidean dis-
tance between crosslinked lysines is calculated, there is no
concept of non-accessible crosslinks, as no consideration is
made as to whether the lysine is surface accessible or not.
Although, to our knowledge, not previously seen in the liter-
ature, it is possible to calculate the Euclidean distances only
between surface accessible lysines and therefore retain this
information.

In order to specifically investigate the effect of using SASD
against Euclidean distance we compared both types of “NoV
with non-accessible crosslinks” scores (while Euclidean dis-
tances were only calculated between surface lysines) (Fig.
4i-ii). The use of Euclidean distance over SASD results in a

FIG. 2. A, Plots showing the correlation between (i) MNXL, (ii) NoV and (iii) SoVD, and C�-RMSD of three of the members of the
benchmark with PDBid: 1BLF5–333, 1JM7:A and 4FGF and corresponding comparative models. The ideal trend would stretch from the
bottom left corner to the top right (see corresponding correlations values in Table I); B, The experimentally determined structures with SASDs
mapped on (green) as well as additional highlighting (1JM7:A - blue structure highlights the structural deviations that are possible while still
satisfying the crosslinking restraints; 4FGF - The majority of the crosslinks come from the red loop spanning residues 110–125). Fig. 2.
(location: Results - Filtering homology models using MNXL).
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drop in correlation from 0.55 to 0.42 and drop in precision
from 0.35 to 0.17 (over the entire benchmark), respectively.
This is reflected in the plots that show increased bunching of
high C�-RMSD models around the lowest (i.e. best) scores. If
the Euclidean distance is used without considering surface
accessibility or nonaccessible crosslinks, then the correlation
and precision drop dramatically to 0.08 and 0.06, respectively
(Fig. 4iii).

Exploring Crosslink Coverage—Given that the average ex-
perimental recovery of crosslinks (based on XLdb) is �22%,
we wanted to observe how dependent the performance of
MNXL is on crosslink recovery. We tested all of the scoring
methods on bootstrapped data sets of 90/80/70/60/50/40/30/
20/10/5 and 1% of a full theoretical data set. The average
correlation and precision at each percentage recovery across
the benchmark can be seen in Fig. 5. The trend is nonlinear as

the percentage recovery increases and both metrics start to
tail off from �20% upwards. With 100% recovery of theoret-
ical crosslinks the average precision is 0.63 and the correla-
tion to C�-RMSD is 0.70.

Plotting the precision from each experimental test case
against the bootstrap analysis shows that the bootstrapped
trend is largely adhered to—barring the major outlier 4FGF
(Fig. 5 - labeled), for the reasons explained above (Filtering
Comparative Models Using MNXL). Doing the same with the
correlation shows slightly less agreement with the bootstrap-
ping trend, however nine out of the fourteen proteins perform
better than expected. Three proteins from the benchmark that
perform worse than expected include 4FGF, 1JM7:A (both for
reasons mentioned above) and 1HRC. The latter is the result
of 11 crosslinks exceeding 33 Å in the experimentally deter-
mined structure, likely because of flexibility of this protein.

FIG. 3. The constituent elements of MNXL. Benchmark members with PDBid: 2D3I342–686 and 2HGD scored with (i) non-accessible
crosslinks only, (ii) SASD NoV and non-accessible crosslinks, and (iii) MNXL. Fig. 3. (location: Results - Filtering comparative models using
MNXL).

FIG. 4. The effect of modeling using Euclidean distances instead of SASD, highlighted with plots from two members of the
benchmark - PDBid: 1HRC and 4F5S:A - scored with (i) SASD NoV and non-accessible crosslinks, (ii) Euclidean NoV and non-
accessible crosslinks, and (iii) Euclidean NoV only. Fig. 4. (location: Results - Euclidean Distance versus SASD).
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Apart from a few case specific deviations, these results
suggest that our theoretical process of crosslink formation
(i.e. the calculation of SASDs between lysine C�-atoms that
are within 33 Å from each other in the experimentally deter-
mined structure) is a good approximation. We can therefore
use these results to set an experimental crosslink recovery
target of �20%, after which return gains in performance are
reduced.

Exploring the Maximum Bound—Within the literature there
has been a range of difference maximum-bounds used for a
lysine crosslinker having an 11.4 Å linker, from 25 to 35 Å (5,
11, 19, 20), with no explicit rationale for the choice. In this
study we have used a maximum-bound of 33 Å. We arrived at
this value by testing different cut-off values ranging from 20 to
80 Å on our benchmark. The average correlation with C�-
RMSD across the entire benchmark was found to peak across
33 - 35 Å with the maximum at �33 Å, however, no clear trend
is observed with regards to precision (supplemental Fig. S3).

Discussion—Here we have shown that our MNXL score
consistently performs better than NoV and SoVD in terms of
correlation and precision. However, within the benchmark
there is a large range of correlation (0.25 to 0.80) and preci-
sion (0.75 to 0.1), which is likely to be the result of four key
factors: (1) how many lysines are on the surface of the protein;
(2) how distributed the crosslinks are; (3) how flexible the
protein is; and 4) how many crosslinks are recovered in the
experiment. These issues could potentially inform experimen-
tal design, for example, by using additional enrichment meth-
ods when the crosslink recovery falls below 20%.

The Number of Lysines and the Distribution of Crosslinks—
When the crosslinks are distributed across the whole protein,
MNXL performs very well, exemplified by the protein 1BLF5–333.
The percentage recovery is only 10.3%, equating to 10 cross-
links, however as they are distributed across the entire protein
surface, they provide a comprehensive set of restraints to suc-
cessfully model this protein. Unfortunately, it is not possible to
know how evenly distributed the crosslinks are across the pro-
tein without having at least an approximate structural model. If
the crosslinks are not evenly distributed, then large deviations
from the experimentally-determined structure can be tolerated

as in the case of 1JM7:A (Fig. 2B). The number of lysines a
protein contains can act as a rough guide for how well the
crosslinks might be distributed (supplemental Fig. S4) and
therefore how well the protein might be modeled, however there
are other factors to consider.

Considering Protein Flexibility—As crosslinking experi-
ments are performed in solution at room temperature, the
experimentally determined structure may not reflect the inher-
ent flexibility captured in the experiment. Gathering distance
restraints in this state is therefore likely to result in conflicting
distance restraints, which can result in conflicting models.
Within the 14 domains that were tested, the percentage of
SASDs between crosslinked residues that exceed 33 Å
ranges from 0 to 41.2%. For the purpose of this theoretical
investigation, all SASD calculations are performed on static
structures, demonstrating that considering protein flexibility
when trying to derive a “native structure” is likely to play an
important role in the modeling process. This disagreement
between the experimentally determined structure and the
crosslinking data is the main cause behind the under-per-
formance of both 1HRC and 4FGF in the benchmark, where
the “native” crystal structures perform badly.

One way of capturing protein flexibility in the modeling
process, at least in part, is to use a larger maximum-bound for
a crosslink restraint than the theoretical maximum. In the
literature a range of cut-off distances has been used, from 25
- 35 Å, however the rational behind the choice of cut-off is not
clear. A recent study by Merkley et al. (23) into crosslinked
lysine distances using molecular dynamics simulations claims
that it is unlikely for the backbone to shift over 8 Å for long
enough for the crosslink to form, thereby setting the maxi-
mum-bound as 30 Å (22 � 8 Å). However, these studies were
only performed on the nanosecond timescale and therefore
excluding larger movements that might happen on the milli-
second timescale. Also, this study was only performed using
Euclidean distances. Our empirical approach is a different
take on the problem and concludes that a value approxi-
mately around 33–35 Å is on average the optimal cut-off
distance.

FIG. 5. The correlation and precision returned when using different levels of recovery tested via bootstrapping analysis. The
experimental cases from the benchmark are plotted on each graph with their experimental recovery (red circles). Major outliers: 4FGF, 1JM7:A
and 1HRC are labeled. Fig. 5. (location: Results - Exploring crosslink coverage).
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On the experimental side, any measures that could be taken
to reduce protein dynamics during the crosslinking process
would also increase the effectiveness of modeling with cross-
links. One potential avenue could be to perform crosslinking
at very low temperatures.

Experimental Crosslink Recovery—Our bootstrapping anal-
ysis allowed us to analyze the effect of crosslink recovery on
the performance of MNXL. The theoretical correlation and
precision follow a similar trend and begin to tail off after
�20% recovery. This should give the experimentalist an idea
of how many crosslinks they need to collect in order to
achieve the best precision.

When identifying crosslinks from the mass spectra, a false
discovery rate of 5% is typically used (5, 9, 24), however a
higher rate can be used in order to extract higher numbers of
crosslinks. Given that the increase in modeling performance
begins to tail off as the number of crosslinks increases be-
yond 20% recovery, we recommend against using a high false
discovery rate to collect more crosslinks, as the small gains in
performance are likely to be offset by the increase in poten-
tially dubious restraints. Alternatively, the confidence score for
each crosslink, calculated by programs such as xQuest (30),
could provide additional weighting to the scoring procedure,
which has been used in another crosslinking modeling proto-
col (31). However, these data are not available in the XLdb and
therefore we were not able to incorporate this information in
our study.

Monolinks and Non-accessible Crosslinks—Our bench-
marking has highlighted the importance of including non-
accessible crosslinks, as we find that they are responsible for
the largest increase in correlation and precision. Non-acces-
sible crosslinks capture data on the solvent accessibility of
residues that is separate to the distance restraints classically
used. Importantly, this opens up the possibility of using
monolinks, i.e. crosslinks that are only linked to one lysine,
allowing for more restraining information to be captured from
the same number of experiments.

Our initial comparison between NoV and SoVD did not
include non-accessible crosslinks because, to the best of our
knowledge, this information has not been used before in the
literature. The inclusion of this information brings the perfor-
mance of NoV much closer to that of MNXL, however, MNXL
remains more precise due to its positive scoring aspect. The
same increase of performance could in theory be applied to
SoVD, however, the total crosslink violating distance captured
by SoVD cannot be easily combined with non-accessible
crosslinks and reconciling these two data types (by finding the
optimum weighting) is beyond the scope of this paper.

Distance Calculation—Up until now, there has been a split
in the literature as to which distance has been used for mod-
eling—SASDs or Euclidian distances. Fewer articles have
used SASDs, which take longer to calculate, despite the fact
that using the Euclidean distance is theoretically flawed. Fur-
thermore, the concept of non-accessible crosslinks does not

explicitly exist if Euclidean distance is used, as no account of
solvent accessibility is made. It is possible to calculate solvent
accessibility and then use the Euclidean distances between
only solvent accessible lysines, while also considering non-
accessible crosslinks—this has the benefit of being a much
faster calculation. However, given that we have shown the
SASD to be a much more effective metric than the Euclidean
distance, we recommend the use of SASDs when modeling
using crosslinks.

Concluding Remarks—To conclude, our work has shown
the importance of non-accessible crosslinks and the use of
SASD over Euclidean distance when modeling using cross-
linking restraints. Our scoring function MNXL which utilizes
both of these elements among others has been shown to
perform the best out of all the scoring methods tested. Addi-
tionally, our bootstrapping analysis has shown that the per-
formance can be increased by increasing the recovery rate of
crosslinks.

Future work will involve a more thorough investigation into
the extent that flexibility is captured and presented by cross-
linking restraints and how this might be incorporated into the
modeling process, i.e. capturing different conformers.
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