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Abstract: Sulfamethazine (SMZ) as a broad antibiotic is widely used in livestock and poultry. How-
ever, the abuse of SMZ in livestock feed can lead to SMZ residues in food and the resistance of bacteria
to drugs. Thus, a method for the detection of SMZ in food is urgently needed. In this study, quantum
dot (QD) nanobeads (QBs) were synthesized by encapsulating CdSe/ZnS QDs using a microemulsion
technique. The prepared QBs as signal probes were applied in lateral flow immunoassay (LFIA)
for the detection of SMZ in chicken and milk. Our proposed method had limits of detection of
0.1138–0.0955 ng/mL and corresponding linear ranges of 0.2–12.5, 0.1–15 ng/mL in chicken and milk
samples, respectively. The recovery of LFIA for the detection of SMZ was 80.9–109.4% and 84–101.6%
in chicken and milk samples, respectively. Overall, the developed QBs-LFIA had high reliability and
excellent potential for rapid and sensitive screening of SMZ in food.

Keywords: lateral flow immunoassay (LFIA); quantum dot nanobeads (QBs); class-specific mono-
clonal antibody; sulfamethazine (SMZ); chicken

1. Introduction

Sulfanilamides (SAs) had been used as a family of broad-spectrum synthetic bacterio-
static antibiotics given to food animals for prophylactic or therapeutic purposes after G.
Domagk found that SAs can inhibit bacterial growth [1,2]. Meanwhile, SAs are chemothera-
peutic agents widely used as antibacterial drugs in human pharmaceuticals and veterinary
practice [3].

SMZ is a derivative of SAs and widely used in livestock [4] and poultry breeding.
However, abuse in livestock feed can cause SMZ residues in food [5–7]. Widespread use of
antibiotics can increase bacterial resistance to drugs; therefore, excessive use of antibiotics
will pose a threat to human safety [8]. SMZ exposed in the environment can enter the human
body through the food chain and pose a serious threat to human health [9]. Therefore, an
effective system that can detect the residues of SMZ needs to be developed. The maximum
residue limit of SAs in animal-derived food has been established at 100 µg/kg [10,11].

Many sensitive and specific methods can be used to detect SMZ, including high-
performance liquid chromatography [12,13], gas chromatography-mass spectrometry [14],
and waveguide interrogated optical immunosensor [15]. Although these methods are
relatively sensitive and specific, they require a complex sample preparation process and
trained personnel and expensive equipment to perform the operations [16]. LFIA is based
on specific recognition of antigens and antibodies. LFIA can be considered a convenient
and practical test, and it represents a classic transformation between sample-to-laboratory
so that it can be easily used to make decisions [17]. Compared with other methods, it
is an analytical method with many superior advantages, such as a short analysis time,
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long-term stability of test strips, ease of use, and cost-effectiveness [18–22]. Given these
advantages, some nanoparticle-based LFIAs have been widely used in qualitative and
quantitative detection [23,24]. For example, conventional LFIA using colloidal gold as a
label exhibits relatively low sensitivity because of its insufficient brightness. Shim et al.
established a rapid immunochromatographic (ICG) strip based on a conjugate of colloidal
gold and monoclonal antibody (mAb) for the detection of SMZ in meat and egg samples.
The detection limit of the ICG strip is 2 ng/mL [25]. O’Keeffe et al. used mouse anti-rat IgG
F(abV)2 fragment-specific antibody, adsorbed to colloidal carbon, as the detection ligand
in the LFIA. The LFIA device had a cutoff value of 6.3 ng/mL in diluted (1/10) urine [26].
Compared with traditional methods, polymer nanocontainers have attracted increasing
interest in signal amplification systems. The fluorescence-based immunoassay is widely
used in biotechnology and clinical testing. Antibodies or antigenic proteins can be easily
labeled with a variety of fluorophores for fluorescence detection [27]. For improving the
sensitivity of traditional LFIA, the use of QBs has recently attracted our attention due to
their incomparable optical properties, such as broad UV excitation with narrow fluorescent
emission spectra, large molar extinction coefficient, and high quantum yield [28,29].

In the present work, a novel LFIA was established based on QBs as the label for the
sensitive detection of SMZ in chicken and milk. Through the assay mentioned above,
QBs-LFIA may be a remarkable method for the sensitive detection of other targets at low
concentrations to ensure food safety.

2. Materials and Methods
2.1. Reagents and Materials

SMZ, sulfaguanidine, sulfanilamide, sulfamonomethoxine, sulfadiazine, sulfamethox-
azole, sulfacetamide, sulfathiazole, sulfamethizole, and other non-SA antibiotics (lome-
floxacin, amantadine, florfenicol) were obtained from J&K Scientific Ltd. (Shanghai, China),
and the stock solution of these SAs in methanol (5 mg/mL) was prepared for further use.
Hydrophobic octadecylamine-coated CdSe/ZnS QDs were obtained from Ocean NanoTech,
LLC (San Diego, CA, USA). Bovine serum albumin (BSA), poly (maleicanhydride-alt-1-
octadecene) (PMAO), and goat anti-mouse antibody was obtained from Sigma (St. Louis,
MO, USA). Poly (methyl methacrylate) (PMMA), 1-ethyl-3-(3-dimethylaminopropyl) car-
bodiimide (EDC), and sodium dodecyl sulfonate (SDS) were purchased from Aladdin Bio-
Chem Technology Co., Ltd. The monoclonal antibody (mAb) against SMZ was provided
by Wuxi Zodoboer Biotech. Co., Ltd. (Wuxi, China). The detective antigen SMZ − BSA
was prepared in our laboratory. All of the solvents and other chemicals were of analytical
reagent grade. Nitrocellulose (NC) membrane was supplied by Millipore (Bedford, MA,
USA). A polyvinylchloride backing pad, an absorbent pad, a sample pad, and a conjugate
pad were purchased from Shanghai Kinbio Tech. Co., Ltd. (Wuxi, China). The BioDot
XYZ platform, which was equipped with an automated motion control, was acquired
from BioDot (Irvine, CA, USA). Fluorescence intensity strip reader for the sake of record-
ing the signal of QBs-LFIA was purchased from Hangzhou Hemai Technology Co., Ltd.
(Hangzhou, China).

2.2. Preparation of QBs

The QBs were obtained by encapsulating CdSe/ZnS QDs using the microemulsion
technique [30,31]. CdSe/ZnS QDs CHCl3 stock solution (40 mg/mL) was added into
PMMA/PMAO CHCl3 stock solution (PMMA: 60 mg/mL; PMAO: 40 mg/mL). Then, the
solution was added into SDS aqueous solution by using an ultrasonic homogenizer for
3 min in an ice bath. Subsequently, the CHCl3 was removed by using a rotary evaporator.
The mixture was centrifuged at 13,000 r/min at 4 ◦C for 15 min and washed three times with
distilled water. The obtained QBs were purified via centrifugation and then resuspended
in 1 mL of 0.01 M NaOH solution for 8 h to modify the carboxyl on the surface of the QBs.
Finally, the carboxylated QBs were washed three times with Millipore water.
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2.3. Preparation and Characterization of QBs-mAb

The anti-SMZ monoclonal antibodies were directly bound to QBs. An amount of 5 µL
of EDC (0.5 mg/mL), 5 µL of QBs (12.6 mg/mL), and 50 µL mAb (0.2 mg/mL) was added
to 0.5 mL of 0.01 M PB buffer (pH7.0) with gentle stirring for 1 h at room temperature. Then,
0.1 mL BSA (10% wt/vol) was added to block the remaining sites for 1 h. The resulting
mixture was centrifuged at 13,500 r/min for 10 min. Then the QBs and the anti-SMZ mAb
conjugates (QBs-mAb) were resuspended in 0.1 mL of PBS (0.01 M, pH 7.4). The hydration
size of the free QBs and QBs-mAb probes were given analysis by using a particle size
analyzer (Malvern Instruments Ltd., Worcestershire, UK).

2.4. Assembling of QBs-LFIA Sensor

The goat anti-mouse IgG and SMZ − BSA were diluted with PBS (0.01 M), and then
the two mixtures were sprayed to control lines (C) and test lines (T) on the nitrocellulose
membrane and dried at 37 ◦C overnight. The distance between the T and C lines was about
5 mm. After drying at 60 ◦C for 2 h, the sample pad, NC membrane, and absorption pad
were neatly attached to the plastic pad, cut into 4 mm wide strips, placed in a plastic box,
and stored in a drying box at room temperature.

2.5. Procedure of QBs-LFIA

SMZ stock solution was diluted in 0.01 M PBS, 0.1 mL of sample solution, and 2 µL of
QBs-mAb probe, and was mixed for 5 min and then added on the sample pad of the LFIA
test strip. After 20 min of reaction, the fluorescence intensity on the test line was recorded
by the corresponding reader. As shown in Scheme 1, with the help of the absorption pad,
the conjugates migrate to the NC membrane. When the sample is negative, the QBs-mAb
probe binds to the antigen on the T line. By contrast, when SMZ is present in the sample,
the QBs-mAb probe combines with SMZ preferentially, and the excess probe captures the
antigen on the T line. The more SMZ in the sample, the lower the fluorescence intensity of
the T line. All the QBs-mAb probes should react with the goat anti-mouse IgG to form a
fluorescent band on the C line.
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2.6. Optimization of the Key Parameters

For the best performance of our proposed QBs-LFIA, we used single-factor analysis to
optimize the key factors that could influence the limit of detection, such as the coupling
pH, concentration of EDC, amount of mAb decorated to QBs, concentration of SMZ − BSA
on the T line, amount of QBs-mAb, and immunological kinetic reaction time [32].

2.7. Study on Immune Dynamic Response

The immune response of antigen antibody on the immunochromatographic strip is a
dynamic process in which the T-line signal intensity changes dynamically with the increase
of the reaction time. The signal strength will rise slowly and then gradually stabilize.
Therefore, in order to make the experimental results more reliable, immunodynamic
analysis was performed. After incubating 100 µL of negative PBS (without SMZ) and
positive PBS (with 1 ng/mL SMZ) with 5 µL of QB-labeled antibody for 5 min, they were
dropped into the sample hole on the test strip. After 2 min, the signal strength of the T-line
was measured with a reader every 1 min, and the detection continued for 50 min. Using
the detection time as the abscissa and the T-line fluorescence intensity and inhibition rate
as the ordinate, the immune response dynamic curve was drawn to select the optimal
detection time.

2.8. Establishment of Standard Calibration Curve in PBS

SMZ (0, 0.01, 0.05, 0.1, 0.25, 0.5, 1.0, 2, 2.5, 5.0, 10.0, 20, 25, 50, 100 ng/mL) was added
to PBS. A standard curve was established using the logarithm of the concentration of
SMZ and fluorescence intensity of the T line. The limit of detection (LOD) was defined as
IC90 [15]. All experiments were performed in triplicate.

2.9. Specificity Assessment

The specificity of QBs-LFIA was tested at a concentration of 20.0 ng mL−1 with
structurally similar analogs, including SMZ, sulfaguanidine, sulfapyridine, sulfanilamide,
sulfamonomethoxine, sulfadiazine, sulfamethoxazole, sulfacetamide, sulfathiazole, sul-
famethizole, and other non-SAs antibiotics (lomefloxacin, amantadine, florfenicol). All
experiments were performed in triplicate.

2.10. Sample Preparation
2.10.1. Chicken Sample Pretreatment

Samples of chicken were smashed and stored at −20 ◦C for further analysis. An
amount of 10 µL of working standard solution was added to the chicken sample (5.0 g) in a
centrifuge tube, and the mixture was vortexed for 30 s. After being sonicated for 30 min
and centrifuged at 8500 rpm at 4 ◦C for 15 min, the resulting supernatant solution was
concentrated to near dryness under nitrogen at 50 ◦C. The resulting residue was redissolved
in 1 mL PBS for further analysis.

2.10.2. Milk Sample Pretreatment

For sample treatment, 5 g milk sample was centrifuged at 9000 rpm for 20 min. The
supernatant solution was collected and diluted 10-fold for further analysis.

2.11. Detection of SMZ in Real Samples
2.11.1. Establishment of Standard Calibration Curve in Real Samples

SMZ (0, 0.01, 0.05, 0.1, 0.25, 0.5, 1.0, 2, 2.5, 5.0, 10.0, 20, 25, 50, 100 ng/mL) was
spiked to the chicken and milk. We established a standard curve using the logarithm of
the concentration of SMZ and fluorescence intensity. All experiments were performed
in triplicate.
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2.11.2. Recovery of SMZ on the QBs-LFIA System in 2 Food Matrices

SMZ (0.5, 5, and 7.5 ng/mL) was added to the 2 food matrices. The recovery and
coefficient of variation (CV) of SMZ in the real samples were quantitatively analyzed on
the LFIA system. All experiments were performed in triplicate.

2.11.3. Analysis of HPLC

Eight chicken samples and eight milk samples were selected and determined by the
developed QBs-LFIA and HPLC [33] to verify the reliability of the QBs-LFIA.

3. Results and Discussion
3.1. Characterization of QBs and QBs-mAb

Figure 1a shows a transmission electron microscope (TEM) image of the QBs. The
image indicates that the QBs have relatively uniform particle size distribution and present
regular quasi-spherical shapes with an average diameter of 158 nm, while Figure 1b shows
an individual QB at high magnification. XRD patterns in Figure 1c show that the three
distinct QBs peaks positioned at 26.6, 43.5, and 51, which were similar to the QDs in
a previous report, still retained CdSe/ZnS QDs structural characteristics [34,35]. X-ray
photoelectron spectroscopy was employed to demonstrate the chemical composition and
surface chemical states of QBs. As Figure 1d shows, the survey spectra of QBs were
composed of Zn, Cd, and Se elements, which is consistent with the QDs spectra, as a
previous work reported [36,37]. In Figure 1f, DLS analysis indicates that the hydrodynamic
diameter of the QBs is about 255 nm, while that of the QBs-mAb raises it to 315 nm.
Meanwhile, the zeta-potential of QBs and QBs-mAb was monitored; as Figure 1e shows,
the zeta potential of QBs is −28 mV, while the QBs-mAb raises it to −18 mV. The results
demonstrate that the anti-SMZ mAb was favorably coupled on the surface of the QBs.
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Figure 1. Characterization of QBs and QBs-mAb. (a) High-resolution TEM image of the QBs.
(b) Individual QB at high magnification. (c) XRD patterns of QBs, (d) XPS survey of QBs, (e) zeta
potential of QBs before and after coupling with mAb. (f) Size distribution of the hydrodynamic
diameter of QBs and QBs-mAb.

3.2. Optimization of QBs-LFIA
3.2.1. Optimization of the Coupling pH

It is necessary to optimize the pH of the label because it affects the activity of the
antibody and the conjugation between the antibody with the QBs. We evaluated the effect
of pH value through analyzing the fluorescence intensity, which varied, as the pH values
ranged from 5.5 to 8.0. As can be seen from Figure 2, when the QBs-labeled antibody is
sufficient, the detection signal strength of the T line fluctuates according to the coupling
pH. The T-line signal reached its maximum strength at pH = 6.5, but the inhibition rate was
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lower than that at pH = 7.0. Both high FIT0 and inhibition ratio were attained at pH 7.0.
Therefore, pH = 7.0 was chosen as the optimal pH.
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3.2.2. Optimization of the Concentration of EDC

The effect of the concentration of EDC, an important factor influencing the F of the
biosensor, on the sensitivity of QBs-LFIA was also investigated. The successful preparation
of the probe was mainly attributed to covalently coupling the amino group of anti-SMZ
mAb with the carboxyl group of QBs in the presence of EDC. This study explored the
influence of the concentration of EDC (6, 8, 10, 12, and 14 µg/mL) on the detection
signal strength and inhibition rate. As can be seen from Figure 3, the signal strength and
inhibition rate both increased with the additive amount of EDC consumption and reached
the maximum value at 10 µg/mL (73.8%). When the concentration of EDC continued to
increase, the signal strength and inhibition rate showed a downward trend. Therefore, the
optimal amount of EDC was 10 µg/mL.
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3.2.3. Optimization of the Amount of mAb

This study explored the influence of the amount of labeled antibody (5, 7.5, 10, 12.5,
15 µg) on the detection signal strength and inhibition rate. As can be seen from Figure 4,
the signal strength increased with the increase in the amount of labeled antibody. The
higher the volume of the antibody, the more SMZ − BSA binding and the stronger the
T-line signal. When 12.5 µg of mAb was applied, the maximum inhibition rate (72.3%)
was obtained. However, the T-line signal was the strongest when the amount of mAb was
10 µg, and the inhibition rate (70.8%) was a little lower than the amount of mAb at 12.5 µg.
Finally, the optimal amount of mAb was 12.5 µg.
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3.2.4. Optimization of the Concentration of SMZ − BSA on the T Line

This study explored the influence of different concentrations (0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1.0 mg/mL) of SMZ − BSA on detection signal strength and inhibition rate. As can be seen
from Figure 5, when the QBs-labeled antibody was sufficient, the detection signal strength
of the T line increased with the increase of SMZ − BSA concentration. With increasing
amount of SMZ − BSA, more QBs antibody conjugates can be captured, and the T line
will show a stronger signal. The T-line signal was the strongest and the inhibition rate
(81.2%) was the highest when the concentration of SMZ-BSA was 0.6 mg/mL; when the
concentration of SMZ − BSA continued to increase, the signal strength and inhibition rate
decreased. Therefore, 0.6 mg/mL was chosen as the optimal concentration of SMZ − BSA
on the T line.
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3.2.5. Optimization of the Amount of QBs-mAbs Probe

The effect of the amount of QBs-mAbs probe, an important factor influencing the F of
the biosensor, on the sensitivity of QBs-LFIA was also investigated. This study explored
the influence of the amount of QBs-mAbs probe (24, 36, 48, 60, 72, 84 µg) on detection
signal strength and inhibition rate. As can be seen from Figure 6, the signal strength and
inhibition rate (77.8%) increased with increasing amount of QBs-mAbs probe and reached
the maximum value at 72 µg. When the amount of QBs-mAbs probe continued to increase,
the signal strength and inhibition rate showed a downward trend. Therefore, the optimal
amount of EDC was 72 µg.
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3.2.6. Immune Dynamic Response Analysis of QBs-LFIA

In this study, the relationship between T-line signal and immune response time was
monitored by recording the fluorescence intensity of the T line and C line every 1 min. FIT0
and FIT represent the change value of fluorescence intensity along the T line of negative and
positive sample strips with time, respectively. The control negative and positive samples
were PBS containing QBs-mAb and PBS containing SMZ and QBs-mAb, respectively. As
can be seen from the trend in Figure 7, FIT0, FIT, and inhibition rate tend to be stable when
the sample adding time exceeds 20 min. Therefore, 20 min was selected as the optimal
detection time.
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3.2.7. Evaluation of QBs-LFIA
Determination of Detection Limit and Linear Range

Under the optimal process parameters, the QBs-based immunochromatographic
method established in this study was used to detect PBS solutions with different SMZ
concentrations. The standard curve was drawn using the fluorescence intensity of the T
line as the ordinate and the logarithm of the corresponding standard concentration as the
abscissa. As shown in Figure 8A, the intensity gradually decreases with the increase of SMZ
concentration. The equation of the standard curve is y = −7345 log (x) + 8838 (R2 = 0.9994),
where y represents the fluorescence intensity, and x represents the logarithm value of SMZ
concentration. By calculation, the LOD of SMZ detection in PBS buffer by QBs-based
immunochromatography was 0.1074 ng/mL, and the corresponding linear detection range
was 0.1–10 ng/mL. Notably, Table 1 also compares the LOD and the linear range of the
QBs-LFIA in this study with others, and results indicate that QBs-LFIA have advantages in
linear range and LOD.
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Table 1. Comparison of the linear range, LOD, and specificity of this method and others.

Methods Target Detection
Samples Linear Range LOD

Specificity

ReferenceStructure-Relative
Compounds

Cross-
Reactivity

(%)

Traditional LFIA

SMZ

Meat and egg - 2 ng/mL - - [23]

MI-ELISA Swine muscle 100–3200 µg/L 6.8 ng/mL
Sulfapyridine 3.1

[6]Sulfadiazine 5.0
Sulfamerazine 7.0

Fluorescence
polarization

immunoassay (FPIA)
Milk 5–58 ng/mL 1.6 ng/mL

SMZ 7.74
[38]Sulfamerazine 61.3

Sulfamoxole 415.98

QBs-LFIA
Chicken 0.2–12.5 ng/mL 0.1138 ng/mL SMZ 15.5

This
work

Sulfamonometh-oxine 17.5
Milk 0.1–15 ng/mL 0.0955

ng/mL Sulfamethoxaz-ole 26.4

Specificity of the QBs-LFIA

The specificity of the QBs-LFIA was assessed by running ten other SA drugs and three
non-SA antibiotic drugs. As shown in Figure 9, the inhibition ratio of the QBs-LFIA for the
SMZ-spiked PBS sample was 100%, while those of sulfadiazine, sulfamonomethoxine, and
sulfamethoxazole were 15.5, 17.5, and 26.4%, respectively. In addition, the inhibition ratio
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was less than 3% in ten other drugs. These results demonstrate that the QBs-LFIA is able to
specifically detect SMZ.
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similar analogs.

Recovery Experiment

Under the optimal process parameters, different SMZ concentrations were detected by
the QBs-based immunochromatography method. The standard curve was drawn by using
the fluorescence intensity of the T line as the ordinate and the logarithm of the correspond-
ing standard concentration as the abscissa. As shown in Figure 8B,C, the fluorescence inten-
sity gradually decreases with the increase of SMZ concentration. The equation of the stan-
dard curve is y = −8167 log (x) + 10,788 (R2 = 0.9926), y = −5943 log(x) + 8502 (R2 = 0.9924)
where y represents the fluorescence intensity and x represents the logarithm value of SMZ
concentration. By calculation, the LOD of SMZ in these samples detected by QBs-based
immunochromatography was 0.1105 ng/mL, 0.0955 ng/mL and the corresponding linear
detection range was 0.2–12.5 ng/mL, 0.1–15 ng/mL. The above results indicate that the
QBs-LFIA method can realize the high-sensitivity detection of SMZ residue in chicken and
milk samples.

The recovery of QBs-LFIA for the determination of 0.05, 0.5, and 5 ng/mL of SMZ in
chicken and milk were examined using the test strips. Table 2 shows the average QBs-LFIA
recoveries of 80.9–109.4% with CV of 4.88–5.39% in chicken sample and 84–101.6% with
CV of 6.48–11.32% in milk sample. These data indicated that the QBs-LFIA could reliably
and precisely determine SMZ in chicken and milk samples.
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Table 2. Recoveries and CVs of chicken and milk samples spiked with different concentrations of SMZ with QBs–LFIA.

Sample Spiked SMZ (ng/mL) Recovery (%) a Standard Deviation CV (%)

Chicken
0.5 80.9 3.94 4.88
5 88.8 4.78 5.39

7.5 109.4 4.79 4.38

Milk
0.5 84 5.44 6.48
5 101.6 11.5 11.32

7.5 96 9.08 9.46
a Recovery = (Detected/Spiked) × 100%.

3.3. Detection Results of Real Samples

Table 3 showed the detection results of 16 real samples using this method and HPLC.
The detection result of the method was in good agreement with that of the HPLC method.

Table 3. Detection of SMZ in real samples using this method and HPLC.

Sample Number QBs-LFIA (*100) HPLC Difference between QBs-LFIA and HPLC (%)

1

Chicken

2.07 228 −9.21
2 1.7 184 −7.6
3 1.15 125 −8
4 0.79 82 −2.56
5 0.37 43.9 −15.3
6 0.157 13.72 14.6
7 ND ND
8 ND ND

9

Milk

1.64 179.8 −8.4
10 1.12 121.7 −7.4
11 1.18 120.5 −1.7
12 0.54 65 −16.9
13 0.51 60 −15
14 0.31 33 −6
15 ND ND
16 ND ND

*100: The samples were diluted 100-fold and then dropped into the sample pad of the test strip (the reason is that the linear range of HPLC
is 100-fold than that of QBs-LFIA).

4. Conclusions

In this work, we established a rapid and sensitive methods based on QBs-LFIA for
the detection of SMZ in chicken and milk samples. The QBs-LFIA had LODs of 0.1138,
0.0955 ng/mL and corresponding linear ranges of 0.2–12.5, 0.1–15 ng/mL in chicken and
milk samples, respectively. The recovery experiment and HPLC validation manifested that
the method endows with good accuracy and reliability. This type of LFIA have a promising
application to promote the comprehensive development of LFIA.
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