
Retinoblastoma (RB) is the most common pediatric 
malignancy. The epidemiology of RB has been investigated 
in many population-based studies, and the incidence rate of 
RB is estimated at 40–60 cases per million live births in the 
world [1-4]. Although the mortality rate is low in patients with 
RB who receive aggressive multimodal therapy, in developed 
countries, nearly half of patients with advanced bilateral RB 
suffer from partial or full sight loss [5]. In developing coun-
tries, because the disease is often diagnosed at later stages, 
the survival rate is lower than in developed countries [6].

To reduce morbidity and preserve the sight of a child 
during the early stages of RB, numerous studies have explored 
more effective approaches, such as targeted therapy using 
bioinformatics methods. For instance, combining epigenetic 
analysis with gene expression analysis, Zhang et al. identified 

the important oncogene spleen tyrosine kinase (SYK; Gene 
ID: 6850; OMIM: 600085), which is elevated in RB and 
essential for RB tumor cell survival [7]. Another study also 
discovered 119 candidate genes, such as CDC25C (Gene 
ID: 995, OMIM: 157680), CDC6 (Gene ID: 990, OMIM: 
602627), and TP53 (Gene ID: 7157 OMIM: 191170), for RB 
diagnosis [8]. MicroRNAs (miRNAs) are small noncoding 
RNAs that play significant roles in cellular functions and 
physiology. By regulating the expression of the target genes, 
miRNAs are confirmed to be involved in the development 
of various cancers, and thus have been suggested as tumor 
biomarkers [9,10]. Several miRNAs such as miR-30, miR-
let-7e, miR-21, and miR-320 are dysregulated in RB samples 
and have been supposed to be diagnostic biomarkers for 
detecting RB [11,12]. Downregulated miR-204 is another 
indicator in RB prediction [13]. Martin et al., using a TaqMan 
Low Density Array, discovered a total of 41 differentially 
expressed miRNAs (DE-miRs) between 12 RB samples and 
three healthy retina samples in humans, including 13 previ-
ously identified miRNAs (miR-17, miR-20b, miR-22, miR-25, 
miR-34a, miR-34c-5p, miR-106a, miR-106b, miR-93, miR-129, 
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miR-193–5p, miR-342–5p, miR-370) in human and mouse RB 
and many novel miRNAs, such as miR-18a, miR-138, miR-155, 
miR-382, and miR-504 [14]. Additionally, the miR-17–92 
cluster has been demonstrated as an RB-collaborating gene 
that promotes RB development [15]. More recently, another 
18 miRNAs have been newly implicated in RB and have 
great potential to serve as signatures in the detection of this 
disease [16]. However, the target genes of these miRNAs are 
rarely reported. Notably, using paired mRNA and miRNA 
expression profiles, Huang et al. identified several targets of 
miRNAs in RB samples and further verified CDC25A (Gene 
ID: 993 OMIM: 116947) and BCL7A (Gene ID: 605 OMIM: 
601406) are the target genes of let-7b [17]. However, the 
researchers emphasized the roles of miRNA let-7b and did not 
mention other potential miRNAs or the correlations between 
them. In addition, the detailed regulation mechanisms of 
miRNAs to RB remain obscure.

Therefore, we reanalyzed the miRNA expression 
profile GSE7072 [17] to obtain more relevant miRNAs using 
differential analysis. The targets of these miRNAs were also 
predicted using two experimental validated databases (miRe-
cords and MirWalk). Relationships between these miRNAs 
were further explored to comprehensively uncover the under-
lying mechanisms of RB progression. We aimed to find novel 
miRNA biomarkers for the prevention and prognosis of RB 
development.

METHODS

A flowchart of the analyses in the study is shown in Figure 1.

Microarray data: The miRNA expression profile data with 
the accession number GSE7072 [17], which is available in 
the public Gene Expression Omnibus (GEO) database, was 
employed in the present study. The data set comprised the 
total RNA information of a cohort of 160 human miRNAs 
from three RB samples and three replicates of a healthy 
retina, based on the platform of the GPL4879Human miRNA 

2k custom array (Agilent Technologies, Palo Alto, CA). The 
annotation files on the platform were downloaded.

Data preprocessing and identification of DE-miRs: Based on 
the annotation information, the probe levels were converted 
into miRNA expression values. The probe that did not corre-
spond to a specific miRNA was removed, and when more 
than one probe corresponded to a single miRNA, the average 
value at the probe level was calculated as the final expres-
sion value of this miRNA. Then the data were subjected to 
normalization using the median method in the preprocess-
Core package [18]. Afterwards, the DE-miRs between the 
RB and healthy retina samples were selected using the limma 
(Linear Models for Microarray Analysis) package of R [19]. 
The cut-off values for significant DE-miRs were p<0.05 and 
|log2 (fold change)| >0.58.

Construction of integrated miRNA–target network: Consid-
ering that a miRNA works through the regulation of the target 
in a spectrum of biologic processes, we further explored 
the potential target genes of these identified DE-miRs, by 
integrating the information in two experimentally validated 
databases, the miRecords [20] and MirWalk [21], in which 
miRNA–target interactions were experimentally validated. 
Only the miRNA–target interaction that existed in at least 
one of the two databases was screened out to establish the 
integrated miRNA–target network.

Pathway enrichment analysis of the predicted target genes: 
To further identify the altered biologic pathways of the 
target genes, the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis was conducted with 
the Database for Annotation, Visualization and Integration 
Discovery (DAVID) software [22], based on the hypergeo-
metric distribution. p<0.05 was set as the threshold for the 
selection of significant pathways.

Identification of transcription factors, tumor-associated 
genes, and tumor suppressor genes: The target genes were 

Figure 1. Flowchart of the analyses.
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mapped into the TRASFAC database [23] to further screen 
the potential transcription factors (TFs). Meanwhile, by 
comparing these targets with the information from the tumor 
suppressor gene (TSG) [24] and tumor-associated gene (TAG) 
databases, all known oncogenes and TSGs among the target 
genes were extracted.

Prediction of RB-related genes among the target genes: 
The target genes were mapped into the publicly available 
Comparative Toxicogenomics Database (CTD) database, 
which provides curated chemical- and gene-disease interac-
tions from published articles [25], to search the RB-related 
genes among these target genes. Then combined with the 
corresponding miRNAs, clustering analysis was performed 
between the RB and healthy retina samples with the pvclust 
package of R [26].

Correlation network construction of the identified DE-miRs: 
Among the DE-miRs, two miRNAs that share a common 
target gene were filtered out to build the correlation network.

Validation of miRNA expression with another data set: 
Another RB-related miRNA expression profile, GSE41321 
[27], which also contained three RB samples and three 
healthy samples, was downloaded in the GEO database and 
used to check whether the DE-miRs identified in this profile 
were consistent with those in the GSE7072 data set. Samples 
in the GSE41321 profile were collected from pooled serum 
from children with advanced RB and healthy age-matched 
children. Likewise, after expression value conversion from 
probe level to gene level, normalization was performed for 
data using the median method in the preprocessCore package 
[18]. Then the miRNA expression value was attained. The 
CONOR package [28] was used to perform cross-platform 
normalization for the GSE7072 and GSE41321 data sets. 
DE-miRs between the RB and control samples were iden-
tified in the two data sets, respectively, using the limma 
package with the same threshold. Thereafter, we compared 
the miRNA expression in the two data sets, especially the 24 
DE-miRs identified in GSE7072.

RESULTS

The DE-miRs between the RB and healthy retina samples: 
As a result, a set of 24 DE-miRs were selected, including 
nine upregulated (e.g., hsa-miR-25, hsa-miR-373, and hsa-
miR-20a) and 15 downregulated miRNAs (e.g., let-7b, let-7a, 
let-7c, hsa-miR-125b, and hsa-miR-181a) between the RB and 
healthy retina samples. The clustering analysis of the heat 
map is presented in Figure 2, revealing the expression pattern 
of the DE-miRs.

The integrated miRNA–target regulatory network: Based 
on the criterion, the integrated miRNA–target regulatory 
network was built, containing five upregulated miRNAs, 
including hsa-miR-373 (the most prominent one with 53 
target genes), hsa-miR-20a (with nine target genes), hsa-miR-
18a, hsa-miR-25, and hsa-miR-175p, and 12 downregulated 
miRNAs, such as hsa-miR-125b (the most remarkable one 
with 54 target genes), hsa-miR-7 (a, b, c), and hsa-miR-
145 (Figure 3). Notably, hsa-miR-20a, hsa-miR-18a, and 
hsa-miR-25 shared the common target gene BCL2L11; hsa-
miR-125b, hsa-miR-7a, and hsa-miR-7b cotargeted the gene 
LIN28A.

Dysregulated pathways of the target genes: After the target 
genes were mapped into the KEGG databases, the altered 
pathways were identified. As shown in Table 1, the target 
genes of the upregulated miRNAs were significantly enriched 
in numerous cancer-related pathways such as pathways in 
cancer (hsa05200), bladder cancer (hsa05219), non-small cell 
lung cancer (hsa05223), and pancreatic cancer (hsa05212). 
The over-represented pathways for the targets of the down-
regulated miRNAs were also significantly correlated with 
various cancers, as well as the ErbB signaling pathway 
(hsa04012) and the cell cycle pathway (hsa04110).

Identified TFs, TAGs, and TSGs among target genes: As 
expected, the potential TFs, oncogenes, and TSGs were 
selected by comparing the targets with the information in 
relevant databases. Detailed gene information is presented in 
Table 2, in which target genes such as CBFB (Gene ID: 865; 
OMIM: 121360), CEBPG (Gene ID: 1054; OMIM: 138972), 
and HMGA2 (Gene ID: 8091; OMIM: 600698) were consid-
ered TFs; CCNA2 (Gene ID: 890; OMIM: 123835), CCND1 
(Gene ID: 595; OMIM: 168461), and ERBB2 (Gene ID: 2064; 
OMIM: 164870) were oncogenes; and CDKN1B (Gene ID: 
1027; OMIM: 600778), CDKN2A (Gene ID: 1029; OMIM: 
600160), and E2F1 (Gene ID: 1869; OMIM: 189971) were 
TSGs.

RB-related miRNAs with their targets: A total of 183 target 
genes of the DE-miRs were identified. By mapping them 
into the CTD database, 87 were considered to correlate with 
RB. Additionally, these genes were targeted by 14 DE-miRs, 
including hsa-miR-373, hsa-miR-125b, hsa-miR-20a, hsa-miR-
145, hsa-let-7 (a, b, c), hsa-miR-25, hsa-miR-18a, hsa-miR-
182, hsa-miR-99a, hsa-miR-183, hsa-miR-451, and hsa-miR-
181a, which completely distinguished the RB samples from 
the healthy samples (Table 3 and Figure 4). Therefore, these 
miRNAs might be used as the biomarkers of RB.

The correlation network of the DE-miRs: The correlation 
network showing the common target genes of the DE-miRs 
is shown in Figure 5. As presented in this network, the 
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predominant correlated miRNA interactions were hsa-let-7b 
and hsa-miR-125b (the common target genes were CDC25A, 
LIN28A, and CDK6); and hsa-miR-18a, hsa-miR-20a, and 
hsa-miR-25 (the common target gene was BCL2L11).

Validation of miRNA expression: As shown in Table 4, in 
comparison with the GSE7072 profile, ten miRNAs, including 
six identified DE-miRs (out of the 24 DE-miRs), were also 
differentially expressed in the RB samples in the GSE41321 
profile. Notably, the expression of three DE-miRs, including 
upregulated hsa-miR-18a and downregulated hsa-let-7b and 
hsa-let-7c, was in accordance with our results.

DISCUSSION

RB is a primary pediatric cancer of the retina. In this study, 
we performed a series of analyses using powerful bioinfor-
matics methods and finally identified a total of 24 DE-miRs 
between the RB and healthy retina samples. Interestingly, 
nine DE-miRs, including let-7c, hsa-miR-182, hsa-miR-
99b, hsa-miR-125b, hsa-miR-191, hsa-miR-181a, hsa-miR-
17–5p, hsa-miR-373, and let-7b, were consistent with work 

performed by Huang et al. [17], who identified 25 DE-miRs 
in RB samples. The potential reasons for the other different 
miRNAs might be due to different selection criteria. As 
Huang et al. aimed to discover the interacting miRNA–target 
relationships using paired miRNA and mRNA expression 
profiles, they might have applied a different criterion to 
choose the interacting miRNA target. In contrast, this study 
used their miRNA expression profile and predicted the 
corresponding targets based on the miRecords and MirWalk 
databases. However, the nine common DE-miRs suggest that 
our findings are also reliable.

Interestingly, the expression of three DE-miRs was 
consistent with that in another profile, GSE41321, including 
hsa-miR-18a, hsa-let-7b, and hsa-let-7c. Although the 
GSE41321 samples are collected from serum, Beta et al. 
confirmed that a set of 33 deregulated miRNAs, such as the 
upregulated hsa-miR-18a and the downregulated hsa-let-7c, 
are also found in RB tumor samples in comparison with the 
tumor RB miRNA profiles [27]. This finding indicates several 
miRNAs in serum might have the same expression patterns 
as in tumors and could be used as potential biomarkers for 

Figure 2. Heat map of the clustering 
analysis of differentially expressed 
miRNAs between two samples. 
The x-axis represents the samples 
(healthy 1–3 denote healthy retina 
samples, and Rb 1–3 denote retino-
blastoma samples), and the y-axis 
represents miRNAs.
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the prognosis and prediction of RB development. Enrichment 
analysis indicated that the target genes of the present identified 
DE-miRs were mainly involved in cancer-related pathways 
and the cell cycle pathway. Among these DE-miRs, hsa-miR-
373, hsa-miR-125b, and hsa-miR-181a were highlighted with 

multiple target genes in the integrated miRNA–target regula-
tory network; meanwhile, 14 DE-miRs, such as hsa-miR-373, 
hsa-miR-125b, hsa-miR-20a, hsa-miR-25, hsa-miR-18a, and 
hsa-let-7 (a, b, c) were shown to distinguish RB from healthy 
samples. Notably, hsa-miR-25, hsa-miR-18a, and hsa-miR-20a 

Figure 3. Integrated miRNA–target regulatory network. The blue circle represents genes, and the red rectangle represents upregulated 
miRNAs, while the green rectangle represents downregulated miRNAs. Arrows denote direct interactions between a miRNA and its target 
gene.

Table 1. Significantly enriched pathways among the target genes of the differentially expressed miRNAs.

Target genes Pathway Term Count P value
Target genes of upregulated miRNAs hsa05200:Pathways in cancer 6 3.62E-04
  hsa05219:Bladder cancer 3 3.49 E-03
  hsa05223:Non-small cell lung cancer 3 5.73 E-03
  hsa05212:Pancreatic cancer 3 1.00 E-02
  hsa05220:Chronic myeloid leukemia 3 1.08 E-02
Target genes of downregulated miRNAs hsa05219:Bladder cancer 10 2.93E-10
  hsa05200:Pathways in cancer 19 2.71E-09
  hsa05220:Chronic myeloid leukemia 11 3.75E-09
  hsa05214:Glioma 10 1.31E-08
  hsa05215:Prostate cancer 11 2.06E-08
  hsa05218:Melanoma 10 3.87E-08
  hsa05223:Non-small cell lung cancer 9 6.76E-08
  hsa04012:ErbB signaling pathway 9 2.91E-06
  hsa04110:Cell cycle 10 5.14E-06
  hsa05212:Pancreatic cancer 8 8.85E-06

Count, the gene numbers enriched in a specific pathway.
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shared the common target gene BCL2L11; hsa-let-7b and hsa-
miR-125b targeted three genes, CDC25A, CDK6, and LIN28A.

MiR-373 is implicated in numerous cancer events. Previ-
ously, miR-373–3 was considered the signature of human 
embryonic stem cells [29]. In prostate cancer, in vitro experi-
ments showed that miR-373 stimulates cell migration and 
invasion [30]. Additionally, the role of miR-373 as an activator 
in tumor invasion and metastasis has been verified in vivo and 
in vitro by inhibiting the expression of CD44 [31]. Further-
more, miR-373 is proproliferative in human epithelial ovarian 
cancer cells [32]. Several studies corroborated that miR-373 is 
highly expressed in RB tumors, in comparison with healthy 
retinas [12,33], which is consistent with our result. Notably, 
our enrichment analysis showed that the targets of hsa-miR-
373 were tightly correlated with a cohort of cancer-related 
pathways, providing potent evidence that hsa-miR-373 might 
function in RB tumors as in other cancers. Given that RB has 
a tendency toward local invasion and metastasis [34], it might 

be speculated that miR-373 might also play remarkable roles 
in the regulation of RB invasion and metastasis.

Defects in the gene RB1, which serves as a negative 
regulator of cell cycle and a tumor suppressor, are known to 
be the main cause for the genesis of RB in children. A cluster 
of miRNAs acts as regulators in cell proliferation, apoptosis, 
and senescence via interfering with the p53 pathway or RB1/
E2F function [35,36]. MiR-125b has been confirmed to func-
tion as a tumor suppressor by inducing cellular senescence 
in cutaneous malignant melanoma [37]. Notably, miR-125b is 
closely related to the p53 pathway in colorectal cancer [38]. 
These collectively provide a clue that miR-125b might also be 
involved in the regulation of proliferation during RB develop-
ment via the p53-mediated pathway. In human U251 glioma 
stem cells, the overexpression of miR-125b is highly correlated 
with the decreased expression of CDK6 and CDC25A, two cell 
cycle–mediated genes [39]. Moreover, CDK6 and CDC25A are 
mediated by miR-125b in other types of cancer, such as breast 
cancer [40] and bladder cancer [41]. The oncogene LIN28B 

Table 2. Predicted TFs, oncogenes and TSGs among the target genes of the differentially expressed miRNAs.

TF Oncogene TSG
CBFB,CEBPG,HMGA2,HOXA11,ID1,ID
2,ID3,MEF2D,MITF,PLAGL1,PRDM1,R
ARG,RUNX1,SOX9,TFAP4,ZHX1

CCNA2,CCND1,ERBB2,ERBB3,ESR1,FGFR
3,HMGA2,HRAS,KRAS,MYC,NRAS

CDKN1B,CDKN2A,E2F1,FOXO1,ITGB
3,LATS2,MAP2K4,NF2,PLAGL1,PPP1C
A,PRDM1,RECK,SMO,TP53,TP53INP1,
TUSC2,UHRF2

TF: transcription factor; TSG: tumor suppressor gene.

Table 3. Retinoblastoma-related miRNAs and their target genes.

miRNAs Target genes
hsa-miR-373 GPSM2, KIF23, GLTP, LATS2, TFAP4, GBP3, PRC1, LMNB1, RNF149, INSIG2, TEX30, CYB5R4, 

RPIA, PBK, STK4, KDM1B, CENPF, TBC1D2, ARHGEF3, CD83
hsa-miR-125b ID2, CASP6, ADAMTS1, NTRK3, ID3, JARID2, CBX7, UGT2B17, ELAVL1, BAK1, EIF4EBP1, 

TENM2, E2F3, MAN1A1, KRT19, TP53INP1, TP53, CDC25A, CDKN2A, CDK6, SMO, BMPR1B, 
CYP1A1, CASP7, BBC3, CBLN2, UBE2I, IL1RN, B3GALT4, CDC25C, ERBB3, ERBB2, PIGR

hsa-miR-20a BCL2L11, CCND1, BMPR2, RUNX1, E2F1, MAP3K12
hsa-let-7b CDC25A, CDK6, CCND1, HMGA2, KRT19
hsa-miR-145 FSCN1, SOX9, IGF1R, RTKN, CCNA2, MYC, PPP3CA
hsa-let-7a NF2, SMOX, KRAS, ITGB3, CASP3, HMGA2, HRAS, NRAS
hsa-miR-182 MITF, IGF1R, RARG
hsa-miR-99a MTOR, IGF1R, FGFR3
hsa-miR-25 MAP2K4, BCL2L11
hsa-miR-18a CTGF, BCL2L11, ESR1
hsa-miR-181a CDKN1B, ESR1
hsa-miR-183 FOXO1
hsa-let-7c MYC, HMGA2
hsa-miR-451 ABCB1
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Figure 4. Clustering analysis of 
the 14 differentially expressed 
miRNAs in two types of samples. 
Healthy 1–3 denote the healthy 
retina samples, and Rb 1–3 denote 
the retinoblastoma samples. The 
values on the edges of the clusters 
are p values (%). The red values 
are approximately unbiased (au) 
p values, and the green values are 
bootstrap probability (bp) values. 
Clusters with au larger than 95% 
are highlighted by rectangles, 
which are strongly supported by 
data.

Figure 5. Correlation network of the 
differentially expressed miRNAs. 
The blue circle represents genes, 
and the red rectangle represents 
upregulated miRNAs, while the 
green rectangle represents down-
regulated miRNAs. The arrow 
denotes the direct interaction 
between miRNA and its target 
gene.
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has been demonstrated to be the downstream of miR-125b, 
and by binding to the 3′ untranslated region (UTR) region of 
LIN28B, miR-125b successfully inhibited the cell growth in 
hepatocellular carcinoma [42]. The regulatory relationships 
between hsa-let-7b and the target CDC25A have been well 
established in RB cells [17]. Additionally, let-7 is suggested 
to indirectly regulate the cell cycle by suppressing IMP1, 
an essential gene for CDC25A and CDK6 expression [43]. 
Furthermore, let-7 could also downregulate the mRNA of 
LIN28B during neural stem cell commitment [44]. Interest-
ingly, our results showed that CDK6, CDC25A, and LIN28A, 
the paralog of LIN28B, were all targeted by miR-125b and 
hsa-let-7b, indicating these two miRNAs might play crucial 
roles in the development of RB, via the coregulation of the 
three cell cycle–related target genes.

Hsa-miR-181b and hsa-miR-181a are downregulated in 
human gliomas and have been implicated as tumor suppres-
sors by inhibiting glioma proliferation [45]. In RB cells, 
elevated miR-181b has been verified to play a positive role in 
RB cell proliferation under hypoxic conditions [46]. Consid-
ering that RB is a cancer of the nervous system and miR-
181b is dysregulated in the central nervous system disease 
schizophrenia, miR-181b has been suggested to be involved 
in the genesis of RB [46]. In addition, miR-181a, along with 
miR-183 and miR-124, presents the most frequent alterations 
among the miRNAs differentially expressed in RB [47]. The 
CDKN1B gene, an important regulator of the cell cycle, has 
been demonstrated as the target of miR-221 and miR-222 in 
the development of thyroid cancer [48]. Our results indicated 
that hsa-miR-181a was a crucial miRNA of RB that targeted 

multiple genes, including CDKN1B, which was predicted to 
be a TSG enriching in the cell cycle pathway. Therefore, it 
might be inferred that hsa-miR-181a might act as an impor-
tant regulator in RB progression via the CDKN1B-mediated 
cell cycle pathway.

The BCL2L11 encoded protein belongs to the BCL-2 
protein family, which act as important apoptotic activators 
in extensive cellular activities [49]. Transforming growth 
factor-β (TGF-β) is a cytokine that has a significant role in 
the apoptosis of gastrointestinal cells. miR-25 overexpres-
sion decreases TGFβ-induced apoptosis by interfering with 
the synthesis of BCL2L11 in gastric cancer [50]. Addition-
ally, miR-20a has also been reported to target BCL2L1, 
while miR-18a could target Smad2 and Smad4 in the TGF-β 
signaling pathway, in which the activation of TGF-β is 
partly regulated by BCL2L11 [51]. In the present study, 
hsa-miR-25, hsa-miR-18a, and hsa-miR-20a simultaneously 
targeted BCL2L1 in the correlation network of the DE-miRs, 
suggesting that the three miRNAs might have vital roles in 
the progression of RB by coregulating BCL2L1. However, the 
potential interactions between these miRNAs must be further 
elucidated.

The present study has several limitations. First, the 
sample size was small because only three RB samples 
and three healthy samples were contained in the data sets. 
Moreover, although we used another data set to validate the 
miRNA expression, the expression of only three miRNAs 
was confirmed. Experimental validation of miRNA expres-
sion and miRNA–target regulation was lacking, which will 
be considered in follow-up studies.

Table 4. miRNA (10 DE-miRs) expression comparison between 
expression profiles of GSE41321 and GSE7072.

miRNAs
GSE41321 GSE7072

Log FC P value Log FC P value
hsa-miR-30d 0.699283069 8.34E-06 −1.4135091 1.28E-02
hsa-miR-18a 0.820197258 3.05E-05 1.486038867 3.38E-02
hsa-miR-181a 0.872595328 1.01E-06 −1.9342523 5.73E-04
hsa-miR-183 0.561178808 1.26E-04 −1.2667168 1.94E-02
hsa-miR-182 0.95936798 5.54E-07 −1.24761365 2.40E-02
hsa-miR-125b 0.457144179 4.40E-04 −2.520854685 3.56 E-04
hsa-miR-191 −0.483798552 1.04E-03 −1.80388745 7.45E-03
hsa-miR-373 −0.109119276 0.20 1.196955933 9.69E-03
hsa-let-7c −0.838050781 6.21E-05 −2.213052267 3.67E-03
hsa-let-7b −0.704607286 4.49E-05 −3.044672233 9.35E-05

DE-miRs: differentially expressed miRNAs (between retinoblastoma and control samples); FC: fold 
change; miRNAs with positive value of Log FC represent upregulated miRNAs in retinoblastoma samples; 
while with negative value indicate downregulated miRNAs in retinoblastoma samples.
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In conclusion, a set of critical miRNA signatures was 
identified in RB progression. Among them, hsa-miR-373 
might play significant roles in the regulation of RB invasion 
and metastasis, hsa-miR-125b and hsa-let-7b might exert their 
roles as tumor suppressors via the coregulation of CDK6, 
CDC25A, and LIN28A, which all mediated the cell cycle 
pathway, and hsa-miR-181a might involve in the CDKN1B-
regulated cell cycle pathway. Additionally, hsa-miR-25, 
hsa-miR-18a, and hsa-miR-20a might affect the progression 
of RB by the coregulation of BCL2L1. However, additional 
experimental studies are needed to confirm these results.
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