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Diabetes-related cardiovascular diseases are leading causes of the mortality worldwide. Our previous study has explored the
protective effect of curcumin analogue C66 on diabetes-induced pathogenic changes of the aorta. In the present study, we
sought to reveal the underlying protective mechanisms of C66. Diabetes was induced in male WT and JNK2™'~ mice with a
single intraperitoneal injection of streptozotocin. Diabetic mice and age-matched nondiabetic mice were randomly treated with
either vehicle (WT, WT DM, JNK2™~, and JNK27/"DM) or C66 (WT + C66, WT DM + C66, JNK2™'~ + C66, and JNK2~'"DM
+C66) for three months. Aortic oxidative stress, cell apoptosis, inflammatory changes, fibrosis, and Nrf2 expression and
function were assessed by immunohistochemical staining for the protein level and real-time PCR method for mRNA level. The
results suggested that either C66 treatment or JNK2 deletion can reverse diabetes-induced aortic oxidative stress, cell apoptosis,
inflammation, and fibrosis. Nrf2 was also found to be activated either by C66 or JNK2 deletion. However, C66 had no extra
effect on diabetic aortic damage or Nrf2 activation without JNK2. These results suggest that diabetes-induced pathological
changes in the aorta can be protected by C66 mainly via inhibition of JNK2 and accompanied by the upregulation of Nrf2

expression and function.

1. Introduction

Cardiovascular diseases are associated with a substantial
morbidity and mortality worldwide. People with diabetes
mellitus exhibit a higher risk of cardiovascular diseases com-
pared with that of the general population. Cardiovascular
complications caused more than a half of death in diabetic
patients [1, 2]. There is a prediction that the number of
diabetic patients reaches almost 600 million by 2035 [3].
Hyperglycemia causes irreversible damage to blood vessels
by inducing both micro- and macrovascular complications
in various organs like the skin, muscles, heart, brain, eyes,
and kidneys [4, 5]. Poor control of blood glucose at the early
stage of diabetes has been demonstrated to accelerate the
incidence and progression of vascular damage. Therefore,

new therapies to prevent diabetic complications should be
paid more attention.

There is considerable evidence that hyperglycemia-
induced vascular damage is associated with the generation
and accumulation of reactive oxygen species, ultimately lead-
ing to increased oxidative stress [6, 7]. Oxidative stress
exhibits an imbalance between the free radical production
and the endogenous physiological antioxidant mechanisms
that lead to the activation of stress-sensitive intracellular sig-
naling pathways and increased cellular damage. The damage
of endothelial cells contributes to vasoconstriction, cellular
proliferation, leukocyte aggregation, thrombosis, and inflam-
mation predisposing to atherosclerosis [8]. It has been
reported that the lipid bilayer of endothelia cells can be
destroyed by reactive oxygen species, releasing inflammatory
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and apoptotic cytokines [9]. Moreover, injury to endothelial
cells causes collagen exposure, platelet activation, and aggre-
gation at the injury site, thus contributes to a cascade of
thrombosis and inflammation [10]. It is believed that oxida-
tive stress and inflammation are reciprocal causes and out-
comes. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)
plays a crucial role in the regulation of the environmental
stress by inducing the expression of detoxification and anti-
oxidant enzymes. Under unstressed condition, Nrf2 can be
ubiquitinated and degraded by its inhibitor Kelch-like
ECH-associated protein 1 (Keapl). When cells are exposed
to oxidative stress, Nrf2 can dissociate from Keap1 and trans-
locate to the nucleus, leading to its activation [7]. Once Nrf2
is activated, it regulates the expression of a vast number of
genes, including those genes that regulate antioxidants and
detoxification enzymes as well as inflammatory responses
[11]. It has been shown that the activation of Nrf2 can reduce
oxidative stress and inflammation in diabetes, while its
absence can aggravate the diabetic complications [12, 13].
Therefore, the activation of Nrf2 may be particularly helpful
in combating the deleterious effects of hyperglycemic stress.

The c-Jun N-terminal kinases (JNKs) can be activated by
a range of stimuli and were known as “stress-activated pro-
tein kinases”. JNKs, belonging to the mitogen-activated pro-
tein kinase superfamily, play a crucial role in stress responses,
cell survival, and apoptosis [14]. There are three isoforms:
JNK1, JNK2, and JNK3; JNK1 and JNK2 are ubiquitously
expressed, and JNK3 expresses strictly in the brain, heart,
and testis [15].

It has been reported that JNK2 is associated with
hypercholesterolemia-induced endothelial dysfunction and
oxidative stress and is required for foam cell formation
within the atherosclerotic plaque [16, 17]. And JNK2 iso-
form has shown a more prominent role in the development
of obesity-associated insulin resistance [18]. Moreover,
deletion of JNK2 has been demonstrated to block
diabetic-induced protein nitroxylation [19]. Thus, we spec-
ulate that JNK2 plays an important role in diabetes-induced
aortic damage.

Curcumin, a natural compound, is the most active agent
of the polyphenolic curcuminoids derived from the root of
turmeric (Curcuma longa). Traditionally, it has been widely
used as an herbal medicine and/or food flavoring. Recently,
compelling studies show the protective effect of curcumin
on human health through its anti-inflammatory, antioxi-
dant, and antimicrobial properties [20-22]. Therefore, cur-
cumin and its analogues have attracted extensive
attention. Several studies have reported that (2E,6E)-2,6-
bis[2-(trifluoromethyl)benzylidene]cyclohexanone (so-called
compound C66), a novel curcumin, has memorable effects
in diabetes-related complications based on its anti-inflam-
matory, antifibrotic, antioxidative, and antiapoptotic prop-
erties [23-25]. These studies have also demonstrated that
the C66 protection in diabetes is accompanied by inhibi-
tion of JNK function. A molecular docking predicted that
C66 may target JNK2, which leads to its protective proper-
ties [26]. Therefore, we use JNK2 gene knockout mice to
verify that the protection of C66 on diabetes-induced
aortic damage is associated with inhibition of JNK2.
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2. Material and Methods

2.1. Animals. ]NK27'~ and wild-type (WT) male mice on
B6.129S2-Mapk9tm1Flv/] genetic background, 6-8 weeks of
age, were purchased from the Jackson Laboratory (Bar
Harbor, ME, USA). Animals were housed in the Animal
Center of Jilin University at a constant room temperature
with a 12:12 light-dark cycle. A standard rodent diet and
water were provided. All animals were acclimatized to the
environment for 1 week before being used. Type 1 diabetic
mouse model was established by intraperitoneal injection of
STZ ((Sigma-Aldrich, St. Louis, MO, USA), dissolved in
0.1 M sodium citrate buffer (pH4.5)) at 150 mg/kg, while
the control animals received the same volume of sodium cit-
rate buffer. Three days after STZ injection, the blood glucose
was tested by a glucometer, and the blood glucose
levels > 250 mg/dl were considered as diabetic (DM). Then,
both diabetic WT mice and JNK2~“mice were randomly
divided into two groups: WT DM (n =8) and C66-treated
WT DM (WT DM +C66, n=8) and JNK27/~ DM (1 =8)
and C66-treated JNK27~ DM (JNK27"DM +C66, n = 8).
The age-matched control WT and JNK2~/~ mice were also
randomly divided into two groups, respectively: WT (n = 8)
and C66-treated WT (WT +C66, n =8) and INK2™/~ (n =8)
and C66-treated JNK2™'~ (JNK27/~+ C66, n = 8). In the four
C66-treated groups, mice were orally administered C66 at
5mg/kg once a day in alternating days for 3 months, while
the four matched groups were given 1% CMC-Na solution
alone according to the same schedule.

2.2. Aorta Preparation and Histology Staining. Animals
were executed after anesthesia, and the thoracic aortas
were isolated. Aortic tissues were fixed in 4% paraformal-
dehyde for more than 24h, and then they were dehydrated
and paraffin-embedded. The fixed tissues were cut into
4um thick sections for Masson’s trichrome staining and
immunohistochemical staining.

For immunohistochemical staining, the tissue slices were
deparaffinized by dimethylbenzene, dehydrated by graded
ethanol, and then microwaved for 10 min in 1% PBS buffer
(pH 7.4, Sangon Biotech Inc., Shanghai, China) for antigen
retrieval. When the tissue slices were cooled at room temper-
ature, they were washed with 1% PBS three times and infil-
trated with 0.1% Triton X-100 for 15 min. In order to block
endogenous peroxidase, all tissue slices were incubated with
3% hydrogen peroxide for 10 min in the dark. The tissue
slices were incubated with 10% goat serum for 60 min at
37°C and then with primary antibodies (anti-MCP-1 1:250,
anti-TNF-a 1:300, anti-CTGF 1:150, anti-TGF-f1 1:200,
anti-HO-1 1:150, and anti-SOD-1 1:50 (Abcam Inc.,
America)) at 4°C overnight. Thereafter, all sections were
incubated with secondary antibodies (HRP-labeled goat
anti-rabbit IgG (H+L) 1:400 or HRP-labeled goat anti-
mouse IgG (H+L) 1:400 (Beyotime Inc., Shanghai, China))
for 40 min at 37°C and then stained with DAB.

For immunofluorescent staining, after antigen retrieval
and 0.1% Triton X-100 infiltration, primary antibody
anti-Nrf2 was used at 4°C overnight. Thereafter, all sec-
tions were incubated with secondary antibody (Cy3-labeled
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TaBLE 1: Primer sequences for real-time quantitative PCR.

Reverse primer

Gene Forward primer

CTGF GGGCCTCTTCTGCGATTTC
TGF-f1 CTCCCGTGGCTTCTAGTGC
MCP-1 TTAAAAACCTGGATCGGAACCAA
TNF-a CCCTCACACTCAGATCATCTTCT
HO-1 AAGCCGAGAATGCTGAGTTCA
SOD-1 AACCAGTTGTGTTGTCAGGAC
Nrf2 CTTTAGTCAGCGACAGAAGGAC

ATCCAGGCAAGTGCATTGGTA
GCCTTAGTTTGGACAGGATCTG
GCATTAGCTTCAGATTTACGGGT
GCTACGACGTGGGCTACAG
GCCGTGTAGATATGGTACAAGGA
CCACCATGTTTCTTAGAGTGAGG
AGGCATCTTGTTTGGGAATGTG

goat anti-rabbit IgG (H+L) (Beyotime Inc., Shanghai,
China)) for 40min at 37°C and then stained with DAPIL
A negative control was performed just by incubating with
secondary antibody.

2.3. Terminal Deoxynucleotidyl Transferase-Mediated dUTP
Nick End Labelling (TUNEL) Staining. TUNEL staining was
performed with formalin-fixed and paraffin-embedded sec-
tions using TUNEL staining kit (DeadEnd™ Colorimetric
TUNEL System, Promega Inc., USA) according to the manu-
facturer’s instructions. Positively stained apoptosis cells were
counted in at least five random microscopic fields for each
slice. Each group had five slices. Cells with TUNEL-positive
nuclei were counted under high magnification 400x. The
results were presented as TUNEL-positive nuclei per 100
vascular cell nuclei.

2.4. Quantitative Real-Time PCR (qRT-PCR). Total RNA was
extracted from aortic tissues using the AxyPrep™ multi-
source total RNA kit (Axygen Scientific Inc.). RNA was
reverse transcribed to cDNA using the TransScript All-in-
One First-Strand cDNA Synthesis SuperMix (Transgen
Biotech Inc., Beijing, China). Real-time quantitative RT-
PCR analysis was carried out using the TransStart Top Green
qPCR SuperMix (Transgen Biotech Inc., Beijing, China) and
the ABI 7300 Real-Time qPCR System. The primers of CTGF,
TGF-p1, MCP-1, TNF-a, HO-1, SOD-1, and Nrf2 were syn-
thesized by Sangon Biotech (Shanghai, China), and the
sequences are listed in Table 1. Data were expressed as num-
ber of fold increase compared with levels measured in controls
by using the AA®* method and -actin as a reference gene.

2.5. Statistical Analysis. Variation between different groups
was analyzed by one-way analysis of variance (ANOVA) test
using Tukey test with Origin 8.0 Lab data analysis. Statistical
significance was considered if P < 0.05.

3. Results

3.1. Either JNK2 Deletion or C66 Treatment Can Attenuate
Diabetes-Induced Aortic Fibrosis. At the end of the experi-
ment, the collagen accumulation in tunica media of the aor-
tas was examined by Masson staining (Figure 1). The results
showed that C66 treatment or JNK2 deletion can signifi-
cantly reverse collagen accumulation in the aortas in diabetic

mice. However, there was no significant difference between
the DM group and DM +C66 group in JNK2™'~ mice.

Immunohistochemical stain was used to evaluate the
expression of profibrotic mediators, CTGF (Figure 2(a))
and TGF-f31 (Figure 2(d)) in aortic tunica media. Supple-
mentation with C66 or deletion of JNK2 obviously pre-
vented these fibrotic responses in the aortas of diabetic
mice (the WT DM +C66 group and JNK2™/~ DM group)
(Figures 2(b) and 2(e)). Similarly, C66 has not shown its
further effect in JNK2™~ DM mice. We also used qPCR to
evaluate the mRNA levels of CTGF (Figure 2(c)) and
TGF-p1 (Figure 2(f)). The results were consistent with the
immunohistochemical stain.

3.2. Either NK2 Deletion or C66 Treatment Can Attenuate
Diabetes-Induced Aortic Cell Apoptosis. We used the TUNEL
assay to analyze apoptosis of aortic cells (Figure 3(a)). The
results showed that diabetes-induced increased apoptosis
can be significantly reversed by C66 treatment or JNK2
deletion, but C66 seemed to have no effect on JNK2 deletion
diabetic mice (Figure 3(b)). Similar result was also found in
the mRNA expression of apoptosis-related protein caspase-3
(Figure 3(c)) via qPCR.

3.3. Either JNK2 Deletion or C66 Treatment Can Attenuate
Diabetes-Induced Aortic Inflammation and Oxidative Stress.
On account of the fact that both inflammation and oxidative
damage are primary risk factors for the vascular endothelial
remodeling, the expression of TNF-a (Figure 4(a)) and
MCP-1 (Figure 4(d)) was examined with immunohistochem-
ical staining, which showed a significant increase in aortic
tunica media of diabetic mice, an effect that was completely
prevented by C66 treatment or JNK2 deletion. Additionally,
C66 was found to have no special effects on these inflamma-
tory factors in JNK2™'~ DM mice (Figures 4(b) and 4(e)).
The results of qPCR of TNF-«a (Figure 4(c)) and MCP-1
(Figure 4(f)) were consistent with immunohistochemical
staining.

Considering that inflammation and oxidative stress
are reciprocal cause and outcomes, 3-NT (Figure 5(a))
and 4-HNE (Figure 5(b)) were examined by immunohisto-
chemical staining to evaluate oxidative and nitrative damage.
The elevation of 3-NT and 4-HNE in the diabetic aorta can
be significantly decreased by C66 or JNK2 deletion. However,
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FIGURE 1: The accumulation of collagen was detected by Masson staining. 7 = 8; *P < 0.05 DM vs. corresponding control group; P < 0.05
DM + C66 vs. corresponding DM; *P < 0.05 JNK2 ™~ mice vs. corresponding WT mice. DM: diabetes mellitus.

C66 had no significant effect on 3-NT and 4-HNE in the
aorta of JNK2™/~ diabetic mice.

3.4. The Expressions of Nrf2 and Its Downstream Genes. Oxi-
dative stress has been extensively considered as a crucial
mediator for various cardiovascular complications of diabetic
patients. We assumed that the above pathological changes in
the aortas of diabetic mice may predominantly attribute to
the increased oxidative stress. The protective effect of C66
on diabetes-induced aortic pathogenesis may be mediated
by upregulation of endogenous antioxidants. Our previous
study showed that C66 can upregulate the expression of
Nrf2 in diabetic mice [25]. In our present study, immunoflu-
orescent staining showed that diabetics have slightly
increased expression and nuclear translocation of Nrf2,
which can be significantly increased by C66 treatment or
JNK2 deletion (Figures 6(a), 6(b), and 6(d)). However, C66
treatment had no extra effect on Nrf2 expression in JNK2™/~
DM mice. The mRNA level of Nrf2 was consistent with
immunofluorescent staining (Figure 6(c)).

The Nrf2 downstream genes SOD-1 (Figures 7(a)-7(c))
and HO-1 (Figures 7(d)-7(f)) were also evaluated by immu-
nohistochemical staining and qPCR. The results were consis-
tent with Nrf2.

4. Discussion

We have provided the first evidence to show the significant
protective effect of C66 on diabetes-induced aortic damage.
In STZ-induced WT diabetic mice, significant increase in
aortic oxidative damage, inflammation, apoptosis, and fibro-
sis has been found. All these pathogenic changes were obvi-
ously decreased by C66 treatment or JNK2 deletion. We

also demonstrated that in the JNK2 deletion DM mice, the
protective effect of C66 in the aorta cannot be revealed. These
results suggest that C66 prevents diabetes-induced patho-
genic changes in the aorta via inhibition of JNK2 function.

Inflammation plays a critical role in the development of
diabetes and its complications. Chronic inflammation
induces oxidative stress, apoptosis, endothelial dysfunction,
and fibrosis, all of which contribute to tissue damage and
the formation of new vascular structures [12, 25]. In our
study, we showed the increased expressions of TNF-«a and
MCP-1 (Figure 4), as inflammation markers, in the aorta of
the WT DM group, which was accompanied with increased
expressions of markers of aortic fibrosis (CTGF, TGF-f51)
(Figure 2), apoptosis (caspase-3) (Figure 3), and oxidative
stress (3-NT, 4-HNE) (Figure 5) in the WT DM group. Either
C66 treatment or JNK2 deletion can eliminate these
increased expressions of markers in the aortas of diabetic
mice. And C66 treatment was found no further effect on
the JNK2™~ DM group suggesting that the protection of
C66 may target on JNK2 inhibition.

JNK, as a member of the mitogen-activated protein
kinase family, regulates various cell stress responses, includ-
ing inflammatory responses, oxidative stress, cell death, cell
survival, and proteins expression [27]. In diabetes, obvious
and sustained JNK activation is observed in different tissues
[23, 25, 28, 29]. Thus, deregulating the activation of JNK is
a potent therapeutic strategy for diabetes. Curcumin has
shown to protect cardiovascular diseases via inhibition of
JNK [30, 31]. In the previous studies from our team, C66,
as a novel curcumin analogue, has also been revealed signifi-
cant effect on inhibition of JNK [23, 25]. Moreover, Pan et al.
have reported that C66 exhibits a high JNK2-binding affinity
in a molecular docking, which leads to its anti-inflammatory
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FIGURE 3: Protective effect of C66 or JNK2 deletion on diabetes-induced aortic apoptosis. The apoptotic cell was examined by TUNEL
staining (a, b); the expression of caspase-3 mRNA (c) reflects the apoptotic level. n=8; *P <0.05 DM vs. corresponding control group;
&P <0.05 DM + C66 vs. corresponding DM; “P < 0.05 JNK2™~ mice vs. corresponding WT mice. DM: diabetes mellitus.

actions [26]. In our present study, we have demonstrated that
JNK2 deletion indeed alleviated diabetes-induced aortic
inflammation, oxidative stress, apoptosis, and fibrosis, but
there was no obvious effect in the JNK2™/~ diabetic mice
aorta after C66 treatment. These results suggest that the pro-
tection of C66 on diabetes-induced aortic damage may
depend on JNK2 suppression.

Oxidative stress is involved in the pathogenesis of
diabetes-induced cardiovascular changes, and hyperglycemia
is the causal link between diabetes and increased oxidative
stress [32, 33]. Excessive ROS generation has been identified
as an initial pathogenic factor of diabetic aortic damage.
Hence, enhanced endogenous antioxidative capacity has
been considered effective in attenuating these damages.
Nrf2 regulates multiple adaptive responses to oxidative stress
and is also involved in cell migration, proliferation,

apoptosis, and differentiation [34]. And Nrf2 has been shown
therapeutic effects in diabetic complications by contributing
to the inducible expression of antioxidant enzymes. Nrf2
silencing has been verified to inhibit the migration, prolifer-
ation, and secretion of endothelial progenitor cells, but
increases oxidative stress and cell senescence [35]. Further-
more, overexpression of Nrf2 inhibits ROS and inflammatory
cytokine expression in the high glucose-cultured endothelial
progenitor cells [36]. As a downstream factor of JNK, we
speculated that Nrf2 may involve in the C66 protection.
Here, we verified that diabetes can slightly increase Nrf2
expression and function, which were reflected by HO-1 and
SOD-1. It is suggested that at certain early stages, Nrf2 acts
as a protective mechanism attempting to protect the tissue,
which was consistent with our previous research [25]. In
the present study, a mild increase in Nrf2 expression and
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function may remain not enough to compensate the severe
damage induced by diabetes. Either C66 treatment or JNK2
deletion effectively increased Nrf2 expression and function
(Figures 6 and 7). However, the JNK2™~ DM + C66 group
has not shown significant increase of Nrf2 expression and
its function, compared with the JNK2™'~ DM group. It indi-
cated that JNK2 may be the key factor that regulates Nrf2
and its function in the protection of C66.

In conclusion, we have investigated that the protective
effect of C66 in the diabetic aorta mainly depends on JNK2
inactivation. Either C66 treatment or JNK2 deletion can
reverse and/or prevent the progression of diabetes-induced
aortic inflammation, oxidative damage, apoptosis, and fibro-
sis. Mechanism responsible for this protective effect of C66 is
mediated by inhibition of JNK2 that may be related to upreg-
ulation of Nrf2 expression and function.
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