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Abstract: Denture-related Candida stomatitis, which has been described clinically in the literature,
is either localized or generalized inflammation of the oral mucosa in connection with a removable
prosthesis. During this inflammatory process, the mycobacterial biofilm and the host’s immune
response play an essential role. Among microorganisms of this mixed biofilm, the Candida species
proliferates easily and changes from a commensal to an opportunistic pathogen. In this situation,
the relationship between the Candida spp. and the host is influenced by the presence of the denture
and conditioned both by the immune response and the oral microbiota. Specifically, this fungus is
able to hijack the innate immune system of its host to cause infection. Additionally, older edentu-
lous wearers of dentures may experience an imbalanced and decreased oral microbiome diversity.
Under these conditions, the immune deficiency of these aging patients often promotes the spread of
commensals and pathogens. The present narrative review aimed to analyze the innate and adaptive
immune responses of patients with denture stomatitis and more particularly the involvement of
Candida albicans sp. associated with this pathology.

Keywords: Candida spp.; dental plaque biofilm; denture-related Candida stomatitis; inflammation;
mucosal immunity; aging; receptors; Ig A

1. Introduction

Between 15% and 70% of denture wearers have Candida stomatitis related to their
removable prosthesis [1]. The prevalence of this pathology is preponderant among hos-
pitalized elderly people [2], smokers [3], and people with associated affections such as
diabetes [4]. This disease also called “denture-related Candida stomatitis” (DRCS), and
is considered an infectious inflammation, different from sterile inflammation, character-
ized by mechanical denture stress [5] and an imbalance of the oral microbial flora or
dysbiosis [6]. Denture wearers have a less diverse oral microbiome than dentate patients.
This is simultaneously reflected in the abundance of opportunistic commensals such as
C. albicans and the proliferation of bacterial species revealed by next-generation sequencing
(NGS) [7,8]. Moreover, C. albicans can penetrate the resin, thereby constituting a microbial
reservoir [9,10].

Under these conditions, the presence of a removable prosthesis within the oral cavity,
particularly in immunocompromised older individuals, causes environmental modifica-
tions, favoring the colonization and transformation of the pathobiont C. albicans from the
yeast stage to the hyphal form characteristic of fungal pathogenesis [11]. This reversible
transformation of Candida morphology is favored by several environmental parameters
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characteristic of the buccal cavity, such as temperature (>36 ◦C), pH acidity, access to
nutrients (iron, glucose), the presence of serum, and high levels of CO2 [12].

Furthermore, in the presence of infection, if C. albicans passes into the bloodstream,
several organs such as the kidneys, liver, and spleen may be affected [13]. In addition,
C. albicans infection may contribute to the process of carcinogenesis, so a possible correlation
between Candida infection and potentially precancerous oral diseases such as oral squamous
cell carcinoma has been suggested by several authors [14–16].

The clinical diagnosis is based on the classification of DRCS, also called “histologically
chronic erythematous candidiasis”, which is categorized into three types: Type I is simple
localized inflammation; type II is diffuse edematous erythema; and type III is hyperplastic
papillary granulomatous inflammation of the palatal mucosa [17].

Other associated clinical forms such as angular cheilitis are related to DRCS [18].
Thus, in the presence of denture stomatitis, bacterial and fungal diversity is altered.

Dysbiosis of the oral microbial plaque can lead to a breakdown in the homeostasis of the
complex and dynamic relationship with the host’s immune system [19]. In this mini review,
we analyzed and discussed the host immune response to Candida infection in the oral cavity.

2. DRCS and Bacterial—Fungal Dysbiosis of Oral Microbiota

Poor maintenance of the prosthesis causes accumulation of biofilm, colonizing the den-
ture surface with more than 1011 microorganisms (bacteria, fungi, viruses) per gram of dry
weight [20,21]. During this process, the immune responses of individuals are particularly
refined to control the bacterial and fungal populations of C. albicans and non-albicans (Can-
dida glabrata, Candida tropicalis, Candida krusei, Candida parapsilosis, Candida dubliniensis) [22].
The diversity of oral microbiota decreases and for three quarters of denture wearers, C.
albicans easily proliferates and changes from reversible plasticity (harmless unicellular
form) to pseudohyphae and hyphae that induce mucosal bacterial dysbiosis [23,24]. In
particular, C. albicans colonizes the surface of the mucosa, but preferentially the surface
of the prosthetic base [25]. This is due to the fact that the epithelial cells can discriminate
between commensalism and pathology in the presence of C. albicans.

Additionally, the microbiome in the form of a biofilm promotes cross-kingdom inter-
actions between bacteria and fungi that influence the growth, morphogenesis, and drug
resistance of C. albicans [26]. The prosthesis in the oral cavity creates ecological niches in
which sessile cells of C. albicans have the propensity to form biofilms thanks to their plas-
ticity by adapting to the underlying regulatory network [27]. Candida selects its bacterial
cohabitation; thus, the acidity of its environment is favorable to bacilli (streptococci and
lactobacilli) but unfavorable to the fusobacteria, bacteroidia, and flavobacteria classes that
do not tolerate acidity well [28]. Thus, the theory that several microbes besides Candida
participate in DRCS holds true. Another hypothesis rests on the fact that in the absence of
DRCS, a sufficient immune response maintains the health of the palatal mucosa, despite a
high candidal presence on the surface of the epithelium.

The in vitro confirmation of this relationship is demonstrated by the culture of Candida spp.
alone or in association with bacteria on the surface of the resin prostheses. Candida
cultivated alone does not develop extensively in the form of hyphae, while in associ-
ation with Streptococcus sanguinis, Streptococcus gordonii, Actinomyces odontolyticus, and
Actinomyces viscosus, Candida significantly proliferates in a hyphal form. On the other hand,
if Porphyromonas gingivalis is added to this group of bacteria, there is a decrease in the
virulence of candidiasis leading to a decrease in hyphal production [29,30]. Locally, within
the biofilm the development of hyphae is promoted by the interaction with components
of the bacterial cell wall such as peptidoglycan [31]. Another example of a positive coop-
eration between C. albicans and a bacterium such as Streptococcus oralis was presented by
Xu et al. [32]. This association facilitates the degradation of E-cadherin at the level of the
epithelial junctions and enables the penetration of microorganisms in the mucosa. Similarly,
coaggregation and a mutualistic relationship between C. albicans and Staphylococcus aureus
promote adhesion to both the mucosal and denture surfaces [33]. This synergistic coopera-
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tion between the two microorganisms leads to an increase in their pathogenic potential [34].
Thus, in co-culture, C. albicans and S. aureus produce hydrolytic enzymes (SAP: secreted
aspartyl proteinase) that contribute to proteolytic activity [35].

Interestingly, lactate production by another co-commensal in the oral cavity,
Streptococcus mutans, provides carboxylic acid substrates that are sufficient to promote
C. albicans-mediated alkalinization of the microenvironment [36]. In turn, C. albicans, by
producing a high amount of farnesol, promotes the colonization of S. mutans [37].

Regarding intra-kingdom interactions, there is no consensus on the relationships
between C. albicans and C. glabrata. Some authors lean toward a synergy between the
two fungi [38], while others have not found evidence of any cooperation that could favor
DRCS [39]. C. dubliniensis, which is found in 10% of DRCS cases, is another fungus that is
closely related to C. albicans [40]. This can be explained by the fact that most of these results
do not accurately reflect the complexity of the composition and interactions in vivo within
the oral microbiome.

Another aspect of DRCS concerns the analysis of the proportion of salivary load
between Candida and bacteria in people with removable prostheses. In the study by
Kraneveld et al. [41], the authors found that among 82 patients (aged 60–80 years) wearing a
partially or completely removable prosthesis, 97% tested positive for the internal transcribed
spacer (STI) characteristic of the fungus. These authors demonstrated a decrease in the
diversity of the salivary microbiome with a difference between totally edentulous and
dentate individuals. However, this difference was not correlated with the presence of
Candida [41]. On the contrary, another study, based on the culture of Candida spp., showed
in a population of 123 patients fitted with orthopaedic devices a high candidal population
that can lead to an imbalance of the oral microbiome [23]. Confirmation was provided
by Fujinami et al. in a sample of 18 dentures wearers (mean age, 80.3 years). Based on
measurements of C. albicans DNA concentrations and bacteria by real time PCR, this study
showed the abundance of the genera Streptococcus, Lactobacillus, Rothia, and Corynebacterium
on the surface of removable dentures compared to dental plaque. C. albicans was positively
correlated with these acidogenic bacteria [42]. Nevertheless, the commensal C. albicans can
become a virulent pathogen under certain conditions.

3. Denture Plaque and C. albicans Virulence

During the evolution of cohabitation with humans, the commensal C. albicans has
acquired mechanisms that have given it the ability to hijack the innate immune system [43].
It can adapt to different environmental conditions of its host, express virulence factors,
and thus cause infection. Among these conditions, the presence of a removable prosthesis,
alone or in combination with other local (lack of hygiene, sugar consumption), general
(immunodeficiency), and medicinal (antibiotic intake) parameters favors the colonization
of Candida spp. [44] (Table 1). In the absence of hygiene, the consumption of sugar leads to a
drop in pH causing selective pressure on the microbiome and a decrease in its biodiversity.
This facilitates the growth of Candida spp. [45], which can thus integrate into different oral
niches [46].
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Table 1. The host can detect the invasive form from commensalism to infection by recognizing the
passage from yeast to hyphae. C. albicans has the capacity to adapt its morphology according to
the local conditions of the oral cavity (pH, θ, nutrients). Several forms—cellular, pseudohyphae,
or true hyphae—allow Candida to proliferate and invade tissues. C. albicans can differentiate to
form chlamydospores, enlarged thick-walled cells, under nutrient limitation, low temperature, and
micro aerophilia.

Yeast-To-Hyphae Transition
Chlamydospores

Polymorphism of
C. albicans

Fitness-Design-Plasticity
Dissemination to Invasion Commensalism to Pathogens References

Yeast (white, gray, opaque, 10 µm)
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limitation, low θ
[44–46,51]

The transformation of C. albicans involves different signaling circuits such as glu-
cose accessibility (conditioned by processes such as the cyclic AMP/protein kinase A
(cAMP/PKA) pathway [52] and transcriptional regulation of biofilm formation including
C. albicans on an abiotic surface. The latter process depends on several factors such as
enhanced filamentous growth protein 1 (Efg1), which is a C. albicans gene involved in the
filamentous form [53,54]. Other factors, such as Cph1 (Cyanobacterial Phyto-chrome 1)
and Czf1 (zinc finger cluster transcription factor), promote hyphal development, while
hyphal gene expression is inhibited by transcriptional repressors, including the Hog1 (high
osmolarity glycerol) and Rfg1 (repressor of filamentous growth 1) pathways [55,56].

However, both morphologies, yeast and hyphae, are inseparable from the virulence
phenomenon of C. albicans [57]. Thus, cells in the form of yeasts are readily disseminated,
and hyphal cells are readily penetrated [58]. The potential virulence factors of Candida
in the presence of a removable prosthesis are also related to various mechanisms such as
adhesion, invasion, and production of exotoxins, enzymes, interactions with metabolism,
or factors counteracting the host’s immune defense systems (Figure 1).
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Figure 1. How does the presence of a removable prosthesis promote the virulence of C. albicans?
Thanks to its morphological polymorphism, C. albicans can adapt to the prosthetic environment.
After adhering to biotic and abiotic surfaces, these fungi can invade host cells and cause damage. It
also has a genetic and metabolic potential enabling it to resist prosthetic stress as well as antifungal
treatments. Finally, Candida albicans can evade the innate immune cells of the host. Indeed, C. albicans
as a commensal has developed a resistance to the immune defenses of its host by evading on the one
hand the mechanisms of recognition on its surface and on the other hand the process of phagocytosis
of the macrophage.

3.1. Adhesion of C. Albicans to Prosthetic Abiotic and Epithelial Biotic Surfaces

C. albicans can adhere to epithelial surfaces but also to the prosthetic base as well as
to other eukaryotic and prokaryotic microorganisms of the florid biofilms [59]. Thus, the
cohabitation of eukaryotic and prokaryotic pathogens makes DRCS difficult to treat, as it
requires complex multidrug treatment strategies.

In the presence of these different surfaces, Candida develops hyphae that produce three
family of adhesins [60,61].

The first family of adhesins is the agglutinin-like sequence (Als) genes, the second
family is the hyphal wall proteins (Hwp), and the third is a member of the HYR gene family
that are secreted by hyphae [60–62]. By contrast, yeast wall protein 1 (Ywp1) appears to
promote candidiasis dissemination by opposing the phenomenon of adhesion [63]. On
acrylic prosthetic surfaces, the adhesion of Candida spp. depends on van der Waals and
electrostatic forces. A further hydrophobic attraction between Candida and inert surfaces
can occur under short distances, which favors adhesins processus [64]. This latter parameter
is considered to be an ancient damage-associated molecular pattern (DAMP) that initiates
innate immune responses [65].
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3.2. Candida Invasion Mechanisms

The mechanisms of fungal invasion into epithelial cells start by adhesion of Candida
cell wall proteins Als3 and Sas1 to E- and N-cadherins of epithelial cells, followed by the
invasion pocket of hyphae, which grows and provides virulence factors [66,67].

It is in this invasive form of hyphae that C. albicans activates the three mitogen-activated
protein kinase (MAPK) pathways (namely, p38, JNK, ERK1/2), the nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-B) pathway, and the phosphatidylinositide
3-kinase (PI3K) pathway that trigger the immune reaction [68–71].

3.3. Candida Exotoxin Release and Host Damage

Candida albicans—through the secretion of several hydrolytic enzymes including se-
creted aspartyl protease (SAP), phospholipase, and hemolysin—can attack and degrade
host membranes of mucosal surface cells [72,73].

Furthermore, the extent of cell elongation protein 1 (Ece1p) of C. albicans participates
in the pathology of the oral mucosa by activating innate immunity in vivo. This also
expresses candidalysin, a pore-forming α-helical peptidetoxin that is encoded by the ECE1
gene [67,74,75].

3.4. The Immune Evasion of C. Albicans

Naturally, to limit the proliferation of microorganisms on the surface of the mucosa
and their penetration into the tissues, the host has several means of protection: the epithelial
barrier and its innate and adaptive immune system.

Recognition of C. albicans as commensal precedes the immune response [76]. The
patterns of DRCS are recognized by epithelial cells and cells of the immune system residing
in the tissues (mast cells, macrophages, and dendritic cells) expressing pattern recognition
receptors (PRRs) [77]. These PRRs are the link between the host’s immune responses and
protection against pathogens [78].

However, PRR ligands are produced both by the resident microbiota in healthy patients
and by pathogens. These PRRs, the paradigms of immunology, are the link between
microbial symbionts and their hosts. Before the clinical onset of pathology, PRRs are able
to detect microbial molecules in order to initiate inflammatory responses. From a certain
threshold, the host triggers an innate immune response to C. albicans, and PRRs maintain
communication with the microorganism commensals while participating in a beneficial
cohabitation within the microbiota. However, through PRRs (e.g., Dectin 1 and TLRs), cells
within the oral mucosa can detect pathogen-associated molecular models (PAMPs) that
recognize molecular structures expressed by invading pathogens, for example, β-glucans
or mannans such as the components of the cell wall of C. albicans in the form of yeast and
hyphae [13,79], (Figure 2) and such as lipopolysaccharides (LPS), fimbriae, and bacterial
flagellin [80]. Following the interaction between PRRS and PAMPS, the release of a panel
of cytokines/chemokines and specific proteins will activate adaptive immunity through T
lymphocytes. In turn, these T cells travel to the infected site where they secrete cytokines
to stimulate candidal phagocytosis of macrophages and neutrophils.

In the same way, C. albicans in the denture environment can bypass the host’s defenses
and even resist antifungal treatments [81]. A dynamic balance persists between the host
and the harmless unicellular fungus in healthy individuals. However, the lack of effective
immune surveillance facilitates fungal growth in the form of hyphae [82–85]. The den-
ture promotes an overgrowth of C. albicans and numerous commensal bacterial species.
C. albicans in the form of hyphae crosses the epithelium of the mucosa and enables bacterial
penetration (Figure 3).
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Figure 2. Pathogen-recognition receptors (PRRs) of the epithelial cell recognize different C. albicans
PAMPs (pathogen-associated molecular patterns). Among PAMPS, on the outside of the Candida
we find five layers within the cell wall. The outer layer is composed of C-linked proteins, mainly
mannan (85%). Below is the β-1,6-glucan, the β-1,3-glucan, and the chitin layers. Underneath is a
double layer of phospholipid framed by a membrane protein. PAMPs and mannan can be recognized
by the PRRs of epithelial cells (Dectin-2, DC-SIGN, MINCLE, and TLR2/4/6). PAMPS, β-glucan, and
chitin can be recognized by PRRs (Dectin-1, CR3, and NOD2, TLR4).
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Figure 3. Model of palatal mucosa in the presence of early denture-related Candida stomatitis. The
denture promotes a dysbiosis of the oral microbiome with an overgrowth of C. albicans and numerous
commensal bacterial species. C. albicans in the form of hyphae crosses the epithelium of the mucosa
and enables bacterial penetration. Bacterial species most frequently isolated with Candida albicans
from these specific niches of the oral cavity are Streptococcus spp.: S. gordonii, S. mutans, S. salivaris.
Saliva, moisture, nutrients, hyphal Candida morphotype, and the presence of commensal bacteria
influence the architecture and virulence characteristics of mucosal fungal biofilms.
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4. Innate Immune Responses and Denture-Related Candida Stomatitis

The epithelial cells and immune cells residing in the tissues play the role of “alert”
cells, since they react quickly following the detection of danger [86]. This danger trig-
gers the activation of the cells, which then secrete inflammatory mediators (histamine,
pro-inflammatory cytokines, chemokines, lipid derivatives), themselves responsible for
activating endothelial cells and the initiation of the vascular phase of the inflammatory
response [87] (Figure 4).
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Figure 4. Schematic pathway of an early and late host immune response against the pathobiont
C. albicans during mucosal invasion; early recognition of Candida (morphology of yeast and hyphal
cells) by epithelial cells (neutrophils, macrophages, and dendritic cells) is efficient through pattern
recognition receptors (PRRs), followed by innate and adaptive antifungal response [82].

Cytokines: Tumor necrosis factor alpha (TNFα), Interleukines (IL-1, IL-6, IL -8, IL-
17, IL-22, IL-23, IL-36), granulocyte colony stimulating factor (G-CSF), gamma interferon
(IFN-Υ). Chemokines: RANTES, IL-8, MIP3a; ROS, reactive oxygene species; RNS, reac-
tive nitrogen species; NET, Neutrophil Extracellular Trap; AMPS, Antimicrobial Peptides
substances (β-defensins, cathelicidin (LL-37).

Innate recognition

Early recognition: Under the denture, following the appearance of hyphae and tissue
penetration of C. albicans, the monocytes of oral mucosa (neutrophils, macrophage, and
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dendritic cells) appear in order to react and govern the T cell antigens towards fungal ag-
gression. Mucosal keratinocytes and myeloid cells can identify commensals and pathogens,
via expressing families of pattern recognition receptors (PRRs) classified according to
protein domain homology or the cellular localization:
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4.1. Cytokine Mediators and Denture-Related Candida Stomatitis

It is well established that epithelial cells produce a variety of cytokines in response to
the presence of C. albicans, including granulocyte-macrophage colony-stimulating factors
(GM-CSF, G-CSF), IL-1a, IL-1b, and IL-6, along with the chemokines RANTES, IL-8, and
MIP3a [68,94,95]. It seems that both the capacity and threshold of colonization by Candida
are preponderant. At the salivary level, for prevention, the quantities of cytokine inter-
leukins (IL-6, IL-4), c–c chemokine ligand 3 (CCL-3), and transforming growth factor-beta
(TGF-β) vary upward in aging denture wearers with DRCS [77]. On the other hand, salivary
IL-12 decreases in the same patients [89]. In the same group of aging denture wearers, it
was found that serum cytokines (IL-6, TNF-α, IL-4, IL-10) increased and could prevent the
complications of stomatitis [96–98].

Furthermore, in another in vitro study, IL-18 gene expression was up-regulated dur-
ing mixed-species (bacteria and fungi) infection [99]. This gene corresponding to the
pro-inflammatory cytokine IL-18 influences the activity of monocytes and promotes the
phagocytosis of microbial antigens. In turn, these same stimulated monocytes secrete
specific cytokines such as IL-23 whose quantity increases with the presence of C. albicans
and bacterial LPS [100,101].

A comparative study of the peripheral blood from 20 patients with DRCS and
24 control patients made it possible to highlight lymphocyte profiles by flow cytometry and
to evaluate the production of cytokines by T lymphocytes. No significant difference was
found between the two groups. These authors evoke the hypothesis of the limited capacity
of patients with dentures and older patients to fight against the infection [102]. Gener-
ally, the process of aging clearly influences several factors in the blood (serum IL-4 and
interferon-gamma (IFN-Υ)), independently of the presence or absence of DRCS [77]. Other
authors [103] using enzyme-linked immunosorbent assay (ELISA) did not systematically
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find an association between salivary pro-cytokines (IL-6, IL-8, IL-10, IL-17), intercellular
adhesion molecules ((ICAM-1), TNF-α), DRCS, and patient age.

By contrast, a study of the salivary IL-6 GG genotypes in different clinical classes
of DRCS found a significantly increased expression in Newton classes I and II (p ≤ 0.01)
compared with class III. For these authors, the significant differences in some genotypes
of TNF-α, TGF-β, and IL-6 in DRCS patients can contribute to our understanding of the
host defense [104]. Another point of view expressed by many authors is that DRCS is more
dependent on predisposing factors such as the nightly use of removable prostheses and/or
poor oral hygiene rather than merely on the presence of C. albicans [1,105]. It seems that
the diversity of cytokine receptors depends on the individual response and conditions
including the quantity of cytokines. In the same vein, an interesting study analyzed the
role of Th1-/Th2-type salivary cytokines in the saliva of HIV patients with DRCS. This
study focused on seronegative (HIV) removable denture wearers with and without DRCS
and found no significant differences in the level of Th1/Th2 cytokines between the two
groups. Thus, in this case, the Th salivary cytokines of these seronegative patients do not
directly influence DRCS [106].

More recently, flow cytometry analysis of the cytokines (IL-2, IL-4, IL-6, IL-10, IL-17a
(IFNγ; TNF-α)) of 93 patients with removable dentures, including 42 with DRCS, showed
a significant upsurge in Th1 (IFN-γ, IL-2), Th2 (IL-4), Th17 (IL-17a, IL-22), and Tregs
generated (IL-10) in the the latter group (Figure 4). Candida culture was positive in 48 of the
93 individuals including 29 with DRCS. This latter group had a significantly higher number
of isolated Candida on the intrados of the prosthesis (p = 0.0113). However, a significantly
(p = 0.03) elevated quantity of Candida on the palatal mucosa of DRCS-free patients was also
detected. It therefore seems that an appropriate immune response is triggered in patients
with DRCS, but even in the absence of DRCS, the prosthesis maintains a candidal reservoir.
Thus, in the presence of DRCS, the inflammatory response of the palatine mucosa makes it
possible to combat the increased presence of Candida. However, this response is ineffective
against Candida colonization on the prosthesis [101].

This fact was confirmed through a study with genetic mouse models, which showed
early inflammation of fungal origin outside the influence of immunosuppression. Thus,
in this situation, the host’s type-17 protective immunity remains. This suggests that
persistence of C. albicans in oral mucosal tissues does not directly depend on antifungal
immunity [107]. Additionally, diversity in C. albicans intraspecies can trigger specific,
time-limited responses, allowing them to transition from commensalism to pathogenicity
independently of the host [76].

4.2. Complement System and Denture-Related Candida Stomatitis

In the presence of inflammation (DRCS), lysis via complement is one of the host cell
recognition systems that involves the complement receptor CR2/CR3 of C. albicans [43].
The opsonization of C. albicans involves the C3 complement and C5 activates phagocytosis
by response to pro-inflammatory cytokines of fungi [108–111]. In both class II and class III
DRCS, C3 is not regulated. C3 in combination with integrin α-M/β2 participates in the
adhesion of macrophages and monocytes. However, C. albicans has the ability to bypass the
action of C3 by mimicry of the C3 receptor [112]. On the other hand, this opsonization can
be inhibited by non-specific binding of glucose to lysine residues (glycation) at the active
site of complement C [112,113]. This partly explains why unbalanced diabetes is a risk factor
for DRCS. The fungal wall, due to its polysaccharide constitution, is a powerful activator of
complement via the alternate route (Figure 4) but C. albicans may reduce the involvement of
the complement system in inflammation. This is because C. albicans, by producing proteins
on its surface, can decrease the efficiency of the complement system [114].

4.3. Antimicrobial Peptides (AMP) and Denture-Related Candida Stomatitis

In addition to cytokines and complement, epithelial cells have also been shown to
produce a variety of antimicrobial peptides (AMP) in response to the presence of Candida,
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including β-defensins and cathelicidin (LL-37). Hundreds of AMPS are synthesized by
epithelial cells and lymphocytes [115].

Among the AMPs, only LL37 (the sole member of the human cathelicidin family)
showed a significant increase between a healthy state and DRCS, playing a role in the
modulation of immune and inflammatory pathways [23]. However, AMP-LL37 was present
in partially dentate patients suffering from inflammation (66%), while the healthy group
was predominantly edentulous (95%). One explanation could be that the concentration of
salivary AMP decreases with the loss of natural teeth. LL-37 also modulates the production
of chemokines to promote chemotaxis. Moreover, LL-37 can induce transcription of CXCL8
alone and synergize with TNF-α-mediated expression of this chemokine [116].

4.4. Inflammosome

The inflammosomes participate locally in the host’s innate immune defense against
Candida. They come into play through pathogen-associated molecular models (PAMPs)
and damage-associated molecular models (DAMPs) [117]. The inflammasome NLRP3 (the
nucleotide-binding domain and leucine-rich repeat receptors) is dependent on IL-1β re-
sponses, but also on molecules derived from pathogens such as C. albicans [118,119]. NLRP3
forms an assembly of characteristic proteins within macrophages [93,120]. The fungus
is able to trigger pyroptosis and cell death within a macrophage that has engulfed it, by
activating the NLRP3 inflammasome [92] (Figure 4). In the presence of Candida, activation
by the NLRP3/ASC (apoptosis-associated speck-like protein) inflammasome causes an
exaggerated innate reaction. This has the consequence of causing acute inflammation of the
mucous membrane and promoting the dissipation of candidiasis. Locally, inflammasomes
are essential for the antifungal defense of the host in vivo, but not in the hematopoietic
compartment [121].

5. Denture-Related Candida Stomatitis and Adaptive Immunity

The adaptive immune system has the advantage of inducing immunological memory.
This immune system monitors commensal organisms and reacts to the presence of fungal
dysbiosis [122]. B and T cells are essential in this system: B cells produce antibodies and T
helper (Th) cells support the defense of the mucosal host.

The chronicity of the presence of Candida on the surface of the mucosa increases the
migration of B lymphocytes and IgA [123]. Millet and colleagues hypothesize that the B
lymphocytes residing in the tissues and their antibody responses stabilize the commensal
fungal community residing in the oral cavity. The specific Th17 cells only intervene
in the presence of an overflow of commensals and severe disease. Another possible
side effect in vivo of fungal colonization and an increase in B cells as well as antibody
secretions is the shaping of the microbial community [124]. In the case of DRCS, an immune
response involving T lymphocytes and monocytes has been demonstrated in the presence
of C. albicans fungal antigens [125]. In this condition, the persistence of C. albicans in the oral
cavity promotes the escape of regulatory T cells. However, using a murine model, C. albicans
remains under the control of tissue residual memory (TRM) through Th17 cells [126].

6. Differences in Microbiology, Proteomics, and Biomarkers between DRCS Classes I,
II, and III
6.1. Candida Species and Denture-Related Candida Stomatitis

Older studies and recent research show the participation of Candida spp. during the
pathogenicity of DRCS [1,6]; however, there are differences between the three clinical classes
of Newton. From 82 patients with DRCS, a total of 113 Candida spp. isolates were obtained.
Based on Newton’s classification, this research shows that candidal species mixing leads
to increased susceptibility to Newton type III DRCS, while type I presents isolates in
which C. albicans dominates [19]. Recently, other authors did not find any significant
difference between Candida counts on the surface of the palatal mucosa between two groups
of 82 patients aged 20–85 years with and without DRCS [127]. Another investigation
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involving DRCS type II and III groups showed that 40% of the Candida proteins were from
C. glabrata. Thus, a positive synergy has been suggested between C. glabrata and C. albicans
in the pathogenesis of DRCS [33,128]. Consequently, the hypothesis was put forward
that proteins from C. glabrata can influence the expression of inflammatory factors from
C. albicans. The simultaneous reduction in C. albicans and C. glabrata offers a therapeutic
possibility to fight DRCS [129]. The confirmation of these findings comes from a statistical
analysis of the microbiological data from different types of Newton classes, showing that
the presence of yeasts on the prostheses is increased from type I to type III, with extensive
inflammation seen in Newton type III [130].

More recently, a study of 36 denture patients with stomatitis demonstrated the in-
volvement of non-albicans Candida. Thus, C. parapsilosis and/or C. tropicalis were found,
particularly, both on the prosthetic base and on the surface of the palatal mucosa [131]. The
reliability of these results is called into question, on the one hand, because of the small size
of the samples studied, not considering the influence of other microorganisms of the micro-
biota and, on the other hand, the multifactorial etiology of in vivo DRCS-related factors.

6.2. Proteomic Analysis of Saliva Reflects the Clinical Aspect of DRCS

Salivary proteins originating from salivary glands may predispose patients to DRCS
by enhancing the survival of Candida or the formation of biofilm. Mucosal/epithelial-
originated proteins may be a result of tissue damage due to the DRCS condition. Im-
munoglobulins (Igs), the major group of proteins identified, suggest the role of B-cell-
mediated immunity, especially in type II DRCS.

DRCS types II and III are found to be similar in terms of human proteins. However,
type III DRCS is characterized by a higher level of proteins derived from serum, such as
ceruloplasmin, hemoglobins, serotransferrin, and albumin.

By contrast, DRCS type II exhibits high levels of immunoglobulin fragments compared
with DRCS type III. This suggests an obvious vascular participation in the presence of
DRCS type III. In the absence of DRCS, therefore, the innate immunity proteins appear to
be sufficient to protect patients. Beyond a certain threshold, the presence of a high level
of immunogloblins reveals an acute inflammatory response clinically diagnosed by the
presence of DRCS type II, while serum proteins signify a chronic response in DRCS type III.
The detection and analysis of these different proteins can help in the diagnosis and therapy
of DRCS [129].

6.3. Markers of Denture-Related Candida Stomatitis

Most of the fungi of the oral cavity remain opportunistic, despite a considerable
pathogenic arsenal. In the healthy host, they are not potent enough to overcome the
normal, non-specific, or specific defense mechanisms. Additionally, the search for specific
biomarkers of DRCS has proved difficult. Two proteins, including cystatin C and cystatin
SN, are upregulated in the presence of prosthetic stomatitis of types II and III, whereas
carbonic anhydrase 6 (CAH6) decreases.

CAH6 promotes bacterial growth, and it is also a salivary marker not specific to
DRCS [130]. Other studies found that only 13 peptide masses are downregulated in DRCS
compared with non-DRCS controls [132,133]. The increased detection of the cystatin C
gene (CYTC) in the presence of Candida in association with DRCS constitutes a marker
of the inflammatory response. Immunoglobulins have been detected, particularly in the
presence of DRCS type III, which translates to a B cell immune response mediated by
inflammation [129].

7. Saliva and Humoral Immune System

Saliva participates in the humoral immune system; it contains IgAs and macro-
molecules that can limit microbial growth (antimicrobial peptides) [134]. Salivary IgAs
come from plasma cells in the salivary glands [135,136]. IgAs are the proteins of the mucosal
immune system, the most sensitive and reactive with respect to the load of commensal
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microorganisms [137]. The IgA–Candida interaction attenuates the innate response by
neutralizing the adhesion of fungi to the epithelial surface. An in vivo study argued that
the crosslinking of pathogens mediated by IgA neutralizes the growth of organisms by
preventing their separation after division [138]. IgA binding with C. albicans decreases
secretions of CXCL8/IL-8, IL-1A, and IL-1B mediators while CCL20 is unaffected. Thus,
the interaction of C. albicans with IgA attenuates the epithelial response (pro-inflammatory).
On the other hand, additionally, in response to immune initiation of IgA, B lymphocytes
migrate to the site colonized by the antigen [139].

This secretory IgA prevents and neutralizes the penetration of microorganisms into
the epithelium [140]. In the presence of dysbiosis of the oral microbiota, in association with
persistent colonization of C. albicans, the host can develop an adaptive response notably
through the production of IgA. As a result, B lymphocytes within the oral cavity fight
against fungal dysbiosis by participating in the maintenance of the commensal balance of
C. albicans [123].

Thus, C. albicans in the commensal state does not induce an acute inflammatory re-
sponse [76]. The secretory IgA antibody released by B cells constitutes the first line of
protection against the surface antigen in relation to the innate and adaptive immunity
of the host [141,142]. IgA of mucosal origin also controls the composition, both quantita-
tive and qualitative, of commensal bacteria [143]. Regarding commensal C. albicans, its
persistence stimulates the accumulation of B lymphocytes and plasma cells on the sites
of fungal colonization [144,145], while recognition of fungi elicits an acute inflammatory
response [88,146]. Hence, the hypothesis that IgA is a link between innate and adaptive
immunity is advanced by some authors [142].

8. Neutrophils and Denture-Related Candida Stomatitis

The denture constitutes an “artificial stimulus,” which causes involuntary and per-
petual activation of neutrophils [40]. In the case of older patients, Candida exacerbates the
decreased function of the neutrophils [97]. In other words, the defense mechanisms induced
by neutrophils depend on the individual predispositions to DRCS [96,97] (Figure 5). The
possible cytotoxic effect of C. albicans on the survival of neutrophils and on their number
has already been suggested by several authors [147,148]. However, the proliferation of oral
polymorphonuclear neutrophils (PMNs) can have both negative and positive impacts on
the integrity of the oral mucosa. Neutrophils react to interleukin chemokines produced by
the activated epithelial cells and macrophages, such as IL-1α, IL-β, IL-8, IL-17, IL-22, IL-36,
G-CSF, and β-defensin, after which migration to the Candida-infected mucosa occurs [149].
On the other hand, by releasing their potent mediators into the extracellular environment,
PMNs can cause an imbalance in the oral microbiota [150].

Blood granulocytes from older individuals with or without DRCS had a reduced
expression of surface markers, CXCR1, cell adhesion molecules, and CD62L (L. selectin).
The corresponding integrin CD11b (adhesion molecule), CD62L (cell activity marker), and
surface markers indicative of priming are altered as the neutrophils extravasate, which
might impair chemotaxis and diapedesis of such cells [40]. Thus, the altered surface density
of CD11b and CD62L can be caused by an ex vivo stimulus of blood neutrophils by the
pro-inflammatory cytokine TNF [151].

Immunosenescence changes the phenotype neutrophils from the bloodstream as well
as those entering the tissues. These modifications coupled with dysbiosis of the oral
microbiota will promote DRCS [97,152,153]. DRCS neutrophils are not fully primed by the
process of extravasion, but are more affected by the local inflammatory environment of the
DRCS. Local salivary neutrophils can be more easily initiated than blood neutrophils, while
the latter can still be initiated by TNF. The phenotype of these neutrophils is not unlike
that of neutrophils in synovial fluid in the presence of arthritis, which may be initiated
by TNF [154]. The potential of salivary neutrophils is initiated by local cytokines, which
represents an important defense mechanism of the host against C. albicans. Indeed, the
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simple extravasion of neutrophils from systemic blood is not sufficient to respond to the
inflammation of DRCS.
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Figure 5. Under a removable prosthesis, the palatal mucosa can react by the appearance of signals,
such as molecular models associated with damage (DAMP) and to damage cells or molecular models
associated with pathogens (PAMPs). These surface signals alert different cells of the host deep down,
which causes the activation of neutrophils. On the left (A), in the absence of C. albicans, salivary
and tissue IgA regulate local immunity. These igAs participate in the homeostasis of the microbiota
by binding to native bacteria. On the right (B), the presence of commensal C. albicans promotes the
migration of mature B cells, plasmablasts, and plasma cells through the mucosa. IgA by binding to
C. albicans decreases adhesion and slows down fungal colonization. Thus, the IgA will decrease the
intensity of the pro-inflammatory response.

Host Comorbidity and DRCS

The immune system allows the host to protect itself against a candidal attack. As a
result, each patient using a removable denture presents a genetic specificity and, par-
ticularly in older people, a state of comorbidity likely to influence the occurrence of
DRCS [155]. Thus, several pathologies and their treatments can increase a patient’s ex-
posure to C. albicans infection [156]. Frequently the atrophic aspect of denture stomatitis
appears to be related to a general pathology such as diabetes and hypertension [157].

Many other general pathologies favor the increase of C. albicans in the oral cavity:
HIV/AIDS [158], cancer treatments [159], dental caries [160], and oral lesions (ulcerations,
nodules, or granulomas) [161]. In these patients, the presence of a removable denture
creates new niches for microbial colonization. On the other hand, the deficient immune
function will promote the proliferation of Candida (C. albicans in 70%–80 % of cases), leading
to oropharyngeal candidiasis in immunocompromised people [162]. Thus, the general
diseases of the patient can interfere with wearing the removable prosthesis and taking
medication can disrupt salivary secretion [124,163]. Several investigations, both in vivo
and in vitro, have advanced the hypothesis that inflammation in DRCS is closely linked to
the risks of comorbidity in relation to vascular function [164].

9. Conclusions

The pathology of DRCS is closely linked to the relationship between innate and
adaptive host immunity. Beyond a certain threshold, yeast control depends mainly on the
innate response, and the adaptive response then tends to limit mucosal damage. At this
stage, host genetics may influence the immunopathology of DRCS. However, improving
the management of patients with DRCS requires a better in vivo understanding of the
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transition between innate and adaptive immunities with candidal species. Ideally, in
the presence of a removable prosthesis, the wearer’s immune system must contain the
Candida invasion, while tolerating the cohabitation of different microbial commensals.
Under these conditions, the local oral ecology and several general pathologies influence
the diversity and quantity of the denture plaque. The epithelial cells of the oral mucosa in
contact with the prosthesis present pattern recognition receptors (PRRs) that enable them
to detect pathogen-associated molecular models (PAMPs), in particular several elements
of the candidal envelope and bacterial components. This results in an inflammatory
reaction that can trigger an immune response through pro-inflammatory and antimicrobial
signaling pathways. Several systems allow the oral microbiome to influence host defenses.
Thus, between the bacteria colonizing the surface of the oral mucosa, there is a constant
confrontation aimed at eliminating certain organisms [165]. This phenomenon makes it
possible to be protected against candidal invasion. However, in the presence of DRCS,
colonization and penetration of a fungal load inside the prosthetic resin occur easily,
without opposition. This fungal reservoir thus constituted partly explains the chronicity
and aggravation of DRCS. Particularly for patients at risk (immunocompromised, older
individuals), prevention remains the only way to control denture stomatitis. Furthermore,
the fight against fungal and bacterial colonization followed by maturation of the denture
biofilm involves periodic and topographical maintenance of the biotic mucosa and abiotic
denture surfaces.
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