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Abstract: An effective approach for assessing a drug’s potential to induce autoimmune diseases
(ADs) is needed in drug development. Here, we aim to develop a workflow to examine the associa-
tion between structural alerts and drugs-induced ADs to improve toxicological prescreening tools.
Considering reactive metabolite (RM) formation as a well-documented mechanism for drug-induced
ADs, we investigated whether the presence of certain RM-related structural alerts was predictive for
the risk of drug-induced AD. We constructed a database containing 171 RM-related structural alerts,
generated a dataset of 407 AD- and non-AD-associated drugs, and performed statistical analysis.
The nitrogen-containing benzene substituent alerts were found to be significantly associated with
the risk of drug-induced ADs (odds ratio = 2.95, p = 0.0036). Furthermore, we developed a machine-
learning-based predictive model by using daily dose and nitrogen-containing benzene substituent
alerts as the top inputs and achieved the predictive performance of area under curve (AUC) of 70%.
Additionally, we confirmed the reactivity of the nitrogen-containing benzene substituent aniline and
related metabolites using quantum chemistry analysis and explored the underlying mechanisms.
These identified structural alerts could be helpful in identifying drug candidates that carry a potential
risk of drug-induced ADs to improve their safety profiles.

Keywords: drug-induced autoimmune diseases; structural alerts; machine learning; quantum chemistry

1. Introduction

Autoimmune disease (AD) is a clinical condition that occurs when the immune system
mistakenly attacks one’s own normal cells. More than 100 types of autoimmune diseases
have been identified, affecting about 7–9% of the population [1], who are mostly female.
The annual medical cost of treating ADs in the United States (U.S.) healthcare system was
estimated to be greater than USD 100 billion [2].

ADs often are triggered by environmental stimuli in susceptible individuals with
genetic predisposition [1,2]. Drugs are known to account for a significant subset of common
clinical ADs. For example, 10% of lupus erythematosus cases and 12–17% of autoimmune
hepatitis cases were estimated to be caused by drugs [3,4]. Notably, recent reports suggested
that ADs are common conditions following COVID-19, which could be attributable to the
acute respiratory distress syndrome or medical treatment [5,6]. The latency of drug-induced
ADs can be months or even years [7] and sometimes leads to serious or fatal outcomes.
Some drugs, such as nitrofurantoin, minocycline, and methyldopa, are frequently identified
as causes of drug-induced ADs [8,9]; however, no effective approach exists for assessing
the capability of drugs to induce ADs.

Reactive metabolite formation is a well-documented underlying mechanism for drug-
induced ADs [10,11]. Cytochrome P450 enzymes are not only sources but also targets of
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reactive metabolites, and the covalent binding of drug metabolism enzymes may result in
neoantigen formation, triggering an autoimmune response [12]. A compound’s potential
to form toxic reactive metabolites is largely determined by its chemical structure, and some
substructures can serve as structural alerts for high reactivity and drug toxicity [13,14].
Structural alerts provide mechanistic explanations and insights, which in turn can be
used to guide necessary structural changes [15]. These alerts were usually considered as
information suggesting the mode of action, but rather a confident link to toxicity [15,16].
Due to their easy application and interpretation, structural alerts have been used to identify
compounds with certain toxicities, such as carcinogenicity and hepatotoxicity, in drug
development [14,15,17].

Toxicity assessment using in silico approaches has been acceptable to regulatory
authorities as complementary information to conventional animal studies for decision
making [15,17–19]. Guidance documents have been published to specify the incorporation
of in silico research on genotoxicity of drug impurities by regulatory agencies including
the FDA and the European Medicines Agency [18,19]. Combined with quantitative struc-
ture activity relationship (QSAR) models and/or chemical biological read-across models,
structural alerts were used in the computational toxicology software MC4PC and MDL-
QSAR. MC4PC mines structural alerts by comparing active and inactive compounds using
a hierarchical statistic and calculating physicochemical descriptors to build local QSAR
models. MDL-QSAR, on the other hand, predicts mutagenicity based on two-dimensional
molecular descriptors including E-state descriptors [20]. These methods have been adopted
and enhanced by the FDA under the Cooperative Research and Development Agreement
between the FDA and industry, for the prediction of carcinogenic activities of drug impuri-
ties [20]. In Europe, structural alerts have been accepted for use under the Registration,
Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation passed by
the European Council and European Parliament [15,21]. The further use of state-of-the-art
artificial intelligence technologies such as machine learning and deep learning in the area
of QSAR modeling has been shown to be promising in predicting drug toxicity [22].

Metabolism of drugs containing certain chemical structures can generate metabolites
that are chemically reactive with hundreds of structural alerts reported [13–15]. However,
not all of these alerts are created equally; although widely accepted in chemical toxicity
assessment, structural alerts are considered overly sensitive in predicting adverse drug
reactions (ADRs) when used as the only predictor [14,16]. It is common that both toxic
and safe drugs contain the same structural alert, which leads to a high false rate of using
structural alerts alone [14]. Thus, it is important to discriminate specific structural alerts that
could robustly signal the risk of toxicity endpoints. For drug-induced ADs, no structural
alerts are reported despite the known correlation between drug-induced immune responses
and reactive metabolites. In this study, we aim to develop a workflow to examine the
association between structural alerts and drugs-induced ADs and improve toxicological
prescreening tools for drug development. A mechanism-driven bioinformatic approach
was used to evaluate 171 published structural alerts for reactive metabolite formation on a
large drug-induced ADs dataset including 407 drugs to identify structural alerts that could
be used to flag the potential risk of drug-induced ADs. By using a daily dose combined
with structural alerts as features, we established a predictive model based on machine
learning to facilitate the risk assessment of drug-induced ADs. The underlying molecular
mechanisms of drug-induced ADs associated with reactive metabolites and the strategies
for mitigating potential toxicity risks in drug development were also discussed.

2. Materials and Methods

We first built a database by collecting published structural alerts for reactive metabo-
lite formation from the literature and generated a dataset containing both drugs with
determined potential to induce ADs (AD-positive) and those not associated with ADs
(AD-negative) (Figure 1). We then performed statistical analyses to identify the associa-
tion between the structural alerts and the risk of drug-induced ADs, and daily dose was
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co-factored to strengthen the relationship. Further, a machine-learning-based predictive
model was established using structural alerts and daily dose as input features. Quantum
chemistry analysis was also used to quantify the reactivity of the example substructure
aniline and its reactive metabolites.
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Figure 1. Study workflow. A dataset of 407 drugs, including 50 positives for drug-induced autoimmune disease (AD) and
357 negatives, was compiled through literature text mining and the FDA’s drug label database. In parallel, a library of
171 structural alerts for reactive metabolite formation was collected from literature. The statistical association between the
reactive metabolite-related structural alerts and drug-induced ADs was analyzed.

2.1. Collection of Drugs Associated or Not Associated with ADs

To test the association of structural alerts with drug-induced Ads, we first examined
the potential of drugs to induce ADs. The text mining software Linguamatics (IQVIA.
Marlborough, MA) was used to conduct a full-text search for the 26 AD-related MedDRA
terms (Supplemental Table S1) in the Drug Label database (https://dailymed.nlm.nih.
gov/dailymed/ (accessed on 20 October 2020)). The most commonly identified ADs
in the Drug Label database are blood-affecting disorders including thrombocytopenia,
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hemolytic anemia, and vasculitis, followed by disorders that affect the skin or other organs
(Supplemental Table S1).

If evidence of ADs could not be found in the drug label, the drug was defined as AD-
negative. Consequently, 588 drugs were not associated with any of the 26 MedDRA terms.
Furthermore, herbal and dietary supplements, biologics, over-the-counter drugs without
daily dose information, topical drugs, and medical imaging reagents were excluded, leaving
357 oral or injected drugs as AD-negative.

For drugs with AD-related terms found in the Drug Label database, we examined
their evidences associated with drug-induced ADs in literature. Thirty-one drugs were
confirmed to have known association with drug-induced ADs, which were summarized in
review articles (Supplemental Table S2), and additional nineteen drugs were found with
evidence of drug-induced ADs reported by multiple institutes from different countries
(Supplemental Table S2). In sum, 50 drugs were determined as AD-positive, supported
by both drug labeling and literature. The final dataset contained 407 drugs, which were
annotated with a simplified molecular-input line-entry system (SMILES) code.

2.2. Development of Structural Alert Database

Since reactive metabolites formation is a common underlying mechanism for drug-
induced ADs [10,11], we assumed that structural alerts established for reactive metabolites
formation could be used to identify AD-related drugs. These were collected from the
literature [13–15] and translated into SMILES arbitrary target specification (SMARTS)
codes. We then constructed a library of 171 structural alerts for drugs likely to generate
reactive metabolites.

2.3. Search the Structural Alerts in Chemical Structures

The SMILES-SMART pattern matching function in Rdkit [23], a Python cheminfor-
matics package, was used to search the structural alert library for drugs containing sub-
structures. The 407 drugs were screened against the library. The AD-positive and -negative
drugs were considered true positives and true negatives for statistical analysis. High daily
dose has been identified as a contributing factor to ADRs [14,16,24], and as was suggested
in the literature, we set the cutoff daily dose to ≥100 mg [17].

2.4. Development of the Predictive Model Using Machine-Learning Approach

Daily dose was included as a categorical feature by using a cutoff of 100 mg/day. Each
drug was labeled as either with a daily dose≥100 mg or <100 mg. The structural alerts were
also used as categorical features. The drugs were labeled as presence of non-presences of a
matched structural alert across all the candidate structural alerts in our library. The resulting
dataset was stratified and split into training (80%, N = 325) and test (20%, N = 82) sets,
which were used to train and evaluate binary classification models generated by CatBoost,
respectively [25,26] (Figure 2A). Grid search was performed for hyperparameter tuning.
For each set of hyperparameters, 5-fold cross-validation was used for evaluating model
performance based on balanced accuracy (i.e., (sensitivity + specificity)/2). Permutation
analysis was conducted to determine whether a model performs at chance [27]. Permutated
datasets (N = 1000) were generated by randomly reshuffling the classification labels (AD-
positive or -negative). The performance of the resulting 1000 models was compared
with models from 1000 repetitions of 5-fold cross-validations with different sampling. A
two-sided t-test was used determine the statistical significance of the difference between
the results obtained from permutated data and original data. Feature importance and
contribution were explored using Shapley additive explanations (SHAP) values [28], which
quantifies the contribution of each feature to the prediction made by the model (Figure 2B).
All analysis was performed using Python programming. The hyperparameters used for
the final CatBoost model are listed in Supplemental Table S3.
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plot showing SHAP values and feature values for top 10 most important features.

2.5. Quantum Chemistry Analysis

The General Atomic and Molecular Electronic Structure System (GAMESS) (version
30 June 2019 R1) software (Iowa State University, Ames, IO, United States) [29] was used to
calculate quantum chemistry properties, e.g., electron density. Input files were prepared by
Avogadro (version 1.2.0) (http://avogadro.cc/ accessed on 27 June 2021) [30]. Geometry
optimizations were performed using a global-hybrid meta-NGA functional (MN15) with
a 6-31+G (d,p) basis set used for density function theory calculations [31]. The solvent
parameter was set to water (pH = 7). Energy levels of the lowest unoccupied molecular
orbital (ELUMO), highest occupied molecular orbital (EHOMO), and the electron density were
used to measure reactive potential for the example substructure aniline and the related
reactive metabolites in our analysis [32]. The ELUMO and EHOMO obtained from quantum
chemistry analysis were used to calculate the global hardness η = (ELUMO − EHOMO)/2,
chemical potential µ = (ELUMO + EHOMO)/2, and electrophilicity indexω = µ2/2η.

3. Results
3.1. Association between AD-Positive/Negative Drugs and Reactive Metabolites-Related
Structural Alerts

To establish the association between structural alerts and a drug’s potential to cause
AD, the library of 171 published reactive metabolites-related structural alerts was used
to screen for N = 50 AD-positive drugs and N = 357 AD-negative drugs (Figure 1). We
highlighted the top 10 structural alerts, which are most frequently contained in the chemical

http://avogadro.cc/
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structures of AD-positive drugs (Table 1). Only one structural alert was found to be
statistically associated with AD-positive drugs (odds ratio = 2.95, p = 0.0036). This structural
alert is a benzene ring with a nitrogen-containing substituent group, which can match to a
series of substructures including aniline, anilide, azobenzene, etc.

Table 1. Ten structural alerts most frequently contained in the chemical structures of autoimmune disease (AD)-positive drugs.

Structural Alerts Description
Number of Matched Drugs

Sensitivity PPV FPR OR p Value
AD-Positive AD-Negative
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a drug, the drug was considered to carry a structural alert for reactive metabolites for-
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risk of drug-induced ADs was observed (p = 0.2903), and the false positive rate was 46% 

(Table 1). 
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benzene ring with
methoxy group-

containing substituent
8 60 16% 12% 17% 0.96 p > 0.9999

All structural alerts
combined 19 166 38% 10% 46% 0.71 p = 0.2903

High daily dose
(≥100 mg) 36 141 72% 20% 39% 3.94 p < 0.0001

As a comparison, we combined all structural alerts; if any of these were matched to a
drug, the drug was considered to carry a structural alert for reactive metabolites formation.
No statistically significant association between combined structural alerts and a risk of
drug-induced ADs was observed (p = 0.2903), and the false positive rate was 46% (Table 1).

3.2. Integration of Structural Alerts with Daily Dose

The use of the nitrogen-containing benzene substituent alert alone still led to a high
false positives rate (i.e., 12%); therefore, we further factored daily dose into the analysis. By
combining this structural alert and daily dose ≥ 100 mg, the false positive rates dropped
significantly, from 12% to 4%, and the positive predictive rate (PPV) increased from 25% to
42% (Tables 1 and 2). In contrast, the sensitivity showed minimal change, as the number
of true positives was much less affected by the daily dose cutoff (≥100 mg) compared to
the number of false positives. Of note, although high daily dose alone was associated with
drug-induced ADs, the false positive rate was high (39%) (Table 1).
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Table 2. Association between substructures matching benzene with nitrogen-containing substituent and drug-induced ADs
after accounting for high daily dose (≥100 mg).

Structural Alerts Description
Number of Matched Drugs

Sensitivity PPV FPR OR p Value
AD-Positive AD-Negative
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drug-induced ADs, the false positive rate was high (39%) (Table 1). 

The nitrogen-containing substituent group can be primary, secondary, or tertiary 

amine. We examined each of these types of substructures and found that primary (odds 

ratio = 22.72, p = 0.0064) and tertiary (odds ratio = 9.81, p = 0.0019) amines, not secondary 

amines (p = 0.1692), were significantly associated with AD-positive drugs when co-factor-

ing with daily dose ≥ 100 mg (Table 2). Furthermore, we separated this structural alert 

into amine and benzene substructures (Table 2). Benzene showed no statistically signifi-

cant association with AD-related drugs (p = 0.8720). Although amines were significantly 

associated with AD-positive drugs (odds ratio = 3.08, p = 0.0004), they exhibited a high 

false positive rate of 39%. Neither benzene nor amine substructures were of good predic-

tive value, which resulted in much higher false positive rates. 

Table 2. Association between substructures matching benzene with nitrogen-containing substituent and drug-induced 

ADs after accounting for high daily dose (≥100 mg). 

Structural Alerts Description 
Number of Matched Drugs 

Sensitivity PPV FPR OR p Value 
AD-Positive AD-Negative 
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dose ≥ 100 mg 

benzene ring with 

nitrogen-containing 

substituent 

10 14 20% 42% 4% 6.13 p = 0.0002 

 +  

daily dose ≥ 100 mg 

benzene ring with 

nitrogen-containing 

substituent (two N-H 

bond) 

3 1 6% 75% 0% 22.72 p = 0.0064 

 +  

daily dose ≥ 100 mg 

benzene ring with 

nitrogen-containing 

substituent (one N-H 

bond) 

3 9 6% 25% 3% 2.47 p = 0.1692 

 +  

daily dose ≥ 100 mg 

benzene ring with 

nitrogen-containing 

substituent (no N-H 

bond) 

5 4 10% 56% 1% 9.81 p = 0.0019 

 +  

daily dose ≥ 100 mg 

nitrogen-containing 

compound 
33 138 66% 19% 39% 3.08 p = 0.0004 

 +  

daily dose ≥ 100 mg 

benzene 25 69 50% 27% 19% 4.17 p = 0.8720 

3.3. Predictive Modeling Based on Structural Alerts and Daily Dose 

Not all the structural alerts contribute equally to the prediction of drug-induced ADs; 

moreover, other contributing factors such as daily dose could also be important. There-

fore, we further developed a machine-learning-based predictive model using structural 

+
daily dose ≥ 100 mg

benzene ring with
nitrogen-containing

substituent
10 14 20% 42% 4% 6.13 p = 0.0002
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The nitrogen-containing substituent group can be primary, secondary, or tertiary
amine. We examined each of these types of substructures and found that primary (odds
ratio = 22.72, p = 0.0064) and tertiary (odds ratio = 9.81, p = 0.0019) amines, not secondary
amines (p = 0.1692), were significantly associated with AD-positive drugs when co-factoring
with daily dose ≥ 100 mg (Table 2). Furthermore, we separated this structural alert into
amine and benzene substructures (Table 2). Benzene showed no statistically significant
association with AD-related drugs (p = 0.8720). Although amines were significantly asso-
ciated with AD-positive drugs (odds ratio = 3.08, p = 0.0004), they exhibited a high false
positive rate of 39%. Neither benzene nor amine substructures were of good predictive
value, which resulted in much higher false positive rates.

3.3. Predictive Modeling Based on Structural Alerts and Daily Dose

Not all the structural alerts contribute equally to the prediction of drug-induced ADs;
moreover, other contributing factors such as daily dose could also be important. Therefore,
we further developed a machine-learning-based predictive model using structural alerts
and daily dose as input features (Figure 2A). After optimization, the final model generated
by CatBoost exhibited excellent performance in predicting AD-negative drugs in the test
set with specificity of 97% and negative predictive value (NPV) of 92%. In contrast, the
prediction of AD-positive drugs was less robust, as the sensitivity was 40%. Overall,
the results obtained from the test set showed a balanced accuracy of 69%, Matthews
correlation coefficient (MCC) of 47%, and AUC of 70% (Supplemental Figure S1). We also
conducted additional permutation test on the training set, and the results showed that the
average balanced accuracy from cross-validations was significantly higher than that from
permutations (61% vs. 50%, p < 0.0001) (Supplemental Figure S2).

Next, we explored the feature importance represented by SHAP values. Intriguingly,
only daily dose and nitrogen-containing benzene substituent alert among the top features
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showed a positive correlation with predicted values, as positive feature values (red) pushed
the model towards positive predicted values (higher SHAP values). This is consistent with
the association analysis (Figure 2B).

3.4. Quantum Chemistry Analysis

We chose substructure aniline as the abovementioned structural alert, a benzene
ring with a nitrogen-containing substituent group. To quantify the reactivity of reactive
metabolites, we performed geometry optimizations of aniline and toluene (a paired control
compound for aniline) and nitrosobenzene and quinone imine (two reactive metabolites of
aniline) [14,33,34]. Their quantum chemistry properties were calculated with the solvent
parameter set as water (pH = 7). Low electron density (green) was observed for the
electrophilic groups of aniline, nitrosobenzene, and quinone imine (Figure 3). A higher
electrophilicity index indicates higher electrophilicity of the compound, while a lower
ELUMO means lower energy is required for electrons in the nucleophile to occupy the LUMO
in the electrophile. The two chemically reactive metabolites, nitrosobenzene and quinone
imine, both showed a much higher electrophilicity index and lower ELUMO as compared to
aniline (Figure 3). However, aniline was found not more reactive than a non-structural alert
control toluene, as they showed similar ELUMO and electrophilicity index. The significantly
enhanced reactivity of reactive metabolites suggested that the aniline toxicity is likely to
be mediated by the reactive metabolites but itself. The results from quantum chemistry
analysis were corroborated by current knowledge of aniline and its derivatives.
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4. Discussion

In this study, we constructed a library of structural alerts for reactive metabolites for-
mation and examined the association of the alerts with drug-induced ADs. Substructures
of benzene with nitrogen-containing substituent were found to be significantly associ-
ated with an increased risk of drug-induced ADs, and by factoring in high daily dose,
(≥100 mg) the false positive rate was significantly reduced to 4%, and meanwhile, the
positive predictive value was increased from 25% to 42%. Furthermore, we developed a
machine-learning-based predictive model by using daily dose and nitrogen-containing ben-
zene substituent alert as the top inputs and achieved the predictive performance of AUC
of 70%. Permutation analysis suggests this association is robust and not by chance. We also
confirmed the reactivity of the nitrogen-containing benzene substituent aniline and related
metabolites using quantum chemistry analysis and explored the underlying mechanisms.

Based on the association analysis and the feature importance evaluation, substructures
of benzene with nitrogen-containing substituent were associated with AD-positive drugs
and significantly contributed to the model prediction. Aniline derivatives, as examples
that match this structural alert, have been reported to induce allergic and autoimmune re-
actions [35,36]. Drugs with such substructures, including sulfonamides and procainamide,
have reportedly caused ADs in humans [37–39]. In our dataset, 14 AD-positive drugs
contain this structural alert. The chemical structures and their daily doses are shown in
Supplemental Figure S3.

Notably, concerns that structural alerts are overly sensitive (i.e., a high number of
false positives) in flagging toxic compounds have been reported, and simply avoiding
structural alerts for this reason may be too restrictive [14]. Indeed, all the top 10 structural
alerts in Table 1 have high false positive rates (6–24%). Some commonly prescribed drugs
do contain structural alerts but have low risks of toxicity [14]; for example, half of the
top 200 drugs by prescription and sales in 2009 have structural alerts, and many could
form reactive metabolites [14]. Therefore, it was proposed that structural alerts should be
considered together with other factors when evaluating toxicity risk [14–16]. High dose is
a significant contributing factor to reactive metabolite-related toxicity [13–15]. For instance,
13 of the top 15 small molecule drugs by annual sales in the U.S. market contain at least
one structural alert [14], but most of their recommended daily doses are relatively low
(<100 mg), which reduces their toxicity risks [14]. Our study confirmed this co-factoring
approach, and after taking daily dose into consideration, the false positive rates of the
selected structural alerts were dramatically reduced. Of note, the most important feature
for the model prediction was daily dose.

Using aniline as an example, two metabolic pathways for bioactivation of benzene
with nitrogen-containing substituent leading to toxicity have been proposed for reactive
metabolite formation [36,37,39] (Supplemental Figure S4). Aniline can be oxidized, cat-
alyzed by CYPs, at the aromatic amine group, leading to the generation of nitrosobenzene,
or undergoing electrophilic substitution in the benzene ring to form quinone imine. Both
nitrosobenzene and quinone imine are highly electrophilic and, thus, are prone to forming
protein adducts by reacting with nucleophilic residues, especially cysteines, leading to
toxicity [34,40].

Procainamide (Supplemental Figure S3), an antiarrhythmic, has been associated with
drug-induced autoimmune diseases [7,41]. The incidence was estimated to be as high as
20% [7]. Procainamide contains a benzene with nitrogen-containing substituent substruc-
ture, which can be metabolized into reactive derivatives, hydroxylamine and nitrosoben-
zene [42–45]. Animal studies showed that injection of procainamide hydroxylamine into
the thymus resulted in the disruption of central T cell tolerance and the initiation of
systemic autoimmunity [46,47], in which the production of anti-(H2A-H2B)-DNA autoan-
tibodies, a hallmark of patients with drug-induced lupus, was observed. Furthermore,
the results from popliteal lymph node assay in mice showed that T cells only respond
to the reactive metabolites of aniline generated by white bone marrow cells, but not to
the prohapten aniline itself [34]. Moreover, peripheral T cells could acquire autoreactivity
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through hypomethylation of DNA [7,41,48]. Procainamide has been reported to inhibit
DNA methylation, leading to lymphocyte activation, and the induction of autoimmunity is
likely due to the overexpression of leukocyte-function-associated antigen-1 (LFA-1) caused
by hypomethylation of DNA in T cells [49].

Quantum chemistry properties have been useful in assessing reactive potential for
structural alerts or chemical entities [32,50]. The culprit reactive metabolites, nitrobenzene
and quinone imine, are highly reactive, as indicated by the quantum chemistry properties.
Our results suggest that quantum chemistry analysis could be a useful tool for evalu-
ating the reactivity of chemicals or their metabolites and providing information for the
assessment of toxicity.

In drug development, chemicals with structural alerts were considered for lead opti-
mization or mitigation. Experimental tests for toxicity (e.g., glutathione trapping, protein
covalent binding experiments) should be prioritized. Certain strategies could be used to
mitigate potential toxicity risks, including modifying substructures to resist metabolism
and/or lowering dose by improving pharmacokinetic properties [51].

For instance, clozapine was reported to be associated with drug-induced ADs [52,53]
and can form an iminium reactive metabolite that could covalently bind to glutathione or
other proteins [54] (Supplemental Figure S5). Reactive metabolite formation is dependent
on the nitrogen that bridges the two rings [55]. In quetiapine, this nitrogen is replaced by a
sulfur atom (blue), which removes the reactive metabolite formation, even though the daily
dose of quetiapine (400 mg) is higher than that for clozapine (300 mg). Olanzapine can also
form an iminium reactive metabolite but exhibits an improved safety profile in comparison
to clozapine. This is likely due to the low required daily dose (10 mg) of olanzapine, which
is attributable to the optimized substructure (blue). Both quetiapine and olanzapine are
among the top-selling drugs in the U.S.

Another drug, nefazodone, can form a quinone-imine reactive metabolite, which is
highly reactive to the cysteine in glutathione or other proteins [56] (Supplemental Figure S6).
Aripiprazole also carries a chloroaniline substructure (red) very close to that of nefazodone,
which can form reactive metabolites. However, the daily dose of aripiprazole is much lower
(15 mg), due to dramatically improved pharmacokinetics [57] compared to nefazodone
(400 mg). Aripiprazole has a significantly improved safety profile and is ranked among the
top drugs in sales.

We acknowledge the following limitations of the current study. The data used in
this study mainly focused on approved drugs in the market and yet did not include
failed drug candidates during clinical trials, withdrawn drugs from the market, or well-
characterized allergenic natural products. This limited training scope could render the
developed method for toxicity prediction not generalizing well to a broader chemical space
during drug development. Although expanding training data to failed/withdrawn drugs
and natural products is not a trivial task as such, data are often not readily accessible; it
would provide more comprehensive information to improve the toxicological prescreening
method and reduce potential bias. Furthermore, the structural alerts were collected from
seminal reviews due to their commonly known activities in forming reactive metabolites,
which is one of the underlying mechanisms of drug-induced ADs. Additional structural
alerts can be included in the future to improve the diversity of the structural alert library.
For example, methylcatechol, which has similar chemical functionality to the primary
irritant urushiol in poison ivy, could flag risk of flavonoids-derived drug candidates and
phenylethyl resorcinol, a cosmetic skin-lightener increasingly implicated in contact allergic
dermatitis [58,59]. Acyl halides in drug metabolites could also suggest a toxicity risk of
the precursor drugs [60,61]. Overall, the results obtained from the current dataset suggests
that this approach is promising and could be legitimately powerful with a broader dataset.

Another limitation is that the training data were imbalanced on AD-positive and
-negative. Developing machine-learning models using such an imbalanced dataset could
be challenging. There are many methods of handling imbalanced classification problems
such as data imputation/removal and using balanced accuracy or MCC as the evaluation
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metric during model optimization. Lovric et al. systematically evaluated the quality
metrics in imbalanced scenarios and suggested MCC to be one of most suitable metrics
to evaluate model performance [62]. Despite that balanced accuracy was used as the grid
search scoring function in the current study, our model showed a MCC of 0.47 when
evaluated using test data. In addition to structural alerts, other features such as fingerprints
and physicochemical descriptors can be used to develop predictive models. Our analysis
from the model developed using two-dimensional descriptors generated by MOLD2 [63]
showed comparable performance with a MCC of 0.42. We chose to use structural alerts
associated with reactive metabolite formation from a mechanism-based perspective, and
also because structural alerts are relatively more intuitive to interpret in terms of guiding
structure optimization. CatBoost, a leading machine-learning algorithm, was used for
model development because (i) it transforms categorical features into numeric values using
various statistics, (ii) a novel gradient-boosting algorithm is used to reduce bias, (iii) the
performance is comparable, if not better, to other boosting libraries such as XGBoost and
LightGBM, and (iv) GPU computing is supported for fast model training [25,26]. Of note,
some other machine-learning methods (e.g., random forest, support vector machine, and
neural networks) were not tested in this study and could potentially improve the result.

5. Conclusions

As an increasing number of drug candidates are evaluated in clinical trials, the num-
ber and spectrum of drug-induced AD cases has been widely expanding [2,41]. The
investigated structural alerts and the developed predictive model can be helpful in identi-
fying drug candidates with potential risks of drug-induced ADs and optimizing chemical
structures to avoid potential liability of causing ADs in humans.
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