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Over a century ago, it was reported that immunization with embryonic/fetal tissue could

lead to the rejection of transplanted tumors in animals. Subsequent studies demonstrated

that vaccination of embryonic materials in animals induced cellular and humoral immunity

against transplantable tumors and carcinogen-induced tumors. Therefore, it has been

hypothesized that the shared antigens between tumors and embryonic/fetal tissues

(oncofetal antigens) are the key to anti-tumor immune responses in these studies.

However, early oncofetal antigen-based cancer vaccines usually utilize xenogeneic or

allogeneic embryonic stem cells or tissues, making it difficult to tease apart the anti-tumor

immunity elicited by the oncofetal antigens vs. graft-vs.-host responses. Recently, one

oncofetal antigen-based cancer vaccine using autologous induced pluripotent stem

cells (iPSCs) demonstrated marked prophylactic and therapeutic potential, suggesting

critical roles of oncofetal antigens in inducing anti-tumor immunity. In this review,

we present an overview of recent studies in the field of oncofetal antigen-based

cancer vaccines, including single peptide-based cancer vaccines, embryonic stem cell

(ESC)- and iPSC-based whole-cell vaccines, and provide insights on future directions.
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INTRODUCTION

Cancer cells have the capability to proliferate indefinitely and metastasize to different parts of the
body. Embryonic stem cells (ESCs) have the ability to undergo rapid clonal proliferation and self-
renew, and can inhabit and thrive in various environments of the human body. The similarities
between fetal development and cancer have long been recognized (1) following the discovery of
oncofetal proteins and antigens such as α-fetoprotein (AFP) (2), carcinoembryonic antigen (CEA)
(3), and human chorionic gonadotropic (HCG) (4) (Supplemental Table 1). These proteins are
tumor associated proteins or antigens (TAA) that are synthesized during embryonic development
and appear again in adults during cancer development. Furthermore, these proteins are well-known
biomarkers for cancer detection and monitoring (3, 5–9). Induced pluripotent stem cells (iPSCs)
can be generated by introducing four transcription factors into adult somatic cells, which transform
their transcriptional and epigenetic state to a pluripotent one that closely resembles ESCs (10).
Similar to ESCs, iPSCs share genetic and transcriptomic signatures with cancer cells, including
protein markers that can be recognized by the immune system (11, 12).

Schöne recognized over a century ago that immunization with embryonic/fetal tissue could lead
to the rejection of transplanted tumors in animals (13). Later studies indicated that vaccination
of embryonic materials in animals elicited humoral and cellular immunity against transplantable
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tumors and carcinogen-induced tumors, supporting the idea
that anti-tumor immunity may arise from the antigens shared
between fetal tissue and cancer cells. Recent studies provided
evidence that oncofetal antigen-based cancer vaccines could
elicit potent T cell responses (5–9). However, there are
problems associated with utilizing embryonic/fetal materials
for the development of anti-cancer vaccines. Ethical issues,
tumorigenicity, and alloimmunity have been themain limitations
of using ESCs for clinical applications. Therefore, a substitute
for ESCs is needed for overcoming these obstacles. A recent
study using an irradiated autologous iPSC-based cancer vaccine
has started to address these issues (14). Moreover, the use
of ESCs/iPSCs alone as an anti-cancer vaccine only showed
moderate anti-tumor effects in some of the early studies (13,
15, 16), suggesting that vaccine adjuvants may be needed in
combination with ESCs/iPSCs to enhance innate immunity and
increase antigen presentation. Here, we summarize and compare
recent studies in addressing these challenges.

CANCER CELLS ARE REMARKABLY
SIMILAR TO ESCS AND iPSCS

Cancer cells and ESCs share many cellular and molecular
features. These include a rapid proliferation rate (17),
upregulated activity of telomerase (18), increased expression
levels of oncogenes such as c-MYC (19) and krupple-like factor 4
(KLF4) (20), and similar overall gene expression profiles (21, 22),
microRNA signatures (23), and epigenetic status (24). Similar to
cancer cells, after long-term culture the ESC lines will continue
to proliferate actively and express high levels of telomerase
activity, allowing them to maintain telomere length and cellular
immortality (18, 25, 26). These features of ESCs resemble the
hallmarks of cancer cells that have “sustaining proliferative
signaling” and “replicative immortality” (27).

The discovery of iPSCs in 2006 (10, 28) has revolutionized
the field of stem cell research. Human iPSCs reprogrammed
from a patient’s somatic tissues share almost the same gene
expression profiles with that patient’s ESCs (29–32), providing a
possible solution to the ethical objections that have obstructed
the use of human ESCs in many countries. Similar to ESCs,
iPSCs share genetic and transcriptomic signatures with cancer
cells (14). Human iPSCs were first generated by the transduction
of fibroblasts with four transcription factors: OCT4, SOX2, c-
MYC, and KLF4 (28). C-MYC is a well-known oncogene (33, 34),
and the other three factors are also known to be upregulated
in multiple cancers types (35–40). Indeed, one study showed
significant overexpression of at least one of these factors in 18 of
the 40 cancer types that were evaluated (41). Also, these genes are
associated with tumor progression and poor prognosis in certain
tumor types (41), suggesting that targeting these genes in cancers
may be therapeutically beneficial.

A recent study analyzed and compared the epigenomic
and transcriptomic signatures of human tumors from The
Cancer Genome Atlas (TCGA) and ESCs, as well as iPSCs and
other progenitor cells from Progenitor Cell Biology Consortium
(PCBC) (42). In this study, the authors applied machine

learning algorithms to reveal a positive correlation between
tumor dedifferentiation status and stemness indices for most
of the tumor cases they analyzed (42). Importantly, they also
demonstrated that the cancer stemness indices are higher
in recurrent and metastatic tumors than primary tumors,
supporting the concept that cancer stem cells play essential
roles in cancer recurrence and metastasis (43, 44). In addition,
using single-cell transcriptome analysis the authors identified
a heterogeneous expression of stemness-associated markers in
patient tumors, suggesting the need for multi-target strategies
when targeting cancer stem cells.

IMMUNOGENICITY OF ESCS AND iPSCS

Embryonic stem cells are usually obtained from an unrelated
donor due to their limited availability. Therefore, these cells
often express mismatched major histocompatibility complex
(MHC) and/or minor histocompatibility (miH) antigens and will
trigger alloimmune responses when transplanted in the host.
ESCs express low levels of HLA class I molecules (45) and
almost undetectable levels of HLA class II and costimulatory
molecules (46). Although expressed at a low level, HLA class
I molecules in ESCs are sufficient to trigger xenorejection of
human ESCs mediated by cytotoxic T cells (47, 48). ESCs
induce potent humoral and cellular immune responses, leading
to the infiltration of inflammatory cells that is followed by ESC
rejection (49). So far, most immunogenicity studies of ESCs
have focused on a scenario that involves MHC mismatches,
implicating alloimmunity as one of the main players in the
immune responses after ESCs transplantation. However, whether
embryonic antigens in ESCs could induce an immune response is
less clear.

Induced pluripotent stem cells are somatic cells that were
reprogramed back to a pluripotent state. Autologous iPSCs
can be generated from the person receiving therapy. Since the
initial discovery of iPSCs, researchers immediately assumed
that these cells would be a potential cell source of autologous
cell-based therapies to bypass the issues of alloimmunity
caused by allogeneic sources such as human ESCs or donated
tissue (50, 51). However, later studies investigating iPSC
immunogenicity in autologous settings raised questions about
this assumption. Araki et al. (52) showed that autologous
iPSC-derived teratomas were rejected by immune-competent
mice and found a comparable level of rejection of autologous
ESC-derived teratomas. These data suggest that in autologous
transplantation models with minimized alloimmunity, other
antigens such as embryonic antigens in ESCs and iPSCs could
still induce an immune response. In 2014, we noticed that
autologous iPSCs are immunogenic (11), contradicting earlier
studies claiming they are immune privileged. We showed in
murine models that undifferentiated autologous iPSCs elicited
an immune response with increased lymphocytic infiltration
and elevated granzyme-B, IFN-γ, and perforin intragraft. In
contrast, autologous iPSC-derived endothelial cells were accepted
by immune mechanisms similar to self-tolerance. These studies
suggest that undifferentiated autologous iPSCs may express
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antigens of embryonic origin that can trigger an immune
response, whereas fully differentiated cells derived from iPSCs
have lower levels of immunogenicity. Based on these data and
the similarity between iPSCs and cancer cells, we reached the
conclusion that undifferentiated iPSCs are immunogenic and
hypothesized that they can be used as a cancer vaccine.

ONCOFETAL PEPTIDE VACCINES AND
WHOLE-CELL VACCINES

Oncofetal Peptide-Based Vaccines
A wide range of vaccines based on the aforementioned
oncofetal antigens have been tested in pre-clinical studies,
and some single antigen vaccines have been tested in clinical
trials. Among all oncofetal antigens, many well-studied ones
belong to a class of proteins called cancer testis antigens
(CTAs) (Supplemental Table 1). CTAs are expressed within the
immune-privileged environment of the testes as well as by
tumor cells. Targeting CTAs can induce highly tumor-specific
immune responses and thus provide an ideal strategy for anti-
cancer vaccines. For example, a series of clinical trials have
evaluated the CTA melanoma-specific antigen A3 (MAGE-A3)
as a cancer vaccine target. MAGE-A3 is highly expressed in
many different tumor types (53, 54). An early phase clinical
trial demonstrated that adjuvant-mixed, recombinant MAGE-
A3 proteins or peptide vaccines could elicit potent anti-tumor T
cell and antibody responses which are associated with objective
responses (54). However, a phase III trial in non-small-cell
lung carcinoma (NSCLC) evaluating MAGE-A3 as an adjuvant
treatment demonstrated no significant improvement in disease-
free survival compared with placebo in MAGE-A3-positive
patients. So far, no further clinical trials testing the MAGE-A3
targeting immunotherapies in NSCLC have been approved based
on these results (55).

Another example of a single-peptide-antigen vaccine in
clinical trial targeting glypican-3 taught us a similar lesson
(56). In this phase II clinical trial, the investigators observed
that two patients had tumor relapse despite significant numbers
of vaccine-induced peptide-specific CTLs in their blood.
Interestingly, they found that although glypican-3 was expressed
in the primary tumor, the recurrent tumors lost the antigen
expression. The investigators concluded that “the peptide vaccine
may eradicate tumor cells that express such antigen, [and] cancer
cells that do not express or lose the same antigen may then
proliferate. In such cases, vaccines that target multiple shared
antigens would be effective.”

Upon learning the lessons from failed early clinical trials using
single-peptide cancer vaccines, later clinical trials evaluating
peptide antigen-based cancer vaccines have focused mostly
on multiple-peptide and antigens and/or are administered
in combination with immunostimulatory adjuvants and other
targeted therapies (57).

These results indicate that targeting one antigen alone may
not be able to generate a sufficiently effective and durable anti-
tumor immune response to mediate tumor rejection because
of tumor heterogeneity and the rapid appearance of escape

mutants. Therefore, it has been suggested that strategies that
could target multiple tumor-associated antigens at once would
induce a broader spectrum of anti-tumor immunity and possibly
provide more effective and durable protection against cancer.

ESC-Based Whole-Cell Cancer Vaccines
Since the establishment and characterization of human ESC lines,
researchers have attempted to evaluate ESC-based whole-cell
cancer vaccines due to their ability to deliver multiple oncofetal
antigens in one treatment. In addition, unlike defined antigen-
based vaccines, the whole-cell vaccine is universally applicable
to all patients regardless of their HLA type. Li et al. found that
human ESCs were able to induce a moderate anti-tumor effect
(16). Both humoral and cellular immunity were activated by H9
ESC line, as evidenced by the production of colon carcinoma cell
line-specific antibodies and IFNγ-producing cells, respectively.
It was speculated that oncofetal antigens shared by the ESCs
and tumors might have contributed to the vaccine-induced anti-
tumor response. However, these immune responses were induced
by a xenogeneic human ESC line injected into mice, and it is
very likely that the incompatibility of the MHC antigens between
the human ESCs and mouse cells contributed to a large portion
of the immune responses. Furthermore, the anti-tumor effects
produced by the xenogeneic ESC-vaccine were not as potent as
those induced by immunization with the syngeneic murine colon
cancer cells. A similar approach using xenogeneic human ESCs
as a cancer prevention vaccine was evaluated by Zhang et al.
(58) in an ovarian cancer model in rats, and a moderate tumor
prevention effect was observed in this study.

These results raise the question of whether allogeneic or
autologous ESCs are better than xenogeneic ESCs as an anti-
cancer vaccine. A later study by Dong et al. (59) evaluated an
allogeneic ESC cancer vaccine in mice. They investigated the
ESC vaccine both as a prophylactic vaccine and as a therapeutic
treatment in a transplantable lung cancer model by showing it
could inhibit tumor growth in mice by enhancing lymphocyte
proliferation and cytokine secretion, suggesting the potential
of utilizing allogeneic ESC vaccines as a therapeutic strategy.
However, they observed a stronger tumor inhibitory effect in
the prophylactic group compared with the therapeutic group,
which may be due to the immunosuppressive environment in
established tumors.

To test the prophylactic ESC cancer vaccine in a
physiologically relevant setting, Yaddanapudi et al. (60) employed
a spontaneous mouse tumor model. Allogenic ESCs along with
GM-CSF were used to provide immunostimulatory adjuvant
activity. GM-CSF can stimulate and activate antigen-presenting
cells (APCs), which can process and present tumor antigens
to CD4+ helper T cells and CD8+ cytotoxic T lymphocytes
(CTL) (61, 62). The authors observed more potent and durable
protection against tumor growth than that found in earlier
studies using ESCs alone, corroborating the immunostimulatory
effects of the GM-CSF in the cancer vaccine. Moreover, this
combinatory vaccination could inhibit carcinogen and chronic
pulmonary inflammation induced lung cancer, which is a
physiologically relevant spontaneous lung cancer model in mice.
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iPSC-Based Whole-Cell Cancer Vaccines
Embryonic stem cells and iPSCs share nearly identical gene
expression and epigenetic profiles (29–32). Based on the
similarities between cancer cells and ESCs, Li et al. (16) evaluated
one human iPSC line TZ1 as an anti-cancer vaccine in a
transplantable mouse colon cancer model. They found that
although these iPSCs induced significant numbers of IFNγ-
and IL-4-producing splenocytes against the mouse colon cancer
cells, no evidence of tumor rejection was seen, possibly due
to the accumulation of myeloid-derived suppressor cells in
TZ1-immunized groups. These data suggest that modifications
of the iPSC-based cancer vaccine are needed to increase the
immune response against tumors. For example, autologous
iPSCs may contain a more representative and accurate panel of
tumor antigens than xenogeneic iPSCs, and therefore, autologous
iPSCs may be better than xenogeneic iPSCs as anti-cancer
vaccines, pending further confirmatory studies. In addition, an
immunostimulatory vaccine adjuvant may enhance the anti-
tumor immunity of the iPSC-based vaccines.

Embryonic/fetal materials or ESCs often come from unrelated
donors and may express mismatched MHC that could trigger
an immune response. To study the immunogenicity of oncofetal
proteins, alloimmunity stimulated by MHC mismatches will
need to be eliminated. In addition, tumorigenicity associated
with ESCs has been one of the major obstacles in using ESCs
as cancer vaccines for clinical applications. Recently, a study
by our lab (14) addressed these issues using an irradiated
autologous iPSC-based cancer vaccine. In this study, we first
demonstrated that human and murine iPSCs express a list
of tumor-associated and tumor-specific antigens by comparing
expression profiles of 11 different human iPSC clones with
human ESCs, cancer tissues, and healthy tissues using RNA
sequencing. We showed that human iPSCs cluster with human
ESCs and the cancer tissues, revealing significant gene expression
overlap in cancer genes among different cancer types and
iPSCs. To evaluate whether the oncofetal antigens in iPSCs
rather than MHC mismatches could induce immune responses,
we minimized alloimmunity by utilizing autologous iPSCs as
the source of the anti-cancer vaccine. To enhance the anti-
tumor immunity induced by the vaccine, we included an
immunostimulatory adjuvant, CpG oligodeoxynucleotide, a toll-
like receptor 9 (TLR 9) agonist that can induce the maturation
of APCs (Figure 1). We then irradiated iPSCs before vaccination
to prevent teratoma formation, as studies have shown that
gamma irradiation could inhibit the tumorigenicity of iPSCs
(63, 64). We irradiated iPSCs at 60Gy, which is a lethal dose
to human iPSCs in vitro and known to significantly decrease
teratoma formation ability of human iPSCs in mice (63, 64).
We generated autologous iPSCs by introducing Yamanaka factors
(Oct4, Sox2, Klf4, and c-Myc) into mouse fibroblasts from
the same mouse strain. Vaccinations with irradiated iPSCs
mixed with the immunostimulatory CpG were administered
weekly for a month, inducing antibodies that bound to iPSCs
and tumor cells. Vaccination with iPSC-based cancer vaccine
also induced CD4+ and CD8+ T cells that could recognize
tumor cells in vitro, suggesting the induced immune responses
are tumor specific. Vaccination increased APCs and activated

T cells in mice, resulting in a favorable ratio of CD8+ T
cells over CD4+CD25+FoxP3+ regulatory T cells (T-regs). As
a result, vaccinated mice rejected transplanted breast cancer,
melanoma, and mesothelioma tumor cells, indicating that the
stimulated immune activity was tumor-specific and functional.
Importantly, adoptive transfer of T cells isolated from vaccine-
treated tumors could transfer this tumor protection to naïve
mice, proving that the tumor protection effect was mediated by
T cells (Figure 1).

Because preventive treatment of cancer is clinically
uncommon for non-viral associated cancers, we also investigated
the therapeutic effects of the iPSC-vaccine in established
tumors. Here, the vaccination with iPSC vaccine did not stop
the growth of established melanomas, which may be due to
the established immunosuppressive tumor microenvironment.
We then examined a clinically relevant scenario involving the
surgical removal of the majority of tumors but left some residual
tumor remains at the margins; we found that the iPSC + CpG
vaccine could inhibit tumor relapse. These data are consistent
with the finding that cancer stemness features are more highly
expressed in recurrent tumors (42).

Because adult stem cells are also present, although rare, in
some adult organs such as skin, liver, bone marrow, and digestive
system (65), we evaluated auto-immunity by monitoring the
animal body weight, organ histology, and antinuclear antibody
levels. All of these measurements were normal, suggesting the
absence of gross toxicity and autoimmunity in vaccinated mice.
The iPSC vaccine could break the self-tolerance of the immune
system to oncofetal antigens yet did not induce significant auto-
immunity, which was possibly due to the higher abundance
of these oncofetal antigens in tumors than in resident stem
cells within organs. Taken together, our data support further
assessing the value of iPSC-based whole-cell therapy as an
anti-cancer immunotherapy.

CONCLUDING REMARKS

Oncofetal antigen-based cancer vaccines have demonstrated
therapeutic potential in preclinical and some clinical studies. As
presented by several examples in this review, various oncofetal
antigen-based vaccine strategies, particularly approaches
that combine an autologous iPSC vaccine with an immune
adjuvant, have demonstrated great promise to elicit potent
anti-tumor responses for cancer treatment. Despite these
advances, challenges remain. For instance, many early clinical
studies using oncofetal antigen-based vaccines focused on
single oncofetal antigens with or without immune adjuvants,
limiting the level, and duration of the induced anti-tumor
immune response due to tumor heterogenicity and fast
adaptation of cancer cells. Unlike the defined antigen-based
vaccines, whole-cell vaccines are universally applicable to
all patients without concerns on HLA type mismatches.
Therefore, whole cell-based cancer vaccines, with the epitope
heterogeneity of wholes cells of ESCs and iPSCs, may prove
more potent, durable, and easier to apply than single-antigen
targeted vaccines.
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FIGURE 1 | (A) Schematic illustration of vaccine preparation consisting of sorting murine iPSCs for a pluripotent marker, irradiation, resuspension in adjuvant solution

(CpG), and subcutaneous injection in mice. (B) In a prophylactic setting, autologous iPSC vaccines prevent tumor growth in syngeneic murine models. Adoptive

transfer of T cells isolated from vaccine-treated mice inhibited tumor growth in unvaccinated tumor-bearing recipients, indicating that the iPSC vaccine promotes an

antigen-specific anti-tumor T cell response. Adapted from Kooreman et al. (14) with permission from Elsevier.

FIGURE 2 | A schematic illustration of the generation and application of an autologous iPSC-based cancer vaccine in patients. To generate an autologous iPSC-based

cancer vaccine, peripheral blood mononuclear cells (PBMCs) are isolated from the patient’s blood and reprogrammed into induced pluripotent stem cells (iPSCs) by

the introduction of four Yamanaka factors (Oct4, Klf4, Sox2, and c-Myc). The resulting patient-derived iPSCs are then irradiated and prepared in combination with

CpG oligodeoxynucleotides and injected into patients as an anti-cancer vaccine. Upon vaccination of iPSC-autologous vaccine in patients, the irradiated iPSCs will

provide a broad spectrum of oncofetal antigens, while CpGs will activate toll-like receptor 9 (TLR9) on antigen-presenting cells such as dendritic cells, B cells, and

macrophages, which can process and present oncofetal antigens to helper T cells and cytotoxic T lymphocytes, thus conferring anti-tumor immunity.
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The only FDA approved non-antiviral cancer vaccine,
Sipuleucel-T (Provenge), was developed as a TAA pulsed
autologous dendritic cell-based cancer vaccination for prostate
cancer (66). In 2010, it was approved as an autologous whole-cell
cancer vaccine that utilizes a TAA and GM-CSF fusion protein
pulsed autologous peripheral blood mononuclear cells (PBMCs).
It prolonged patient survival rate by 50% at 3 years in a phase
III study, thus has been approved for treating patients with
castration -resistant metastatic prostate cancer (67), supporting
the efficacy of TAA-based cancer vaccine and the feasibility of
using autologous whole-cell cancer vaccine in clinical settings.

In addition, because autologous iPSC-based cancer vaccines
are relatively easy to generate (Figure 2), iPSC vaccines can be
made available at short notice after a diagnosis, ready to be
dispensed soon after surgery, chemotherapy, or radiation therapy
when cancer cells are most vulnerable. Vaccination of iPSC-
vaccines at this time could prime the immune system to target a
broad spectrum of cancer-specific antigens to prevent recurrence
of cancer, because recurrent and metastatic tumors have a higher
level of stemness phenotype (42).

Concerns such as teratoma formation and auto-immunity
must be addressed in evaluating the use of iPSC-based cancer
vaccines in humans. Although the iPSC-based cancer vaccine
did not induce significant auto-immunity in mice and injection
of irradiated miPSCs did not result in teratoma formation in
mice (14), differences in mouse and human iPSCs and immune
systems should be carefully considered before moving this
treatment to the clinical settings.

Approaches to further enhance the efficacy of iPSC-based
cancer vaccines include concurrent treatment with PD-1/CTLA-
4 checkpoint inhibitors, chemotherapy, or radiation therapy.
Additional approaches include immunostimulatory agents that
can more potently activate APCs, including agonistic CD40
monoclonal antibodies and other TLR agonists such as PolyI:C.
These approaches offer powerful combination therapies with
possible synergistic effects that may be more effective in patients
who have a high risk of disease recurrence after receiving initial
standard-of-care therapy.
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