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In late 2019, a sudden rise in respiratory-related dis-
ease cases in China triggered the identification of its 
source as a novel corona virus, termed severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2). The dis-
ease caused by novel SARS-CoV-2 is named as CO- 
VID-19 by the World Health Organization [1]. The culprit 
virus belongs to the Coronaviridae family of coronavi-
ruses that caused 2 other outbreaks, namely, severe acute 
respiratory syndrome (SARS) in 2002 [2] and Middle East 
respiratory syndrome in 2012 [3]. As the survival of every 
virus depends on its host cell, the understanding of cel-
lular functions such as signaling pathways that are essen-
tial for viral replication may be suitable to define targets 
for antiviral therapy and pave the way toward effective 
drugs against essential cellular activities supporting viral 
replication [4]. In this regard, we have focused on the Raf/
MEK/ERK signaling pathway, which is probably one of 
the most well-known signal transduction pathways 
among biologists because of its implication in a wide va-
riety of cellular functions such as cell proliferation, cell 

cycle arrest, and apoptosis [5]. The mechanism of this 
pathway is initiated by G protein-coupled receptors, 
which leads to the phosphorylation of downstream mol-
ecules and activates the serine threonine kinase Raf (dual 
specificity kinase MEK and MAPK/ERK). ERK phos-
phorylates various substrates, transforms the signals, and 
follows different functions in cells [6]. Hence, it is not 
surprising that several DNA and RNA viruses inherit this 
pathway, apart from an initial activation upon viral at-
tachment, for various steps in the viral life cycle [7]. Con-
sequently, the kinetic of pathway activation is highly dy-
namic [8]. For example, herpes simplex type-1 virus-in-
duced activation of the Raf/MEK/ERK pathway is used 
for cytoskeleton rearrangement during entry [9], JC poly-
omavirus requires ERK activation for viral transcription 
[10], and influenza A virus hijacks Raf/MEK/ERK activ-
ity for efficient viral ribonucleoprotein export [11, 12]. 
Ebola virus glycoprotein-induced cytotoxicity depends 
on ERK activation [13], and hepatitis C virus relies on 
Raf/MEK/ERK-mediated upregulation of cytosolic phos-
pholipase A2 for efficient particle production [14]. Flavi-
viruses, including yellow fever virus, Saint-Louis enceph-
alitis virus, and dengue virus, as well depend on Raf/
MEK/ERK-mediated signaling for efficient replication 
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[15, 16]. It has been shown that activated ERK1/2 en-
hanced the infectivity of human immunodeficiency virus, 
whereas treatment of cells with the MEK1/2 inhibitor 
PD98059 significantly inhibited human immunodefi-
ciency virus infectivity [17, 18]. Treating cells with 
UO126, a highly selective inhibitor of both MEK1 and 
MEK2, also significantly inhibited the propagation of in-
fluenza A virus, Borna disease virus, coxsackievirus B3, 
and HCMV [11, 19–21]. Thus, it appears that the MEK1/2 
inhibitors have a broad effect on propagations of viruses 
from various families (positive-strand and negative-
strand RNA viruses, retroviruses, and DNA viruses) [22]. 
SARS-CoV-2 is an enveloped, positive-sense, single-
stranded RNA beta-coronavirus. Similar to SARS and 
Middle East respiratory syndrome, the SARS-CoV-2 ge-
nome encodes nonstructural proteins (such as 3-chymo-
trypsin-like protease, papain-like protease, helicase, and 
RNA-dependent RNA polymerase), structural proteins 
(such as spike glycoprotein), and accessory proteins. The 
4 nonstructural proteins mentioned above are key en-
zymes in the viral life cycle, and the spike glycoprotein is 
indispensable for virus-cell receptor interactions during 
viral entry [23]. By analyzing the effects of transiently ex-
pressed viral spike protein (S) of SARS-CoV, it was re-
vealed that the S protein plays an important role in virus-
stimulated cyclooxygenase-2 (COX-2) expression [24]. 
COX-2 is a prostaglandin synthetase involved in inflam-
mation [25] that is highly regulated by different factors 
including cytokines [26]. The upstream calcium-depen-
dent PKCa that modulates the downstream Raf/MEK/
ERK pathway is induced by the SARS-CoV S protein. It 
was revealed that ERK is involved in S protein-induced 
activation of the COX-2 promoter and the production of 
COX-2 protein in HEK293T cells. This result helps ex-
plain the function of SARS-CoV S protein in SARS patho-
genesis [24]. More information on relevant MAPK sig-
naling induced by coronavirus was obtained for murine 
coronavirus. It was revealed that infection of cultured 

cells with murine coronavirus resulted in activation of the 
Raf/MEK/ERK signal cascade, and inhibition of the 
MAPK signaling pathway by U0126 or knockdown of 
MEK and ERK by small interfering RNAs significantly 
impaired murine coronavirus progeny production. The 
treatment did not affect virus entry or cellular and viral 
mRNA production. However, synthesis of viral genomic 
and sub-genomic RNAs was severely suppressed by 
U0126 treatment. This study indicated that the MAPK 
signaling pathway is involved in murine coronavirus 
RNA synthesis [22]. Selective RAF inhibitors are well tol-
erated, and severe toxicities occur infrequently in nonin-
fected cells. Among the common grade 1–2 adverse events 
are dermatological affections (50–70%), fatigue (30–
50%), diarrhea (10–30%), and nausea (10–20%) [27]. 
Considering the role of the Raf/MEK/ERK signaling 
pathway in the pathogenesis of various viruses, it is prob-
able that the activation of this signaling pathway by CO-
VID-19 has an important role in the survival of this virus. 
In this regard, drugs that inhibit the Raf/MEK/ERK sig-
naling pathway may be potential antiviral candidates for 
the treatment of COVID-19.
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