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Abstract

Physiological erythrocyte removal is associated with a selective increase in expression of neoantigens on erythrocytes and
their vesicles, and subsequent autologous antibody binding and phagocytosis. Chronic erythrocyte transfusion often leads
to immunization and the formation of alloantibodies and autoantibodies. We investigated whether erythrocyte storage
leads to the increased expression of non-physiological antigens. Immunoprecipitations were performed with erythrocytes
and vesicles from blood bank erythrocyte concentrates of increasing storage periods, using patient plasma containing
erythrocyte autoantibodies. Immunoprecipitate composition was identified using proteomics. Patient plasma antibody
binding increased with erythrocyte storage time, while the opposite was observed for healthy volunteer plasma, showing
that pathology-associated antigenicity changes during erythrocyte storage. Several membrane proteins were identified as
candidate antigens. The protein complexes that were precipitated by the patient antibodies in erythrocytes were different
from the ones in the vesicles formed during erythrocyte storage, indicating that the storage-associated vesicles have a
different immunization potential. Soluble immune mediators including complement factors were present in the patient
plasma immunoprecipitates, but not in the allogeneic control immunoprecipitates. The results support the theory that
disturbed erythrocyte aging during storage of erythrocyte concentrates contributes to transfusion-induced alloantibody
and autoantibody formation.
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Introduction

Physiological, age-dependent removal of erythrocytes is an

efficient and well-regulated process, consisting of controlled

exposure of molecules that induce recognition of old erythrocytes

by the immune system. This process includes senescent cell antigen

formation on band 3, possibly in combination with phosphatidyl-

serine (PS) exposure on the outer leaflet of the membrane and/or

decreased CD47 expression, ultimately resulting in binding of

autologous IgG and subsequent phagocytosis by macrophages of

the reticulo-endothelial system. [1] During aging, the erythrocyte

produces numerous vesicles, most of which expose PS, and that

are enriched for IgG and age-related band 3 breakdown products.

These vesicles are rapidly removed from the circulation, probably

by the same mechanism that is responsible for erythrocyte

removal. Vesiculation may constitute a protective mechanism to

prevent untimely erythrocyte removal [2].

A clear picture of the molecular mechanisms involved in this

age-dependent increase in removal signals is gradually emerging,

and involves oxidative damage-induced, high-affinity binding of

hemoglobin to band 3, activation of Ca2+-permeable channels,

phosphorylation-controlled loss of metabolism and structure, and

degradation and/or aggregation of band 3 fragments. However,

the molecular details, triggers and cross-talk between these

pathways are largely unknown [1].

Also, the erythrocyte contains a complex set of regulatory

systems that may induce erythrocyte removal after physiological or

pathological injury such as osmotic shock, oxidative stress and/or

energy depletion. [3] Modulation of these pathways becomes

progressively lost during storage, [4,5] and this may result in

accelerated aging and the removal of up to 30% of the transfused

erythrocytes within 24 hours after transfusion. [6] Disruption of

these systems may trigger aberrant expression of pathogenic

epitopes on stored erythrocytes and their vesicles [7].

Frequent erythrocyte transfusions can lead to immunization and

the formation of alloantibodies. This is especially problematic in

the steadily increasing number of transfusion-dependent patients.

Almost half of these patients acquire alloantibodies at some point

in time, and in approximately 10% of the patients erythrocyte

autoantibodies are detected. Part of the patients that produce these

autoantibodies develop autoimmune hemolytic anemia (AIHA),

which can be life-threatening [8].

We postulated that accelerated and/or altered erythrocyte aging

during blood bank storage leads to the formation of non-

physiological neoantigens that trigger the formation of autoanti-

bodies. In order to test this hypothesis, we performed immuno-

precipitations with erythrocytes and vesicles from blood bank

concentrates of increasing storage periods, using plasma from

patients containing erythrocyte autoantibodies. Subsequently,

immunochemical and proteomic techniques were applied to

PLoS ONE | www.plosone.org 1 August 2012 | Volume 7 | Issue 8 | e42250



identify the captured immune complexes. Our findings strengthen

and deepen the view that disturbed erythrocyte aging during

storage is related to transfusion-induced, anti-erythrocyte antibody

formation.

Materials and Methods

Ethics
The study has been approved by the Committee on Research

involving Human Subjects (CMO) of the Radboud University

Medical Center (‘‘Instituut Waarborging kwaliteit en veiligheid/

Commissie Mensgebonden onderzoek regio- Arnhem-Nijmegen’’)

and in accordance with the declaration of Helsinki. Written

informed consent was obtained from all blood donors participating

in this study.

Patients and Healthy Volunteers
Plasma samples from nine patients with a positive direct

antiglobulin test (DAT) and confirmed erythrocyte autoantibodies

were included in this study. Four patients were diagnosed with

AIHA. One of these patients presented with AIHA after which a

relapse acute myeloid leukemia was observed, while another was

diagnosed with having both AIHA and anti-phospholipid

syndrome. Two additional patients were diagnosed with immune

thrombocytopenia and AIHA (Evans syndrome). Three patients

with detectable erythrocyte autoantibodies without any clinical

consequences was included as well (Table 1). The antibodies of

one patient reacted with the erythrocyte Rhesus e-antigen on the

patient’s autologous erythrocytes. In five patients anti-Wrighta

(Wra) antibodies were detected, and in one patient additional anti-

Cw antibodies were present. Cold reactive autoantibodies were not

detected in any of the samples. Allogeneic plasma from healthy

volunteer blood donors was used as a control. All plasma samples

used in this study had been stored at 220uC before use.

Isolation and Storage of Erythrocytes
An erythrocyte concentrate was obtained using standard blood

bank procedures, from a single eligible donor who was AB0,

Rhesus, Wra and Cw compatible for the detected antibodies in the

patient plasmas. Whole blood (500 ml) was collected in a

Composelect quadruple CPD-SAGM top-and-bottom bag system

(Fresenius Kabi, Bad Homburg, Germany), containing 70 ml

CPD as an anticoagulant. After cooling and centrifugation,

erythrocytes were isolated using a Compomat G4 (Fresenius

Kabi, Bad Homburg, Germany), after which 110 ml SAG-M was

added to the erythrocytes. The erythrocyte suspension was

leukocyte-depleted by in-line filtration, and subsequently stored

at 2 to 6uC.

Sampling of Erythrocyte Concentrates
During a storage period of 35 days, this erythrocyte concentrate

was sampled at regular intervals. After sampling, erythrocytes were

isolated by 10 min centrifugation at 1500 g. At the time of blood

collection, an additional EDTA tube of whole blood was collected

for isolation of plasma and fresh erythrocytes using a Ficoll

gradient.

Isolation of Erythrocyte Vesicles
Erythrocyte-derived vesicles were obtained from 35 day-old

erythrocyte concentrates of two donors who were AB0, Rhesus

and Wra compatible for the detected antibodies in the patient

plasmas. The concentrates were centrifuged for 10 min at 1500 g

to remove all cells. Membrane debris was then removed from the

supernatant by centrifugation for 20 min at 1500 g. Vesicles were

isolated by centrifuging 1.4 ml aliquots of supernatant for 20 min

at 21,000 g. All but 25 ml of the supernatant was then removed,

and the vesicle pellet was resuspended and stored at 280uC.

Indirect Immunoprecipitation of Erythrocyte
Autoantigens

Immunoprecipitation was performed using a modified version

of the procedure described by Barker and colleagues. [9]

Erythrocytes (1.56109) were washed three times using incomplete

Ringer (IR) solution (32 mM HEPES, 125 mM NaCl, 5 mM

glucose, 5 mM KCl, 1 mM MgSO4, pH 7.4), before incubation

for 1 h at 37uC with 500 ml plasma diluted 1/1 in IR. The

sensitized erythrocytes were then washed three times with IR, and

lysed by adding lysis buffer (10 mM HEPES, 1 mM EDTA,

1 mM EGTA, 1 mM benzamidin, 5 mM leupeptin, pH 8.0). The

erythrocyte membranes were pelleted by centrifugation at

21,000 g for 10 min and washed multiple times with lysis buffer

to remove hemoglobin. The membranes were dissolved in 200 ml

1% TX-100 buffer (25 mM HEPES, 150 mM NaCl, 1 mM

EDTA, 1 mM EGTA, 1 mM benzamidin, 5 mM leupeptin, pH

7.4) or RIPA buffer (1% NP-40, 1% deoxycholate, 0.1% SDS,

25 mM HEPES, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA,

1 mM benzamidin, 5 mM leupeptin, pH 7.4) for 30 min on ice

with regular vortexing. Unless mentioned otherwise, the TX100

Table 1. Summary of patient information.

Patient Clinical diagnosis Blood group DAT IAT Alloantibody Autoantibody

1 AIHA (AML) 0 cc d ee IgG, C3 1:4 anti-Wra NS

2 Evans syndrome 0 cc d ee IgG 1:8 2 NS

3 AIHA (APLS) AB CC D ee IgG, C3 1:1 anti-Wra NS

4 2 A CC D ee IgG 1:1 anti-Wra, -Cw NS, anti-e

5 AIHA A Cc D Ee IgG, C3 1:1 anti-Wra NS

6 AIHA A Cc D ee IgG 1:4 anti-Wra NS

7 Evans syndrome 0 Cc D ee IgG 1:1 2 NS

8 2 0 Cc D ee IgG 1:1 2 NS

9 2 0 cc d ee IgG, C3 1:1 2 NS

DAT = direct antiglobulin test, IAT = indirect antiglobulin test (bovine) titer, AIHA = autoimmune hemolytic anemia, AML = acute myeloid leukemia, NS = non-
specific, APLS = antiphospholipid syndrome. All patients had a positive DAT and IAT.
doi:10.1371/journal.pone.0042250.t001
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buffer was applied. Insoluble cytoskeletal components were

removed by 15 min centrifugation at 21,000 g. The protein

content of the supernatant was determined using the Bradford

assay. [10] Supernatant (250 ml) containing 0.35 mg protein was

incubated with 50 ml protein G Dynabeads (Invitrogen, Carlsbad,

USA) for 16 h at 4uC to capture immune complexes. The beads

were washed three times with 1% TX-100 buffer or RIPA buffer

prior to, and directly after the incubation with the supernatant.

Then the captured proteins were dissociated in 15 ml Laemmli

sample buffer (BioRad, Hercules, USA) containing 5% 2-

mercaptoethanol for 30 min at 37uC. When non-denaturing

conditions were applied, proteins were eluted using 50 mM

glycine pH 2.8 for 5 min at room temperature, after which sample

buffer was added (1/4 ratio) without 2-mercaptoethanol. Samples

were stored at 280uC, and thawed on ice on the day of analysis.

Immunoprecipitation of erythrocyte vesicles was performed using

the same protocol without the lysis step, using a single vesicle

aliquot per sample. Smaller (100 ml) incubation volumes were used

for vesicle opsonization, membrane dissolution and immune

complex capture. Plasma was depleted of vesicles by centrifugation

for 60 min at 21,000 g before being used to opsonize erythrocyte

vesicles. Subsequent erythrocyte vesicle isolation and washing was

performed by centrifugation for 20 min at 21,000 g. Direct anti-

band 3 immunoprecipitation in vesicles was performed using

protein G Dynabeads, opsonized with a mouse monoclonal

antibody that recognizes an N-terminal epitope of band 3 (BIII-

136, Sigma-Aldrich, St. Louis, USA), diluted 1:20 in 200 ml

phosphate-buffered saline (PBS), pH 7.4. In the immunoprecip-

itation experiments we observed 25–30 and 50–60 kDa bands,

representing the light and heavy chains of the bound antibodies,

respectively.

SDS-PAGE
SDS-PAGE was performed using TGX 4–15% gels in the Mini

Protean 3 system (both BioRad, Hercules, USA). [11] Approxi-

mate molecular masses were calculated based on the Precision Plus

Protein Standard (BioRad, Hercules, USA). Following SDS-PAGE

(12.5 ml sample per lane), the gels were either used for

immunoblotting, or developed using a silver stain. [12] Optical

densities (OD) of the protein bands were determined using the GS

690 imaging densitometer (Bio-Rad, Hercules, USA) in combina-

tion with Molecular Analyst version 1.5 software. Total erythro-

cyte membrane fractions were loaded as positive controls and for

normalization purposes.

Erythrocyte Vesicle Membrane Protein Biotinylation
For immunoblotting, vesicle membrane proteins were biotiny-

lated prior to IP. Vesicles were washed once with PBS pH 7.4, and

labeled with 1 mM sulfo-NHS-biotin (Thermo Fisher, Waltham,

USA) in PBS pH 8.0 for 30 min at 4uC. Residual sulfo-NHS-

biotin was removed by two consecutive washing steps with PBS

pH 7.4 containing 100 mM glycine.

Immunoblotting
After SDS-PAGE, the proteins were transferred to PVDF

membranes using the iBlot system (Invitrogen, Carlsbad, USA).

The membranes were then blocked with Odyssey Blocking Buffer

(OBB, LI-COR, Lincoln, USA), and incubated for 16 h at 4uC in

OBB containing 0.1% Tween-20 and 1/1000 rabbit polyclonal

antiserum against the membrane domain of human band 3

(K2N6B/PMB3, [13]). After three washing steps with PBS

containing 0.1% Tween-20, the blots were incubated for 1 h at

room temperature in OBB, 0.1% Tween-20, 0.01% SDS, 1/

10,000 streptavidin-Alexa Fluor 680 (Invitrogen, Carlsbad, USA),

and 1/10,000 goat anti-rabbit IgG-IRDye 800 (LI-COR, Lincoln,

USA). This final incubation was followed by a single washing step

using PBS containing 0.1% Tween-20, and three subsequent

washes with PBS. Immunoblots were scanned using the Odyssey

Infrared Imaging System (LI-COR, Lincoln, USA), and analyzed

using Odyssey Software version 2.1.

Proteomics
After one-dimensional gel electrophoresis and blue silver

staining, [14] protein bands of interest were excised and submitted

to in-slice tryptic digestion. In case of total protein identification,

the sample was run briefly into the gel, after which the entire

product was excised and digested. Peptide sequencing of tryptic

digests was performed by nano-liquid chromatography tandem

mass spectrometry using the LTQ-FT ICR (Thermo Fisher,

Waltham, USA) mass spectrometer essentially as described

previously. [15] Peptide and protein identifications were extracted

with the Mascot search engine version 2.2, using the Reference

Sequence (RefSeq) database at the National Center for Biotech-

nical Information (NCBI) with Homo sapiens taxonomy and

added sequence-tags. Carbamidomethylation of cysteines (fixed),

oxidation of methionine (variable) and acetylation of the N-

terminus (variable) were the modifications allowed in the search.

Protein identification validation was performed by an in-house

developed script. [15] The software classifies protein identifica-

tions based on the number of uniquely identified peptide

sequences, clusters proteins sharing the same set of peptides, and

validates the proteins with the following criteria: proteins with a

single peptide must have a peptide score of .49, proteins with

multiple peptides must have a score of .29.

Statistical Analysis
Differences between the patient and allogeneic control group

were determined using a two-way ANOVA followed by a

Bonferroni post test. Differences within a single group were

determined using a one-way ANOVA followed by a Tukey post

test. A confidence level of p,0.05 was considered to be significant.

Results

Altered Epitope Expression of Erythrocytes during Blood
Bank Storage

Storage lesions, possibly resulting in accelerated aging, are

responsible for the fast removal of a considerable portion of the

erythrocytes after transfusion. Both non-physiological aging and

enhanced removal are likely to contribute to the antibody

responses against erythrocytes frequently observed in chronically

transfused patients. In order to test the hypothesis that storage of

erythrocytes under blood bank conditions leads to the formation of

non-physiological neoantigens, a modified indirect immunopre-

cipitation was performed using plasma of six patients with

erythrocyte autoantibodies (Table 1) or of healthy donors (see

Materials and Methods), in combination with erythrocytes

sampled at different time points from a stored erythrocyte unit.

Immunoprecipitations were performed at regular intervals during

blood bank storage.

All plasmas tested precipitated proteins in the 90 to 100 kDa

range (Figure 1). Immunoprecipitation using Ringer buffer instead

of plasma did not result in any detectable protein precipitation

(Figure 1A). Our data show that, although protein quantification

of complex protein mixtures using silver staining can be

problematic due to a limited dynamic range of the technique,

[16] silver staining proved to work well with the highly purified

immunoprecipitates we obtained (Figure 1A). Both the patient and

Erythrocyte Storage Promotes Autoantibody Binding
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the allogeneic control plasmas showed a decrease in signal after

the first week of erythrocyte storage. In contrast to the control

samples that revealed a further significant decrease in signal with

time, the signals derived from patient plasma significantly

increased again with storage time (Figure 1B). Immunoblot

analysis of membrane fractions from erythrocytes of various

storage periods using patient and allogeneic control plasma

resulted in high background signals and/or non-specific binding,

probably due to the denaturing conditions of SDS-PAGE and

blotting (data not shown).

Freshly stored erythrocytes are recognized by naturally occur-

ring antibodies. [1] At the later stages of storage, only autoanti-

bodies present in the patient plasmas show enhanced binding to

erythrocytes, suggesting a change in erythrocyte make-up upon

storage that is only detectable with patient plasma. This change

may be a trigger for pathological events. In order to determine the

identity of the protein(s) involved, we proceeded to analyze the

precipitated proteins by proteomics.

Identity of the Precipitated Proteins
In addition to the proteins in the 90 to 100 kDa range,

immunoprecipitation of erythrocyte membrane fractions using

patient plasmas revealed multiple other protein bands (Figure 2A).

Differential extraction experiments showed that the proteins in the

90 to 100 kDa range were directly targeted by the patient plasma,

instead of being co-precipitated as was the case for several other

proteins, such as the 80 kDa protein band, which dissociated from

the immune complex under the more stringent conditions of the

RIPA buffer (Figure 2A). Furthermore, SDS-PAGE under non-

reducing conditions indicated that the precipitated proteins mostly

reside in one or more large complexes (Figure 2A). Heavy and

light antibody chains (H and L in Figure 2A) are clearly visible due

to the nature of the technique used.

For proteomics analysis, an immunoprecipitation using patient

plasma (patients 1, 8 and 9) and allogeneic plasma (control) was

performed in triplicate on erythrocytes stored for 35 days. A

representative silver stained gel of one of these immunoprecipi-

tations is depicted in Figure 2B. The total products of these

immunoprecipitations were analyzed by mass spectrometry

(Table 2). In addition, gel slices in the 80–100 and 70–80 kDa

ranges (Figure 2B, slices I and II, respectively) were excised from

the immunoprecipitation product of the erythrocytes incubated

with the plasma of patient 1 and analyzed by proteomics.

In summary, the proteomic analysis revealed that erythrocyte

autoantibodies from the patient plasma precipitate multiple

proteins. The samples consisted of membrane as well as cytosolic

proteins, all of which have been described in previous proteomic

inventories of the erythrocyte membrane (Table 2). [17] Further-

more they contained various plasma proteins, such as immuno-

globulins, complement components, lipoproteins, and several

immunoglobulins, and complement and coagulation-associated

proteins. The protein compositionof the samples from the different

patient samples revealed significant overlap, although less proteins

were detected in the samples of patients 8 and 9. This could be due

to the lower titer of these plasmas (Table 1). Proteomic analysis of

the allogeneic plasma control precipitation did not reveal any

erythrocyte-related proteins.

A complete list of all the proteins detected in the proteomics

analysis is provided in Table S1.

Finally, we attempted to elucidate the nature of the most

dominant antigens. The proteomic analysis of gel slice I (Figure 2B)

identified several proteins, including band 3 as the only membrane

protein detected (Table S1).

Erythrocyte Autoantibodies Recognize Erythrocyte
Vesicles Formed during Blood Banking

During their stay in the circulation, erythrocytes form vesicles

that are rapidly removed once they appear in the bloodstream.

Vesiculation also occurs during blood banking, especially during

the later stages of storage. [18] Since erythrocyte vesiculation

in vivo may constitute a mechanism for the removal of damaged

membrane patches, and these vesicles are efficiently opsonized,

[2,15] we investigated whether vesicles formed during blood bank

storage were also recognized by patient anti-erythrocyte antibod-

ies.

We performed immunoprecipitations using patient plasma and

biotinylated erythrocyte vesicles isolated from 35 day old eryth-

rocyte concentrates (see Materials and Methods). These precipi-

tates were then visualized by immunoblotting for biotinylated

membrane proteins.In stored erythrocyte vesicles, multiple pro-

teins were targeted by the patient anti-erythrocyte antibodies,

including the proteins in the 90 to 100 kDa range also observed in

the erythrocyte precipitates (Figure 3A).

Figure 1. Erythrocyte autoantibody immunoprecipitation of
erythrocytes sampled at regular time intervals during storage.
Analysis was performed by SDS-PAGE, followed by silver staining. (A)
Protein patterns of precipitates obtained using Ringer, autologous
plasma, and a representative example from one out of three allogeneic
plasmas, and one out of six autoantibody-containing plasmas (patient
No. 2). For the allogeneic controls, day 14 is missing. (B) Mean optical
density (OD) of patient (N, solid line, N = 6 patients) and allogeneic
control plasma (m, dotted line, N = 3 volunteers) precipitations.
Numbers indicate approximate molecular weight (kDa). Error bars
represent standard error, *p,0.05.
doi:10.1371/journal.pone.0042250.g001
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In order to identify the protein content of the targeted complex

in these vesicles, an immunoprecipitation was performed in

triplicate on vesicles obtained from a 35 day-old transfusion unit

and analyzed by mass spectrometry (Table 2). An immunoblot of

the immunoprecipitate is depicted in Figure 3B. In addition, we

identified the proteins in a 240–320 kDa gel slice from the

immunoprecipitation (Figure 3B, slice III and Table S1). A

comparison of the erythrocyte to the vesicle precipitate shows a

large overlap in their protein contents, including the presence of

band 3. However, some clear differences were observed as well.

Most notable are the absence of ankyrin and spectrin in the

erythrocyte complex, and the absence of adducin in the vesicle

complex (Table 2). In the vesicle immunoprecipitation, comple-

ment and lipoprotein peptides were much more abundant than in

the erythrocyte immunoprecipitations (Table 2 and Table S1).

Since band 3 was found to be part of the vesicle-derived

precipitates, immunoprecipitations using either patient plasma or

a monoclonal anti-band 3 antibody and biotinylated erythrocyte

vesicles were performed as well (Figure 3A). These precipitates

were then visualized by immunoblotting for biotinylated mem-

brane proteins and band 3. The latter immunoprecipitation

revealed a biotinylated protein pattern that is different from that

obtained with the patient plasma, indicating that different proteins

were targeted (Figure 3A). Although band 3 staining of the patient

sample immunoblot using a polyclonal anti-band 3 antiserum did

not detect full-length band 3 (Figure 3A), several band 3

breakdown products that form during erythrocyte aging and

storage were observed [1,15].

Discussion

During storage under blood bank conditions, erythrocytes

undergo a number of functional and structural alterations, known

as storage lesions. An accelerated and/or disturbed cellular aging

process is likely to trigger aberrant expression of removal signals,

thereby contributing to the removal of up to 30% of the

erythrocytes within the first 24 hours after transfusion. This may

contribute to the immunologic responses associated especially with

chronic transfusions [1,8].

Here we show that the main targets of the erythrocyte

autoantibody-containing patient plasmas tested in this study are

proteins in the 90 to 100 kDa range, which proteomic analysis

revealed to include the membrane protein band 3. Band 3 is

known to form three distinct complexes with other membrane and

cytosolic proteins, and is the membrane anchorage site for the

erythrocyte cytoskeleton. [19] Proteomic analysis showed that the

band 3 binding partners adducin, ankyrin, band 4.1, band 4.2,

GAPDH, hemoglobin and carbonic anhydrase were part of the

precipitated immune complex, which suggests that band 3

complexes were indeed recognized. Although other candidate

Figure 2. Erythrocyte autoantibody immunoprecipitation of stored erythrocytes. (A) Immunoprecipitation of 35 day old erythrocytes with
erythrocyte autoantibody-containing patient plasma and allogeneic control plasma, using TX100 or RIPA extraction buffer and analyzed by SDS-PAGE
under reducing or non-reducing conditions, followed by silver staining. A representative result (patient No. 2) from one out of three patient plasmas
is shown. (B) Example of a silver stained gel of an immunoprecipitation of 35 day stored erythrocytes with plasma of patient No. 1. The same sample
was used for Coomassie blue gel staining and subsequent proteomics analysis (Table 2). Gel slices which were excised for proteomic analyses are
indicated as slices I and II (see also Table S1). Numbers indicate molecular weight (kDa). Heavy [H] and light [L] antibody chains are indicated by
arrows.
doi:10.1371/journal.pone.0042250.g002
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Table 2. Summary of proteins identified by proteomics analyses of erythrocyte/vesicle immunoprecipitations using erythrocyte
autoantibody-containing plasma of patients 1, 8 and 9, and allogeneic plasma (control).

MW Erythrocyte Vesicle

Protein (kDa) Control Patient 1 Patient 8 Patient 9 Patient 1

Structural

Band 3 95 + + +

Band 4.1 66 + + +

Band 4.2 80 + +

Adducin 81 + +

Ankyrin 206 +

Actin 42 + + + +

Spectrin 246 +

Metabolism

GAPDH 36 + +

Glucose transporter 1 54 + +

Glutathione S-transferase 26 +

Phosphofructokinase 85

Type II PIP kinase 46 +

Various

a globin 15 + +

b globin 16 + + + +

Annexin II 39 +

Carbonic anhydrase I 29 +

Carbonic anhydrase II 29 + +

HSP 70 70 +

Stomatin 32 + +

Thioredoxin 12 +

Thrombospondin 1 129 +

Transglutaminase 3 77

Immunoglobulins

Ig heavy chain 50–60 + +

Ig light chain 25–30 + +

Complement

CC 1 26 + + +

CC 3 187 + + + +

CC 4 193 + + + + +

CC 5 188 + + + +

CC 6 105 +

CC 8 22 + +

CC 9 63 +

Factor B 90 + +

Complement inhibitors

C1 inhibitor + +

Clusterin 58 + + + +

Factor H 155 + +

Inter-a inhibitor 101–107 + + + +

Vitronectin 54 +

Lipoproteins

Apolipoprotein A 31 + + + +

Apolipoprotein B 516 + + + + +

Apolipoprotein D 21 +

Erythrocyte Storage Promotes Autoantibody Binding
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antigens cannot be completely ruled out, the observation that band

3 is the only membrane protein detected in the immunoprecip-

itates, makes it the most likely candidate antigen. Band 3 likely

contains epitopes that trigger the harmful immune response

leading to the formation of these erythrocyte autoantibodies. [20]

This is underscored by the ability of a band 3 peptide to prime T

cells for a band 3 response and accelerate the development of

erythrocyte autoantibodies and anemia in a mouse model for

AIHA [21].

Our data reveal that autologous and allogeneic plasma

predominantly reacted with fresh and short stored erythrocytes,

possibly by the binding of naturally occurring anti-band 3

antibodies. [1] In contrast, patient plasma autoantibody binding

increased during erythrocyte storage, which suggests that non-

physiological antigens become expressed during blood bank

storage. One explanation for the enhanced autoantibody binding

could be storage lesion-induced expression of erythrocyte aging-

associated antigens [1,4,5].

Notably, previous work on erythrocyte autoantibodies, showed

these antibodies to be specific for either band 3 or Rhesus protein.

[9,20] The apparent absence of Rhesus proteins in our analyses is

probably due to the exclusion of patient plasma that showed

(partial) specificity toward Rhesus antigens. The presence of

alloantibodies against Wra, an epitope located on band 3, [22] in

five of the nine patients also hints at specificity for band 3 rather

than Rhesus protein.

A remarkable observation was the precipitation of adaptor

protein 2 (AP2) complex by the patient plasma (Table S1), as this

protein is responsible for membrane attachment of, and

membrane protein recruitment to clathrin-coated vesicles. [23]

AP2 might be a remnant from the reticulocyte stage that binds to

one or more proteins in the precipitated complex. Band 3 has been

shown to interact with clathrin-coated vesicle machinery in kidney

cells, which supports this possibility [24].

Although erythrocyte-derived vesicles formed during storage are

known to be enriched in immunoglobulins, [15,25] we here show

that anti-erythrocyte autoantibodies readily recognized the vesicles

as well. The vesicle precipitates contained spectrin and ankyrin,

while the erythrocyte precipitates did not. The opposite was

observed for adducin, which was present only in the erythrocyte

Figure 3. Erythrocyte autoantibody immunoprecipitation of biotinylated erythrocyte vesicles from a 35 day old transfusion unit.
(A) Immunoprecipitation with either plasma from patient No. 2, or a monoclonal antibody against band 3 (see Materials and Methods). Analysis was
performed by SDS-PAGE, followed by detection of biotinylated membrane proteins (red, streptavidin) and band 3 (green, polyclonal rabbit antibody).
A protein G bead control was included. (B) Example immunoprecipitation of biotinylated erythrocyte vesicles from a 35 day old transfusion unit using
plasma from patient No. 1. Analysis was performed by SDS-PAGE, followed by detection of biotinylated membrane proteins using fluorochrome
conjugated streptavidin. The same sample was used for Coomassie blue gel staining and subsequent proteomics analysis (Table 2). The gel slice
which was excised for proteomic analysis is indicated as slice III (see also Table S1). Numbers indicate approximate molecular weight (kDa). Blots were
analyzed using the Odyssey Infrared Imaging System.
doi:10.1371/journal.pone.0042250.g003

Table 2. Cont.

MW Erythrocyte Vesicle

Protein (kDa) Control Patient 1 Patient 8 Patient 9 Patient 1

Apolipoprotein E Apolipoprotein H 36 + + + + +

Apolipoprotein L1 44 +

doi:10.1371/journal.pone.0042250.t002
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precipitates. Ankyrin and adducin are known to reside in two

functionally different complexes in the erythrocyte membrane, the

ankyrin complex and the junctional complex. [19] An explanation

for our observations may be the selective erythrocyte autoantibody

binding of the band 3 - ankyrin complex in vesicles, compared to

the selective targeting of the junctional complex in erythrocytes.

The differences in protein composition between erythrocytes and

their vesicles could also account for the absence of adducin in the

vesicle precipitates. [2,15,18] The strikingly high complement

content and apparent presence of autoantigens in the patient

plasma vesicle precipitates indicate that these vesicles may be

involved in clinically relevant immune responses.

The possibility of selective recognition of damaged or degraded

band 3 in the vesicles was also investigated by comparing the

patient plasma immunoprecipitation to that of a monoclonal anti-

band 3 antibody. Patient erythrocyte autoantibodies appear to

recognize a subset of the band 3 complexes in the vesicles, as there

was only a partial overlap in the membrane proteins that were

precipitated. This fits with the known selective binding of

physiological autoantibodies to damaged band 3. [1,4] The

presence of damage-associated proteins (e.g. HSP70, 26S protea-

some and transglutaminases) and band 3 degradation products in

the complex precipitated using patient plasma supports this view

(Table S1, and Figure 3, respectively) [26,27].

Intriguingly, vesicle-associated spectrin was biotinylated using

the membrane-impermeable sulfo-NHS-biotin (Table S1, and

Figure 3C). One possible explanation is the diffusion of the sulfo-

NHS-biotin into damaged vesicles via membrane pores. [25]

Alternatively, the presence of inside-out oriented membrane

vesicles could explain the presence of biotinylated spectrin. [28]

The latter implies that, after erythrocyte transfusion, intracellular

epitopes become accessible to the immune system, [29] a process

generally known to be involved in the onset of autoimmune

disorders [30].

The alternative erythrocyte autoantibody targeting in these

vesicles, combined with the enhanced complement binding,

support the notion that erythrocyte-derived vesicles might be

important players in the inflammatory side-effects encountered

during and after chronic erythrocyte transfusion. [8,31] This is in

line with the increasing amount of evidence showing that vesicles

of different cellular origins are actively involved in inflamma-

tion.[32–34] Also, vesicle-containing supernatants from erythro-

cyte concentrates were found to have immune regulatory functions

[35,36].

Taken together, we have demonstrated a change in pathology-

associated erythrocyte antigenicity during blood bank storage,

which is accompanied with enhanced patient erythrocyte autoan-

tibody binding. These changes probably include storage-related

band 3 breakdown, as described in previous studies. [1,4] The

composition of the immune complex targeted in the vesicles was

different from that of stored erythrocytes, implying that the vesicles

might have a different capacity to modulate the immune system.

These findings corroborate the hypothesis that prolonged

storage increases the transfusion-associated risks, [37] in particular

the formation of anti-erythrocyte alloantibodies and autoantibod-

ies by transfusion-dependent patients. We aim to elucidate the

molecular identity of the involved epitopes, the mechanism(s)

underlying these changes, and their pathophysiological implica-

tions.

Supporting Information

Table S1 Proteins identified by proteomics analyses of
erythrocyte/vesicle immunoprecipitations using eryth-
rocyte autoantibody-containing plasma of patients 1, 8
and 9, and allogeneic plasma (control). Numbers represent

the identified peptide sequences per protein. Either total products

or gel slices containing proteins of a certain MW (kDa) were

analyzed. Proteins in specific gel slices were also identified (slices I

and II: Figure 2B, slice III: Figure 3B). Skin and trypsin

contaminants were excluded from this overview. Immunoprecip-

itations and proteomics analyses were performed as mentioned in

Materials and Methods.

(PDF)
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