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Regaining communication abilities in patients who are unable to speak or move is
one of the main goals in decoding brain waves for brain-computer interface (BCI)
control. Many BCI approaches designed for communication rely on attention to visual
stimuli, commonly applying an oddball paradigm, and require both eye movements
and adequate visual acuity. These abilities may, however, be absent in patients who
depend on BCI communication. We have therefore developed a response-based
communication BCI, which is independent of gaze shifts but utilizes covert shifts of
attention to the left or right visual field. We recorded the electroencephalogram (EEG)
from 29 channels and coregistered the vertical and horizontal electrooculogram. Data-
driven decoding of small attention-based differences between the hemispheres, also
known as N2pc, was performed using 14 posterior channels, which are expected to
reflect correlates of visual spatial attention. Eighteen healthy participants responded to
120 statements by covertly directing attention to one of two colored symbols (green
and red crosses for “yes” and “no,” respectively), presented in the user’s left and right
visual field, respectively, while maintaining central gaze fixation. On average across
participants, 88.5% (std: 7.8%) of responses were correctly decoded online. In order
to investigate the potential influence of stimulus features on accuracy, we presented the
symbols with different visual angles, by altering symbol size and eccentricity. The offline
analysis revealed that stimulus features have a minimal impact on the controllability of
the BCI. Hence, we show with our novel approach that spatial attention to a colored
symbol is a robust method with which to control a BCI, which has the potential to
support severely paralyzed people with impaired eye movements and low visual acuity
in communicating with their environment.

Keywords: visual spatial attention, brain-computer interface, stimulus features, N2pc, canonical correlation
analysis, gaze-independent, BCI
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INTRODUCTION

A brain-computer interface (BCI) that can be controlled
independently of gaze shifts could constitute a helpful assistive
device for persons who suffer from severe neurological disorders.
However, most developments in the field of BCI presume that
the users can move their eyes. One of the most extensively
studied brain signals is the steady-state-visual-evoked potential
(SSVEP; Müller-Putz et al., 2005; Lin et al., 2007; Vialatte
et al., 2010; Zhu et al., 2010), because its signal-to-noise ratio
is relatively high, and low training effort is required to set up
the decoder. It is commonly used in overt BCI control, since
during covert attention paradigms, the behavioral performance,
the SSVEP amplitude and BCI accuracy are comparatively
reduced (Kelly et al., 2004; Walter et al., 2012). Another
prominent example is the matrix speller, which was initially
introduced by Farwell and Donchin (1988) and utilizes the
P300 response to detect the time point at which the stimulus
is presented at the target symbol location, on which the users’
attention is focused. Overt attention has also been shown
to enable more reliable control than covert attention using
matrix spellers (Brunner et al., 2010; Treder and Blankertz,
2010). Reliability is greater during overt compared with covert
attention due to the additional modulation of early visual
event-related potential (ERP) components according to the
focus of attention (Treder and Blankertz, 2010; Frenzel et al.,
2011), which is deemed to result from greater central than
peripheral visual acuity. Hence, paradigms have been developed,
which make use of more centrally located presentations (Treder
et al., 2011b). For example, rapid serial visual presentation
has been applied to detect a target in a series of rapidly
presented symbols (Acqualagna et al., 2010; Lin et al., 2018).
The disadvantage of this paradigm is that target presentations
could be missed due to the attentional blink (Raymond et al.,
1992). Moreover, in general, vision-based BCIs require good
visual acuity, even if they are gaze-independent, but potential
users frequently suffer from impaired vision (Halder et al.,
2016). For this reason, auditory (Kübler et al., 2009; Halder
et al., 2010, 2016; Hill et al., 2014) and tactile variants
(Brouwer and van Erp, 2010; Jin et al., 2020) of the oddball
paradigm have been investigated, with the finding that they
provide inferior performance compared to BCIs based on visual
stimuli (Severens et al., 2014).

In summary, a great deal of research into BCIs is dependent
upon participants’ ability to execute eye movements. This
requirement, however, largely neglects the fact that the main aim
in BCI development is to provide a means of communication and
control for patients in whom the ability to execute eye movements
is impaired. Recently, it has been shown that spatial attention
to peripherally presented colored stimuli permits reliable, gaze-
independent control of a four class BCI (Reichert et al., 2020a).
The paradigm takes advantage of the fact that shifts in attention
to targets that pop up in the periphery of the visual field evoke
slight interhemispheric differences in brain activity, depending
on the side where the target was presented. This phenomenon has
been intensively investigated in visual search experiments, where
targets were presented in a search display among distractors,

e.g., (Heinze et al., 1990; Luck and Hillyard, 1994a; Luck and
Ford, 1998). Specifically, it has been found that in parieto-
occipital regions contralateral to the presented target, 180–300 ms
after onset, a stronger negative deflection compared to ipsilateral
sites can be measured with the electroencephalogram (EEG).
This component is known as the N2pc (Luck and Hillyard,
1994b) and is assumed to reflect the attentional selection of
target features (Eimer, 1996). The fact that paying attention
to simple features like color evokes spatially different ERPs
depending on the visual hemifield where it was presented,
suggests that the N2pc may be suited to gaze-independent BCI
control. However, the potential advantages of using shifts in
spatial attention have not yet been systematically evaluated for
use in BCI control. The ability to classify several positions of
peripherally presented targets has been evaluated using alpha
activity (van Gerven and Jensen, 2009; Treder et al., 2011a)
and ERPs (Fahrenfort et al., 2017). Classification of hemispheric
differences, depending on the hemifield in which the target
was presented, has been successfully applied for target detection
in aerial images (Matran-Fernandez and Poli, 2017), for the
detection of the tilt of Gabor patches (Xu et al., 2016) as well as
in visual search for colored digits (Awni et al., 2013) and circles
(Tian et al., 2019). While data in these studies were analyzed
offline, to our knowledge, only one study has implemented
a gaze-independent closed-loop BCI based on N2pc detection
(Reichert et al., 2020a), where participants performed a two-
dimensional navigation task. Here we extend this initial work
to evaluate how stimulus size and eccentricity modulate the
N2pc, which could alter the accuracy of the BCI. Specifically,
we implemented a BCI for binary communication, suitable
for responding to dichotomous questions. We hypothesize that
hemispheric differences related to spatial attention are largely
independent of stimulus size. This would permit the BCI to be
operated with relatively large stimuli such that patients with low
visual acuity can control the system. While the potential role of
distractors in the composition of the N2pc has been investigated
in a number of studies, with conclusions remaining controversial
(Luck et al., 1997; Hopf et al., 2002; Hickey et al., 2009; Mazza
et al., 2009), there have been no systematic investigations of
the impact of symbol size and only one recent study exploring
the impact of target eccentricity on the N2pc component
(Papaioannou and Luck, 2020). However, BCI accuracy might
depend on stimulus features, as such a dependency has been
revealed using BCIs based on the P300 potential. For instance,
accuracy was increased when faces were presented as stimuli as
opposed to character flashes or meaningless images (Kaufmann
et al., 2011), when luminance and chromatic features were
combined (Takano et al., 2009) and when 3D stereo visual
stimuli were presented as opposed to 2D stimuli (Qu et al.,
2018). In contrast, symbol size and inter-symbol distance appears
to have no general effect on the performance (Salvaris and
Sepulveda, 2009). In the BCI experiment presented here, we
varied symbol sizes and eccentricities to investigate whether
such stimulus features have an impact on classification accuracy,
and if so, to determine the optimal set of stimulus features
to prevent poor performance due to inappropriate parameter
choices in future studies.

Frontiers in Neuroscience | www.frontiersin.org 2 December 2020 | Volume 14 | Article 591777

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-591777 November 25, 2020 Time: 12:26 # 3

Reichert et al. Spatial-Attention-Based BCI

MATERIALS AND METHODS

Participants and Recordings
Eighteen healthy participants (10 female, 19 to 38 years, mean
age: 27 years) took part in the study. All participants had normal
or corrected to normal vision and reported no neurological
impairment. They gave written informed consent and were paid
for their participation. The study was approved by the Ethics
Committee of the Otto-von-Guericke University, Magdeburg.

Participants were seated in an acoustically shielded and
dimly lit cabin and viewed a 24” display (ASUS VG248QE)
from a distance of 70 cm. Visual stimuli were registered by a
photodiode to synchronize screen events with the EEG. The EEG
was recorded from 29 Ag/AgCl electrodes, placed at standard
positions of an extended 10–20 montage, using a BrainAmp
DC Amplifier (Brain Products GmbH, Germany). Electrode
measurements were referenced against the right mastoid and
sampled at 250 Hz. Furthermore, the vertical and horizontal EOG
(hEOG) was recorded simultaneously to register eye movements.
Parallel to the recordings, EEG signals were transferred through
TCP/IP to the BCI client.

EOG Calibration
Before the experiment started, we recorded the EOG while
participants were presented with a cross which they were asked
to track with their gaze, and which changed its position every
1,250 ms. The position displacement relative to the center varied
from 1 degree to 7 degrees horizontally and in 30% of trials
we additionally displaced the cross by 2 degrees of visual angle
vertically. Three times the cross was replaced by a circle, and
participants were asked to perform an eye blink immediately.
In total, 40 gaze shifts and three blinks were performed in an
unpredictable order, resulting in approximately 1 min of EOG
calibration. This procedure provided us with calibration data
which characterize the strength of EOG signals as a function of
gaze shift angle. We used these data to evaluate the degree of
unintentional eye movement during BCI control.

Stimulus and Task
Participants were asked to respond to yes/no questions or
statements by shifting their attention to a green +-cross to
respond with “yes” or to a red × -cross to respond with “no”
(see Figure 1). The first 96 questions and statements could be
objectively answered with “yes” or “no,” e.g., “Is Berlin a city?”. To
reduce the probability that there is a bias toward one particular
answer, each question or statement also had a counterpart (e.g.,
“Is Berlin a continent?”), such that the numbers of expected
“yes” and “no” answers were balanced. The last 24 questions
could only be answered by the participant subjectively (e.g.,
“Are you a vegetarian?”), which constituted a demonstration
of real-world application. Note that a correct answer was not
relevant for the BCI. The BCI only evaluated the attentional
shift, as decoded from the EEG and fed the result back to
the participants. In turn, participants evaluated whether their
intended response and the BCI feedback matched. A button press
with the index finger indicated correct BCI feedback and a button

press with the middle finger indicated that the feedback was not
correct. Sixteen participants were native German speakers and
were presented with questions in German. Two participants were
not German but fluent in English, and we presented the same
questions in English.

Each trial started with presentation of a question. The
participants had time to select the response and direct their gaze
on the upper or lower but central fixation cross corresponding
to the answer until they pressed a button to start the stimulus
sequence. The differently colored fixation crosses were presented
to help the participant to keep the target in mind during the
entire trial. For example, if the participants decided to answer
with yes, they directed their gaze to the green central fixation
cross and focused their attention on the green +-cross, which
was presented randomly left or right, during the whole stimulus
sequence that followed. A single stimulus sequence comprised
a series of ten stimuli, which was found previously to provide a
good trade-off between stimulation time and accuracy (Reichert
et al., 2020a). A single stimulus display thus consisted of a red× -
cross presented in the left or right visual field and a green+-cross
presented at the opposite visual field. The position at which the
cross symbols appeared was surrounded by 8 gray dots, which
were uninterruptedly presented throughout the whole trial to
indicate the position where the stimulus would appear. In each
stimulus display, we presented both a red and a green cross, one
to the left and one to the right. Across the stimulus sequence,
the colors were pseudo-randomly allocated to visual fields, with
the restriction that the number of left/right presentations was
balanced for both colors and that the same color was presented in
the same visual field in a maximum of three consecutive stimulus
displays. Each stimulus display was presented for 250 ms with a
stimulus onset asynchrony of 850 ms, jittered by 0–250 ms. For an
example stimulus sequence see the Supplementary Material. The
horizontal position α and size of the stimuli ϕ was constant within
a trial but varied between trials. We used four different ϕ levels,
i.e., four symbol sizes which we define in visual angles (ϕ1 = 0.45◦,
ϕ2 = 0.90◦, ϕ3 = 1.36◦, and ϕ4 = 1.81◦) and five different α levels,
i.e., five eccentricities which we define in visual angles (α1 = 4◦,
α2 = 5.5◦, α3 = 7◦, α4 = 8.5◦, and α5 = 10◦). See also Figure 2
for a definition of parameters α and ϕ. We combined parameters
ϕj with αj and with αj+1, j = 1. . .4, such that 8 parameter pairs
were tested. Each parameter set was applied in random order,
three times per block, resulting in 24 trials per block. After
the stimulus sequence was presented, feedback “yes” or “no” as
decoded with the BCI, was presented. The participants confirmed
the correctness of the feedback as described above. The resulting
response was considered the ground truth, which we used to train
and evaluate the BCI.

The first two blocks were conducted to acquire data to train
the classifier. Therefore, we did not present questions in those
blocks but instructed the participant to shift attention to the green
symbol in the first block and to the red symbol in the second
block. Afterward, we presented five blocks with 24 questions or
statements each, except for one participant who performed only
three question blocks due to technical issues. The classifier was
initially trained with data from the first two blocks and retrained
after each trial.
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FIGURE 1 | Structure of one trial. The trial started with a dichotomous question. The participant started the stimulation sequence by button press. After the stimulus
presentation was finished, the BCI determined the target symbol, and the corresponding feedback was presented. Finally, participants indicated its correctness by
responding with a further button press. See also the Supplementary Material for a video demonstration.

FIGURE 2 | Parameter definition for eccentricity α and symbol size ϕ, both
defined as visual angles. The participant’s gaze is directed to one of the upper
central crosses.

Processing of EEG Data
In order to prevent hemispheric differences induced by a
unilateral reference electrode, we re-referenced the EEG data to
the average of left and right mastoid. Although we recorded 29
channels to provide full head coverage as open data (Reichert
et al., 2020b), we used only 14 parieto-occipital channels (O9,
O10, CP1, CP2, Pz, P3, P4, P7, P8, PO3, PO4, PO7, PO8, and
Oz) to decode the shifts in visual attention. The EEG data
corresponding to a stimulus sequence of a trial were cut out
according to the start and stop events that we sent as trigger
signals to the EEG device before and after presentation of the
stimulus sequence. A 4th order zero-phase IIR Butterworth
bandpass filter between 1.0 and 12.5 Hz was applied to the data,
which were then resampled to 50 Hz. The stimulus onsets were
determined from the signal sent by the photodiode. Afterward,
the time series data were epoched starting from stimulus onset
to 750 ms after stimulus onset. Since this resulted in 38 sampling
points involving 14 channels, we can write an epoch as a matrix
Xi ∈ R38×14. Since the epochs of one trial, represented by a

sequence of ten stimuli, refer to the same target item, data of
one trial are composed of ten epochs. Epochs in which the green
symbol was presented on the left and the red symbol on the
right were labeled with yi = 1, while epochs in which the red and
green symbols were presented the other way around were labeled
with yi = −1.

Decoding Approach
In this section we first describe the estimation of the decoding
model, which is performed each time the classifier is trained –
online and during the folds of cross validation. Afterward, we
describe how to apply this model to unseen data – both to
present online feedback and also to decode left-out trials in a cross
validation. An implementation of the decoding approach can be
found in the publicly available data set (Reichert et al., 2020b).

Model Estimation
We use canonical correlation analysis (CCA) to estimate spatial
filters and canonical components from training data. The use of
CCA has been proven efficient in the past for decoding SSVEPs
(Nakanishi et al., 2015) and ERPs (Spüler et al., 2014; Xu et al.,
2018; Xiao et al., 2020). The approach presented here is derived
from our previous work (Reichert et al., 2016, 2017) and closely
related to the approach recently published (Reichert et al., 2020a).
CCA successively determines coefficient vectors a and b that
linearly combine two sets of variables X and Y such that the
correlation of Xa and Yb is maximal:

(u, v) = argmax
a,b

corr(Xa,Yb) (1)

where u and v are the resulting canonical variables. In the
present implementation, X represents the concatenation of
EEG epochs and a serves as a spatial filter. To reveal the
hemispheric differences that characterize the shift of attention
to the left or right visual field, the difference wave following left
target presentations and right target presentations is commonly
computed. We model the difference wave by composing a
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matrix Y that is a concatenation of identity matrices I ∈ R38×38

weighted with the labels yi, where yiI indicates that the participant
paid attention to the green symbol and −yiI indicates that the
participant paid attention to the red symbol. The kth column in
the variable set Y represents the kth time point after stimulus
onset in an epoch and can be considered a concatenation of
impulse functions, i.e., a vector of zeros being at the kth sample 1
if the target was presented left and -1 if the target was presented
right. With this matrix, the difference waves for each channel in
X, composed of n epochs per hemifield of target presentation,
can be easily calculated as X̂ = n−1YTX. However, since we want
to determine optimal spatial filters, we apply CCA to X and Y
using the MATLAB R© function canoncorr of the Statistics and
Machine Learning ToolboxTM. As a result, we reveal 14 vectors a,
whose elements can be used as channel weights and 14 vectors b,
whose elements depict the canonical difference waves. Since the
canonical correlation decreases with each iteration of the CCA
algorithm, we retain only vectors that achieve a significance level
p < 0.1 according to the canoncorr function. This procedure is
performed with an arbitrary training set of trials to estimate the
weight vectors a and b needed to classify the attended symbol.

Decoding a Sequence of Attention Shifts
After we have determined a and b from training data, the target
of a new sequence is detected as follows. We concatenate the
epochs of the trial as X′ and concatenate the corresponding
weighted identity matrix yiI as Y ′, i.e., we initially assume that
the green symbol was the target symbol. We then calculate
the Pearson product-moment correlation ρ of X′a and Y ′b
for all vectors we retained after CCA and calculate the mean
correlation ρ̄. The stimulus sequences were designed such that
the target randomly changed between the visual hemifields.
Because there are only two alternatives, which were presented
simultaneously on opposite sites, the sequence for red targets
is the reverse of the sequence for green targets. Thus, if ρ̄>0,
the canonical difference waves of the EEG correlate with the
canonical difference waves of the model functions corresponding
to the sequence of green symbols, as assumed when modeling
Y ′, and indicating that the participant intended to respond “yes.”
If ρ̄ < 0, the canonical difference waves of the EEG correlate
with the canonical difference waves of the model functions
corresponding to the sequence of red symbols, and we present
“no” as feedback.

Evaluation of BCI Performance
During the experiment, we decoded all trials that followed the
first two training blocks and presented the result as feedback.
For this online decoding, we involved all available trials we had
recorded by that time and did not discriminate between stimulus
features. In contrast, we performed offline decoding by leave-
one-out cross-validation (LOOCV) and determined decoding
accuracies that can be achieved by varying stimulus features. To
compare the outcomes using small training subsets with those
achieved with larger training sets, we matched the sample sizes
by random selection of trials from the larger training set. We
repeated the random selection one hundred times and averaged
the decoding accuracies achieved in the LOOCVs.

We performed ANOVA and paired Wilcoxon signed rank
tests to evaluate the impact of stimulus features. To determine
the chance level of the decoder empirically, we performed
a permutation test. Specifically, we randomly permuted
the labels “yes” and “no,” which also implies randomized
“target left” and “target right” assignments and performed
LOOCV. This procedure was repeated 500 times. Afterward, we
determined the 95% confidence interval from the distribution of
decoding accuracies.

EOG Analysis
We pursued two strategies to evaluate a potential impact
of eye movements on BCI performance. First, we applied
our decoding approach to the EOG data that we recorded
during the experiment and compared the accuracy achieved
with that achieved with the parieto-occipital EEG. Second, we
compared the EOG recorded during the experiment with the
EOG calibration data that we recorded prior to the experiment.
Therefore, we calculated the deflection of the hEOG as follows.
The hEOG data were segmented according to the cue in the
EOG calibration and each single stimulus in the BCI experiment,
respectively. We involved a time interval of 750 ms length starting
from the cue or stimulus onset and performed baseline correction
according to the first 100 ms. Afterward, we selected the 25
highest absolute values across the interval, which corresponds to
100 ms of strongest hEOG deflection, and averaged these values.

RESULTS

Online BCI Performance
On average, 88.5% (σ = 7.8%) of participants’ responses were
correctly decoded with our decoding approach. Individual
decoding accuracies ranged from 70.8% to 90.3%, while the
chance level was 50%. The average accuracy corresponds to an
information transfer rate of 3.02 bit/min, neglecting the time
for asking questions and providing feedback. The decoding
accuracy of questions with subjective answers (µ = 88.4%,
σ = 8.4%) did not significantly differ from decoding accuracies
of questions with obvious answers (p = 0.905; µ = 88.5%, and
σ = 8.0%). Because we presented the same number of “yes”
and “no” questions with objective answers in each run except
in the last run, where answers were initially unknown, the
sample sizes of the two classes were balanced, which reduces the
probability that class sizes bias the classification. Consequently,
the true positive rate of both classes was not statistically different
(p = 0.298; “yes”: µ = 89.4%, σ = 8.9%; “no”: µ = 87.5%, and
σ = 8.1%), indicating that the decoder was not biased. The
reported decoding accuracies are summarized in Figure 3.

During the experiment, we retrained the classifier after each
trial starting from the third run to provide the maximum number
of trials available for model estimation. In practical use, the
retraining would not be possible since we would not know the
ground truth of the user’s intention. Therefore, we estimated the
accuracy that can be achieved with only two runs of training by
repeatedly performing a LOOCV with matched sample size. On
average, 85.3% (σ = 11.1%) of trials were correctly decoded, which

Frontiers in Neuroscience | www.frontiersin.org 5 December 2020 | Volume 14 | Article 591777

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-591777 November 25, 2020 Time: 12:26 # 6

Reichert et al. Spatial-Attention-Based BCI

FIGURE 3 | Average decoding accuracies achieved online, validated on the
entire data set, separated for objective and subjective questions, and
separated for green and red targets. No significant differences were found for
any sub group.

demonstrates that the retraining of the classifier improved the
overall performance of the BCI significantly (p < 0.05).

Evaluation of Stimulus Features
By using LOOCV, we maximize the amount of training data
available for estimation of the spatial filters and the canonical
difference waves required for detection of the attended symbol.
We opted for LOOCV, because the number of samples available
is small when validating subsets according to stimulus features.
When all eccentricities and symbol sizes were included, as was the
case for the online decoding, we achieved an average decoding
accuracy of 88.6% (σ = 8.1%) using LOOCV. With this full
data set, we performed a permutation test for each participant,
which resulted in an upper threshold of 59.9% (σ = 0.8%) on
average for the chance level. To investigate the impact of the
stimulus’ eccentricity, we performed LOOCV involving only
trials where stimuli were presented at a specific visual angle,
irrespective of symbol size. Likewise, we performed the same
analysis for the stimulus feature symbol size. To prevent bias
in the evaluation of the performance of a subset due to larger
sample sizes in the training data, we matched the sample sizes
as described in (2.6). As a result, we found that, on average over
participants, the eccentricities α1 = 4◦ and α5 = 10◦ resulted in
slightly lower decoding accuracies, but there was no significant
difference between visual angles α (Figure 4A). For the symbol
size feature, there was also no statistically significant difference
(Figure 4B). Furthermore, to increase the sample size of the
training data set, we grouped each visual angle with its adjacent
visual angle. While the accuracies were generally higher with
these larger data sets, presumably due to a better generalizable
model estimation, decoding accuracies did not statistically differ
between tested visual angles. The symbol size groups ϕ2/ϕ3
and ϕ3/ϕ4 achieved statistically significantly higher accuracies

FIGURE 4 | Average decoding accuracies achieved with variations in stimulus
features (A) eccentricity and (B) symbol size. Dark gray bars indicate that only
trials with that parameter (eccentricity or symbol size) were included in the
analysis, but the other parameter varied (symbol size or eccentricity). Light
gray bars indicate that in the analysis, trials associated with the two adjacent
visual angles were included (e.g., 4◦ and 5.5◦). Error bars indicate the
standard error of the mean. Blue rectangles indicate the mean and the
standard error of accuracies achieved with all stimulus features involved but
sample sizes of the training data sets matched. The dotted line denotes the
upper bound of the guessing level, as determined using a permutation test.

compared to ϕ1/ϕ2 (p< 0.05, uncorrected). When comparing the
parameter subsets, involving all trials but with matched sample
size, only α3 = 7◦ and α3/α4 resulted in statistically significantly
higher accuracies.

Finally, we also evaluated the performance of each parameter
pair used in the experiment. Note that only 3 trials per run
were available for each pair, resulting in 21 trials available
for LOOCV. A 2-way ANOVA revealed no significant effect
of the factors eccentricity (p = 0.98, F4,143 = 0.1) or symbol
size (p = 0.72, F3,143 = 0.45). In Table 1, we show the
results of the single parameter combinations. None of the
combinations was significantly superior to another combination.
Only the parameter combination (ϕ3, α3) achieved statistically
significant higher decoding accuracy (p < 0.05, uncorrected)
compared to classification independent from stimulus features
with matched sample size. Each of the combinations achieved
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TABLE 1 | Decoding accuracy achieved with single parameter pairs (standard deviation in parenthesis).

Visual angle α1 α2 α3 α4 α5

ϕ1 77.7 (17.9) % 79.3 (16.9) % – – –

ϕ2 – 83.2 (13.0) % 82.5 (15.4) % – –

ϕ3 – – 79.6 (15.5) % 79.7 (14.6) % —

ϕ4 – – – 83.4 (17.6) % 80.4 (17.4) %

FIGURE 5 | EOG analysis. (A) Individual decoding accuracies achieved with EOG and with parieto-occipital EEG. EOG decoding accuracies for participants 6 and
14 were above 90% but below those achieved using EEG. Error bars indicate the 95% confidence interval of a permutation test. (B) Individual horizontal EOG
deflections. Here the same two participants also show higher deflections during BCI use, but they are still below the deflection measured when 1◦ movements were
requested in a calibration procedure. All other participants show almost no deflections during BCI use. (C) EOG difference wave between left and right target
presentation. Participants 6 and 14 show considerably higher EOG deflection compared to the average. (D) PO7/PO8 difference wave. Participants 6 and 14 show
the N2pc component (dashed vertical line), typically evoked during spatial attention shifts, similar to the average but with higher positive deflection afterward.
(E) Deflection of the EOG as a function of the angle of gaze shift during EOG calibration. Error bars in (B,E) indicate the standard error of the mean.

individual maximum decoding accuracy in at least two
participants. From the distribution of classification results
independent from stimulus features with matched sample size,
we repeatedly draw 8 decoding accuracies (in analogy to the
8 combinations) and determined the average of the maxima.
This simulates the probability that a maximum value was
achieved by an advantageous drawing of trials. We found no
significant difference between maxima achieved with parameter
combinations and maxima achieved by randomly drawing eight
trial subsets from the entire data set. All these results indicate that
the differences in stimulus features chosen in this study have no
significant impact on the decoding accuracy achieved with the
spatial attention paradigm.

Impact of Eye Movements
The use of only parieto-occipital electrodes reduces the
probability that eye movements have a systematic impact on
the decoding accuracy. However, we pursued two additional
strategies to explore a potential impact of eye movements.
Firstly, if eye movements nonetheless played a substantial role
in discrimination of visual attention shifts, decoding the EOG
data should result in higher accuracies than the EEG channels
over brain areas attributed to visual processing. Therefore, we
applied the same decoding approach to the EOG signals as
we applied to the parieto-occipital EEG channels. The average
decoding accuracy of 63.0% (σ = 13.6%) is significantly lower
than that achieved using EEG data (p < 0.001). Notably, for
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two of the participants, classification of EOG data resulted in
an accuracy of above 90%, but the EEG accuracy was higher
still for those participants (see Figure 5A for details). For the
remaining participants, EOG decoding accuracy was within or
slightly above the confidence interval for chance as determined
by a permutation test.

In a second analysis, we determined the deflection of the
hEOG during the experiment, according to the presentation
side of the target, and compared it with the hEOG deflection
obtained from defined eye movements. We found that most of
the participants showed almost no hEOG deflection. Specifically,
it was much lower than the smallest gaze angle of 1◦, which
we tested in the EOG calibration session. This finding is in
concordance with the results obtained applying our decoding
approach to EOG data only, leading to accuracies close to the
guessing level for most of the participants. The two participants
who showed high decoding accuracy based on EOG channels also
showed highest hEOG deflections, but still below that of 1◦ gaze
angle (Figure 5B). To further provide evidence that the BCI was
not influenced by eye movements, even in the two participants
showing higher EOG deflections compared to the remaining
participants, we show the difference waves (ipsilateral target
presentation subtracted from contralateral target presentations)
of the hEOG (Figure 5C) and of the EEG signal at PO7/PO8
(Figure 5D) for these participants and compare it with the
average signals from the remaining participants. While the hEOG
was much larger in these two participants compared to the
group average, the difference wave at PO7/PO8 shows the typical
N2pc component around 288 ms, which is a marker for shifts
in spatial attention. However, the eye movements also might
propagate to these channels as indicated by the larger positive
deflection. Finally, we show the hEOG deflections as a function
of the gaze angle obtained in an EOG calibration session in
Figure 5E. Comparison indicates that if participants had shifted
their gaze directly to the target with the lowest eccentricity
(α1 = 4◦), an average hEOG deflection of 61.4 µV (σ = 23.2 µV)
would be apparent. However, the average deflection during the
BCI experiment was much lower (<1 µV for 13 participants,
<1.5 µV for 3 participants, <8 µV for 1 participant and <15 µV
for 1 participant).

DISCUSSION

The BCI implementation presented here, demonstrates that
questions can reliably be answered with “yes” or “no” simply by
directing visual spatial attention to one of two simultaneously
presented colored symbols. Sensitivity to differences in stimulus
features, specifically to the size and eccentricity of presented
symbols, could not be found with statistical evidence. However,
large symbols tended to lead to more accurate decoding, which
suggests that even for persons with impaired vision, attention
to a perceived color in the left or right visual hemifield might
be sufficient to determine the shift of spatial attention for
reliable communication.

Although the information transfer rate of binary classification
is low by definition, communication on a “yes” or “no” basis could

provide important assistance in maintaining social interaction for
persons who cannot otherwise communicate. The fact that the
BCI can be controlled independently of gaze shifts and is thus
potentially accessible to severely disabled potential users may be
deemed to compensate for the low information transfer. Gaze-
independent BCIs with two answer options have indeed been
implemented using several other modalities. For example, the
covert shift of attention to auditory stimuli has been decoded
using EEG-based BCIs, achieving a bit rate of 2.46 bit/min and
an accuracy of 78.5% (Halder et al., 2010), which is below the
performance achieved with our visual spatial attention approach.
Another auditory approach achieved 4.98 bit/min neglecting
inter-trial gaps and 85% and 77% accuracy, respectively, (Hill and
Schölkopf, 2012; Hill et al., 2014). Using motor imagery of hand
and foot movement to respond to auditorily presented questions,
only two of ten healthy participants achieved effective control
(Müller-Putz et al., 2013). In further studies, covert speech
was performed in the form of mental repetition of the words
“yes” and “no,” which resulted in decoding accuracies of 63.2%
(Sereshkeh et al., 2017a) and 69.3% (Sereshkeh et al., 2017b).
An independent BCI based on SSVEPs and a non-spatial visual
attention paradigm has produced an accuracy of 72.6% (Zhang
et al., 2010). A new vibrotactile stimulation paradigm achieved
an accuracy of 76.7% and a bit rate of 1.35 bit/min in comparison
to the benchmark paradigm where accuracy was 65.6% and the
bit rate was 0.61 bit/min (Jin et al., 2020). Vibrotactile stimuli
were also tested for communication in six locked-in syndrome
patients (Lugo et al., 2014), where the grand average accuracy
was reported to reach 55.3%. In a follow-up study, an 86.7%
decoding accuracy was achieved with vibrotactile stimulation and
83.3% using motor imagery in healthy controls, but only 63.1%
accuracy was achieved with vibrotactile stimulation and 58.2%
with motor imagery in a patient group (Guger et al., 2017). This
dramatic reduction in decoding accuracy was seen in patients
suffering from a motor neuron disease when the somatosensory
and motor cortex were involved in the control strategy, but it
remains unclear whether such a reduction in accuracy would also
be expected using visual spatial attention to provide responses.
In a case study investigating the ability of a completely locked-in
patient to communicate “yes” and “no” by thinking the answer,
over 70% accuracy was achieved using functional near infrared
spectroscopy (Gallegos-Ayala et al., 2014). This approach was
further investigated with healthy subjects where an accuracy of
75% was achieved (Hwang et al., 2016). While there is no firm
evidence that it is possible to discriminate in EEG signals between
simply thinking “yes” or “no,” we have shown that the direction of
visual spatial attention can be clearly discriminated, with a 88.5%
decoding accuracy, on a binary basis in EEG recordings from
healthy participants. Future studies are required to determine
applicability in patient groups.

Importantly, the results of the current study suggest that the
decoding of spatial attention shifts is largely independent of
several empirically chosen parameters for stimulus presentation.
The parameter choices were made according to commonly
reported measures in N2pc-relevant literature (Luck and
Hillyard, 1994b; Eimer, 1996; Luck et al., 1997; Hickey et al.,
2009; Mazza et al., 2009; Grubert et al., 2017; Donohue et al.,
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2018; Drisdelle and Jolicoeur, 2019). The independence of BCI
performance from stimulus features is indicated by the high
accuracy achieved online, where we trained and tested the
BCI using all trial types irrespective of the symbol size and
eccentricity. However, since the number of samples available to
train a classifier was higher for the whole data set than that
available for subsets that represent specific stimulus features,
the trained model might have been estimated with better
generalizability, leading to a higher accuracy. We therefore
reduced the number of samples used to train the classifier
on data including all possible stimulus features to match the
sample sizes of the subsets based on particular stimulus features.
None of the subsets of trials associated with single parameters
for stimulus features led to significantly different accuracy
when averaged across participants but we found a marginal
significance for the eccentricity 7 ◦. The combination of two
subsets of adjacent parameter values increased the accuracy
compared to single subsets but again, the major increase can
be attributed to the greater number of samples. In a recent
study, magnified and non-magnified symbols were presented at
different eccentricities showing different amplitudes at different
eccentricities, but no interaction was found between eccentricity
and magnification (Papaioannou and Luck, 2020), i.e., the N2pc
amplitude accompanying larger symbols did not differ from that
observed when smaller symbols were employed. This lack of
difference is in accord with our finding that alterations in symbol
size did not result in a significant change in decoding accuracy,
which makes the paradigm potentially suitable for persons who
suffer from impaired vision, because the perception of the target
color, as the to be attended feature, in the left or right visual field,
independent of symbol shape, might be sufficient to decode the
attention shift of those persons. Furthermore, visually impaired
people might not be able to discriminate between different
symbols in the same visual hemifield, which is why we did not
present competing distractors, although they are assumed to
increase relevant hemispherical differences in the EEG (Luck
et al., 1997). In our experiment, participants achieved reliable
control without presentation of competing distractors. Whether
distractors could lead to a further increase in accuracy is one
of the questions for future studies. Regarding eccentricity, there
was trend in our data to better discrimination of spatial attention
when targets were presented in the range of five to nine degrees
visual angle. Papaioannou and Luck (2020) investigated the effect
of eccentricities at visual angles smaller than 4◦ (which was the
smallest in our study) and found that the N2pc amplitude was
constant, even for stimuli near the midline, but the amplitude
was significantly smaller at 8◦ visual angle. In contrast, the post-
N2pc positivity was significantly larger at 8◦. The difference in
our findings could be explained by the fact that the algorithm
we used automatically determined the relevant features from
the EEG and thus, it is not clear whether the N2pc or the
post-N2pc positivity is the main feature that discriminated
between attention shifts with the different eccentricities. Further
investigations are required in this regard. Also, the parameter
space might be extended in future studies to determine individual
boundaries at which the attentional shift is detectable from short
sequences of stimuli. While decoding accuracy is reduced in

visual P300-based BCIs with increasing eccentricity of the target
(Treder and Blankertz, 2010) this study suggests that N2pc-based
BCIs, which depend on shifted stimuli, are largely insensitive
to eccentricity.

We evaluated the hEOG to exclude the possibility that eye
movements have an impact on BCI control. For this purpose,
we recorded defined saccades in a short session before the
actual experiment. The hEOG amplitudes we recorded were in
accordance with the findings of Lins et al. (1993). The hEOG
activity we measured during BCI control was less in amplitude
than measurements during execution of 1◦ saccades for all
participants and close to zero for most of the participants.
Only two participants unintentionally performed small saccades
(below 1◦) during BCI control, which might have biased the
decoding accuracy, but their decoding accuracy using EEG was
nonetheless greater than using EOG. However, since we involved
only parieto-occipital electrodes showing the typical time course
observed during visual spatial attention, it is unlikely that BCI
control was achieved by eye movements.

The BCI we propose here is suited to communication of
responses to yes/no questions simply by directing visual spatial
attention to a colored, peripherally presented symbol in persons
who are unable to move their eyes and has the potential to
be used in the absence of high visual acuity. Our data suggest
that the decoding accuracy of visual spatial attention is largely
independent of symbol size and eccentricity. The new approach
could potentially serve as an assistive communication technique
for patients suffering from severe motor neuron diseases. Future
work should involve evaluation of decoding accuracy in visually
impaired individuals.

CONCLUSION

We implemented a BCI that decodes binary decisions from
a short series of ERPs that solely reflect processes of spatial
attention. We found that the symbol size and eccentricity of
the bilaterally presented stimuli have a minimal impact on the
overall accuracy of the BCI. Consequently, attention to simple
features like color, independent of the stimulus’ shape, might
be sufficient to control such a BCI, rendering it promising for
visually impaired end-users.
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