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Liver disease is a global health issue, resulting in about two million deaths per year. It

encompasses a wide spectrum of varied or unknown etiologies, ranging from lifestyle

choices to pre-existing comorbidities. In recent decades, exposure to environmental

toxins and subsequent liver health outcomes have captured public interest, due to the

extensive application of pesticides, consumption of aflatoxin contaminated foodstuff, and

cyanobacterial harmful algae blooms in endemic regions of liver disease. Hepatocellular

carcinoma is a serious and debilitating condition of the liver, characterized by abdominal

pain and unexplained weight loss. Established risk factors for hepatocellular carcinoma

include alcohol consumption, cigarette smoking, and viral infections of hepatitis B and

C. However, mounting evidence suggests that environmental toxins may represent an

important contributing factor in hepatocellular carcinoma development. This mini-review

synthesizes epidemiological investigations, providing evidence for environmental toxins

as one potential risk factor for liver disease.
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INTRODUCTION

Liver disease is a global health problem causing approximately two million deaths annually, owing
to cirrhosis, hepatocellular carcinoma, and viral hepatitis. One million liver disease deaths occur
from cirrhosis complications, while another million results from viral hepatitis and hepatocellular
carcinoma (1). Despite strides in antiviral and vaccine developments, liver disease represents a
significant burden to society and continues to worsen as life expectancy grows with sedentary
lifestyles and overnutrition (2). The largest burden of liver disease rests in Europe, with cirrhosis
and liver cancer increasing throughout most European countries. Liver disease epidemiology
varies across Europe due to the prevalence of modifiable risk factors, including heavy alcohol
consumption, obesity, and viral hepatitis (3). In the United States of America (USA), chronic liver
disease and cirrhosis are responsible for >44,000 deaths each year, regardless of underestimates
in liver deaths (4). Alcohol-related liver disease, chronic hepatitis B virus, hepatitis C virus, and
non-alcoholic fatty liver disease are common etiologies of chronic liver disease and cirrhosis
(5). Global estimates on chronic liver disease and cirrhosis indicate non-alcoholic fatty liver
disease (60%) as the most common etiology, followed by hepatitis B virus (29%), hepatitis C
virus (9%), and alcoholic-related liver disease (2%) (6). Moreover, China, a developing country
where >20% of population is affected by countless liver diseases, is experiencing an upsurge
in liver disease burden (2). Important causes of liver morbidity and mortality in China include
alcohol-related liver disease, drug-induced liver injury, hepatitis B and C virus infections, liver
cancer, liver cirrhosis, and non-alcoholic fatty liver disease. Although heavy alcohol consumption,
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viral hepatitis, and non-alcoholic liver disease are major risk
factors for liver disease worldwide (7), recent evidence indicates
that environmental toxins (organochlorine pesticides, aflatoxins,
microcystins) contribute to liver disease.

Pesticides, chemicals used to manage and treat pests,
have been linked to human cancers (8). The agricultural
and horticultural industries widely employ pesticides,
and human exposure primarily occurs via diet (9, 10).
Some factors prevent degradation among household
pesticides, such as lack of moisture, microorganisms, and
sunlight (10, 11), which may facilitate human exposure
through dermal contact and ingestion (12). Experimental
studies have demonstrated that organochlorine exposure,
specifically dichlorodiphenyltrichloroethane (DDT) and
dichlorodiphenyldichloroethylene (DDE), results in liver tumors
and hepatocellular carcinoma development in rodents (9, 13–15).
Yet, epidemiological studies examining pesticide exposure and
human hepatocellular carcinoma have produced mixed results,
particularly in the USA. For example, one study determined
that farmers were at an increased risk for HCC compared
to non-farmers (16), while three other studies indicated a
non-significant increased risk for HCC among farmers (17–19).

Aside from pesticides, aflatoxins have shown to increase
the risk of liver disease. Aflatoxins comprise a group of
mycotoxins produced by the toxigenic species, Aspergillus flavus
andAspergillus parasiticus. Aflatoxin B1, a contaminant of dietary
staples (groundnuts, maize, rice, and sorghum) in tropical and
subtropical regions (20), is the main aflatoxin of concern to
humans. High temperatures and humidity, in conjunction with
plant moisture content, are factors of fungal growth and toxin
production (21). Globally, risk of aflatoxin exposure is estimated
to affect 4.5 to 5.5 billion people (22). Southeast Asia, sub-
Saharan Africa, and some parts of South America experience the
highest risk of exposure to aflatoxins. Aflatoxin B1 exposure may
be responsible for approximately between 25,200 and 155,000
HCC cases worldwide, and an estimated 40% live in sub-Saharan
Africa (22).

Liver disease incidence is reportedly high in places enduring
cyanobacterial harmful algae blooms (23–26). These phenomena
result from photosynthetic cyanobacteria multiplying within
freshwater systems given favorable environmental factors, such
as light intensity, nutrients, pH, short-wavelength radiations, and
temperature (27–29). Cyanobacterial harmful algae blooms can
release several cyanotoxins into surrounding waters, including
anatoxins, cylindrospermopsins, microcystins, nodularins,
and saxitoxins (30). However, the microcystins constitute
an important and prevalent cyanotoxin in surface waters
globally, posing environmental and health hazards (31). Many
cyanobacterial genera synthesize microcystins, including colonial
Microcystis spp. and filamentous Anabaena spp., Anabaenopsis
spp., Aphanizomenon, Nostoc, and Planktothrix/Oscillatoria
(32). Their mode of action entails the inhibition of protein
phosphatases 1A and 2B in hepatocytes, where they accumulate
to induce liver damage (33, 34). Acute poisoning can interfere
with liver function, promoting hemorrhage formation, and
ultimately, hemorrhagic shock (35, 36). Also, liver toxicity caused
by microcystin has shown to induce apoptosis, cytoskeletal

disruption, DNA damage, inflammation, necrosis, and oxidative
stress (37, 38).

Ingestion of contaminated drinking water is a frequent
source of human exposure, although microcystins can taint
aquatic organisms for consumption, harbor waters where dermal
contact occurs, and drift as aerosol sprays during recreational
activity (39). Acute exposure causes dermatitis, fever, headache,
increased liver enzyme activity, and stomachache (40). Signs
and symptoms of chronic exposure are less clear, regardless
of a possible connection with an increased liver disease risk.
Several epidemiological studies identified potential linkages
between microcystin exposure and liver disease (23–26, 40).
Fatal intoxications rarely happen, as recounted in Brazil, where
cyanotoxin exposure was considered a contributing factor for the
death of hemodialysis patients (41).

This mini-review investigates the linkage between
environmental toxin exposure and liver disease in endemic
regions. Hepatocellular carcinoma, a major cause of primary
liver disease, is examined in the context of human environmental
exposure. Therefore, we review and analyze pertinent
epidemiological data on hepatocellular carcinoma, supporting
environmental toxins as an emergent risk factor.

HEPATOCELLULAR CARCINOMA

Hepatocellular carcinoma (HCC), a predominant form of
primary liver cancer, is the third leading cause of cancer
mortality worldwide. In the USA, HCC incidence has increased
in recent decades and is expected to rise in the next 20
years as more individuals are diagnosed with hepatitis C virus
and non-alcoholic steatohepatitis (42). From 2000 to 2012,
adjusted incident rates for HCC increased by an average
annual percentage change of 4.5% (95% CI 4.3–4.7) (43).
The main risk factors for HCC in the USA, starting with
the greatest burden for HCC, include non-alcoholic fatty
liver disease, alcoholic liver disease, and hepatitis C and B
viruses (44). In China, HCC is the major histological type
of liver cancer, comprising 83.9–92.3% of liver cancer cases
(45). Approximately 19% of the world’s population resides in
China, and liver cancer incidence is higher compared to other
nations (46).

Hepatitis B and C Viruses
Primary liver cancer is a widespread disease of different varieties,
with HCC accounting for about 75–85% of primary liver
cancers (47). Chronic infection with hepatitis B virus (HBV)
or hepatitis C virus (HCV) is a major risk factor for HCC,
and HBV is the major risk factor in high incident areas of
HCC (48). For instance, approximately 55% of HCC cases
worldwide are due to chronic HBV infection, whereas an
estimated 89% of HCC cases occur in regions endemic or
hyperendemic to HBV (49, 50). In the USA, HCV is a major
risk factor for HCC, where roughly 2% of the population
has the disease (48). HCC in China is largely attributed to
chronic hepatitis B infection, which is acquired early in life.
Behavior intervention and vaccination have shown to reduce
liver cancer incidence in endemic China (51). Universally, the
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availability of the HBV vaccine has resulted in fewer infections
and resultant HCC cases. Similarly, the development of an HCV
vaccine is key to a global control and elimination of HCV (52,
53).

Alcohol Consumption and Cigarette
Smoking
Alcohol consumption is a recognized risk factor for liver cirrhosis
and HCC. In developed nations, such as the USA and Europe,
alcohol consumption is frequent and regarded as one common
etiology of HCC. Depending on the country and geographic
area, the ratio of alcohol abuse to all HCC etiologies varies,
and roughly 15–30% of HCC is attributed to alcohol abuse
(54). Multiple studies demonstrated an association between a
high alcohol consumption and an increased HCC risk. For
example, as reviewed in (55), an alcohol intake of >60–100
g/day increases the risk for HCC, while an alcohol intake of
>600,000ml over a person’s lifespan significantly increases their
risk for HCC. Furthermore, the dose-effect relationship between
alcohol consumption and HCC incidence has been studied in
males and females, individually, with chronic HBV infection.
Individuals with a high alcohol consumption and HBV (OR 48.6
CI 95% 24.1–98.0), or HCV (OR 109 CI 95% 50.9–233.0), had
an increased risk for HCC than individuals with a low alcohol
consumption and without chronic viral infection (56).

The role of cigarette smoking has been examined in
relation to HCC mortality, but its effects remain uncertain.
Cigarette smoking is known to induce toxicity and serves
as initiators and promoters of various cancers (57). A large
cohort study in China demonstrated an association between
cigarette smoking and HCC mortality in females, accounting
for alcohol consumption and dietary habits (58). Similarly, a
large cohort study in Japan determined that cigarette smoking
(past and present) was an important risk factor for HCC
mortality. The study conducted a univariate analysis, meaning
potential confounders and interactive effects potentially altered
the observed association (59).

A meta-analysis of 38 cohort and 58 case-control studies
explored the association of cigarette smoking with an increased
risk in liver cancer development. The adjusted meta-analysis
risk ratio for liver cancer among current smokers and former
smokers was 1.51 (95% CI 1.37–1.67) and 1.12 (CI 95% 0.78–
1.60), respectively. Irrespective of location, publication time,
sample size, and study design, epidemiological studies within
the meta-analysis concluded an increased risk for liver cancer
among current smokers. The number of cigarettes smoked per
day also positively correlated with liver cancer (60). In Hawaii,
a retrospective study concluded a non-significant association
between smoking and HCC survival. However, significant
associations were reported for alcohol consumption and hepatitis
B. Using a multivariable model, another retrospective study
confirmed cigarette smoking as a non-significant independent
predictor of HCC mortality. Unlike previous studies, the study
evaluated the interaction between alcohol consumption and
cigarette smoking, which was statistically significant (p =

0.02) (61).

Pesticides
Pesticides are chemical agents used to control animals, plants,
and microorganisms. Pesticide use in agricultural settings,
commerce, individual households, and public health is large,
increasing the likelihood of human exposures. Diet is a
primary source of exposure in the USA as pesticides are
routinely used in agriculture and horticulture. Alternative
sources of exposure include occupation and residential proximity
to agricultural pesticide applications (9, 10). It has been
hypothesized that pesticide exposure contributes to hepatic
carcinogenesis via genotoxic and immunotoxic mechanisms,
in addition to hormonal action and tumor promotion (9).
Additionally, epidemiological studies in the USA and China
support an association between pesticide exposure and HCC
risk. Case-control studies from China documented significant
increased risks for HCC and organochlorine pesticides (62–64).
Studies in the USA reported inconclusive results on pesticide
exposure andHCC risk. Three studies indicated a non-significant
increased risk for HCC among farmers (17–19), whereas one
study revealed a higher increased risk of HCC among farmers
compared to non-farmers (16). A more recent case-control
study using a geographic information system demonstrated a
significant association between organochlorine pesticides and
increased HCC risk in males (OR 2.76 95% CI 1.58–4,82), but
not in females (OR 0.83 95% CI 0.35–1.93) (65). Collectively,
epidemiological studies in China and the USA provide evidence
that pesticide exposure in agriculturally concentrated areas
increases HCC risk in farmers.

Aflatoxins
Aflatoxins are mycotoxins produced by Aspergillus flavus and
Aspergillus parasiticus. These fungi thrive in hot and humid
environments, which is promising for mycotoxin production.
Aflatoxin B1 (AFB1), a potent mycotoxin of Aspergillus spp.,
is carcinogenic to experimental animals (66). Following its
ingestion, AFB1 is metabolized by the hepatic cytochrome P-450-
dependent monooxygenase system to a potent AFB1-8,9 oxide
(67). This metabolite forms DNA and protein adducts through
covalent interactions, for example, AFB1-guanine and AFB1-
albumin (68). Research on aflatoxin metabolism and toxicology
has resulted in the development of exposure biomarkers to
assess its role in hepatocarcinogenicity.Many of these biomarkers
involve aflatoxin metabolites in urine, DNA and protein adducts
in blood and tissue, and excreted urinary guanine adduct (48).

AFB1 frequently contaminates food items, including corn,
legumes, and peanuts, and human exposure results from
consuming such products (69). Moreover, aflatoxins have been
implicated in HCC incidence, predominantly in sub-Saharan
Africa, Southeast Asia, and China. These regions include
developing countries with tropical and subtropical climates,
which favor Aspergillus spp. growth, thus increasing aflatoxin
exposure (22). Many African and Asian diets involve staples of
groundnuts and maize, two crops prone to aflatoxin infection.
Many epidemiological studies documented associations between
AFB1 exposure biomarkers and HCC risk, and data show that
dietary AFB1 exposure may explain the high incidence of HCC
in sub-Saharan Africa (70).
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HBV is problematic in developing countries where chronic
aflatoxin exposure occurs, and both risk factors affect rural
populations more significantly than urban populations. The
disparity may result from fewer dietary options in rural areas
compared to urban areas. In rural areas, HBV prevalence is
generally high, and viral infection is greater among males than
females (71). AFB1 exposure and HBV infection often co-occur,
making it difficult to measure individual exposure to AFB1,
considering variations in toxin concentrations of food samples.
Consequently, published studies report inconsistent findings
concerning dietary AFB1 exposure and HCC risk. Collecting
AFB1 biomarkers before a diagnosis of HBV or HCV may
benefit prospective studies, allowing researchers to examine the
interaction between AFB1 exposure and HBV or HCV infections
relative to HCC development.

Microcystins
The microcystins (MCs) represent a large group of cyanotoxins
in the environment. These bioactive metabolites are low in
molecular weight and can reach micromolar concentrations
in bloom-infested waters. Various environmental parameters
influence MC production within freshwater ecosystems,
including pH, nitrogen and phosphorus, stochiometric ratio
of available nitrogen to phosphorus, and water temperature
(72). MCs contain a unique molecular substructure, 3-amino-
9-methoxy-2,6,8-trimethyl-10-phenyl-deca-4,6-dienoic acid
(Adda). Two variable sites (2 and 4) within the heptapeptide
differentiates individual congeners (73).With over 250 congeners
identified to date, MC-LR (leucine, arginine) is the most
studied and toxic variant of MCs (74). Oral consumption of
contaminated drinking water is the primary route of exposure to
MCs. Uptake is dependent on a bile acid transporter facilitated
by organic anion-transporting proteins expressed in hepatocytes.
Once in the liver, MCs inactivate protein phosphatases types 1
and 2A, triggering liver failure (33–35). Thus, MCs are classified
as hepatotoxins, and human exposure is vastly a concern in areas
with a high endemicity of liver cancer (Table 1).

An epidemiological survey containing three trials evaluated
MC exposure and PLC in endemic China (23). The first trial
discovered blue-green algal hepatotoxins in ditch/pond samples

(21%), ranging from 90 to 460 pg/ml. In a second trial,
MC concentrations increased from June to September (62–296
pg/ml). The third trial revealed MCs in drinking water sources
of ditches/ponds, rivers, and shallow wells. Most contamination
occurred in river samples (32%), followed by ditch/pond samples
(17%) and shallowwell samples (4%). Results of the epidemiology
survey supported blue-green algal hepatotoxins in drinking water
as one potential risk factor for China’s high PLC incidence.

Previous findings on MC exposure and PLC incidence
prompted hepatotoxin analysis in human serum. Daily chronic
exposure to MCs and ensuing health effects were studied
in fishermen at Lake Chaohu (75). Liquid chromatography-
mass spectrometry detected MCs in 35 samples, averaging
0.389 ng/mL. Compared to the World Health Organization’s
tolerable daily intake for lifetime daily exposure of 2.0–
3.0 µg/person, a range of 2.2–3.9 µg MC-LR equivalents
was estimated as the daily intake of MCs. Multivariable
analyses characterized a positive relationship between serum
liver enzymes and MCs, indicating hepatocellular damage
in fisherman from chronic exposure to MCs. The study
demonstrated a biochemical biomarker for MC exposure via
serum liver enzyme measurement. Several years later, a positive
correlation was discovered for serum MC-LR and HCC risk in
southwest China (7). Statistical analyses were controlled for the
established risk factors, including HBV, alcohol, and aflatoxin.
The odds ratio for HCC risk increased by 2.3 (95% CI 1.5–5.5)
as an elevated serum MC-LR was detected in patients. Binary
logistic regression determined a positive interaction with alcohol
(synergism index = 4.0 95% CI 1.7–9.5) and HBV (synergism
index = 3.0 95% CI 2.0–4.5), but a negative interaction with
aflatoxin (synergism index = 0.4 95% CI 0.3–0.7). The results
confirmed serum MC-LR as an independent risk factor for
HCC risk.

Besides China, liver cancer is a malignant disease in
Central Serbia and the southeastern region of the USA.
Two investigation periods (1980–1990 and 2000–2002) were
conducted on cyanotoxin exposure and PLC mortality and
incidence in Central Serbia (24). Heavy cyanobacterial blooms
occurred in regions with a high PLC mortality (11.6 for 1980–
1990) and PLC incidence (34.7 for 2000–2002). A drinking

TABLE 1 | Summary of epidemiological investigations on microcystins and liver disease.

Authors Country Design Environmental toxin Finding

Ueno et al. (23) China Epidemiological survey Microcystin MC detection in drinking water sources

correlates with a high PLC incidence

Fleming et al. (25) USA Pilot ecological study Microcystin Residential proximity to surface water

drinking sources increases HCC risk

Chen et al. (75) China Longitudinal study Microcystin Concurrent detection of serum MCs and

liver enzymes indicate hepatocellular

damage in fishermen

Svirčev et al. (24) Serbia Descriptive epidemiological method Microcystin Significant and persistent blooms correlate

with PLC mortality and incidence

Zheng et al. (26) China Case-control study Microcystin Serum MC detection in patients link to

HCC risk
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water reservoir contained an elevated MC-LR concentration
of 650 µg/L compared to 2.5 µg/L from tap water. Based
on descriptive epidemiological data, persistent and significant
blooms correlated with PLC morality and incidence. The study
lacked statistical models, which could strengthen the argument
that hepatotoxins in drinking water reservoirs correlate with
PLC mortality and incidence. Following the detection of MCs
in surface water drinking sources, a pilot ecological study in
Florida assessed the proximity to a surface water treatment
plant and HCC risk (25). Environmental databases connected
HCC cancers diagnosed between 1981 and 1998. Residents who
lived within service zones had an increased risk for HCC than
residents who lived in neighboring zones. Study results limited
to the population level as the design was ecological, a limitation
of ecological studies. Conversely, exposure assessments can
identify toxicants and their effects to determine whether a
causal relationship exists between environmental exposure and
adverse health outcome. The validity and variability of MC
biomarkers, however, may present a challenge in defining an
exposure measurement.

CONCLUSION

Liver disease is a multifactorial disease of identified factors,
including alcohol consumption, cigarette smoking, and hepatitis

B and C virus infections. Limited epidemiological investigations
speculate the association between environmental toxin exposure
and hepatocellular carcinoma development in endemic regions.
Hepatocellular carcinoma, a regular cause of cancer death across
the world, is continuing to grow in developing and developed
nations. Herein, environmental exposure constitutes a public
health hazard due to the increased usage of organochlorine
pesticides in occupational settings, dietary staples perpetually
contaminated with aflatoxin B1, and continued presence of
hepatotoxic microcystins in drinking water sources. This
mini-review examined multiple epidemiological studies on
hepatocellular carcinoma in an effort to illuminate human
exposure to environmental toxins as one emergent risk factor
for liver disease. We found that most epidemiological data
support the potential association between environmental toxins
and hepatocellular cancer in the developing world. Notably,
microcystin pollution in drinking water sources appears to
greatly influence liver cancer, a problem worth researching due
to changes in climate and personal lifestyle behaviors. Findings
can be used to assist health and medical professionals in all levels
of prevention, including the diagnosis and treatment of liver
disease patients.
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