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CD4+ regulatory T (Treg) cells expressing CD25 and the transcrip-
tion factor forkhead box P3 (FOXP3) are indispensable for immu-
nological self-tolerance and homeostasis. FOXP3+CD25+CD4+ T
cells in humans, however, are heterogeneous in function and dif-
ferentiation status, including suppressive or nonsuppressive cells
as well as resting or activated Treg cells. We have searched for cell
surface markers specific for suppression-competent Treg cells by
using a panel of currently available monoclonal antibodies reac-
tive with human T cells. We found that CD15s (sialyl Lewis x) was
highly specific for activated, terminally differentiated, and most
suppressive FOXP3high effector Treg (eTreg) cells and able to dif-
ferentiate them in various clinical settings from nonsuppressive
FOXP3+ T cells secreting inflammatory cytokines. For example,
CD15s+FOXP3+ eTreg cells were increased in sarcoidosis, whereas
it was nonsuppressive CD15s−FOXP3+ T cells that were expanded
in lupus flares. FOXP3+ cells induced from conventional CD4+ T
cells by T-cell receptor stimulation hardly expressed CD15s.
CD15s+CD4+ T-cell depletion was sufficient to evoke and enhance
in vitro immune responses against tumor or viral antigens. Collec-
tively, we have identified CD15s as a biomarker instrumental in
both phenotypic and functional analysis of FOXP3+CD4+ T-cell
subpopulations in health and disease. It allows specific targeting
of eTreg cells, rather than whole FOXP3+CD4+ T cells, in controlling
immune responses.
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Regulatory T (Treg) cells expressing the transcription factor
forkhead box P3 (FOXP3) play essential roles for the mainte-

nance of immune self-tolerance and homeostasis (1). They are also
involved in the suppression of effective immune responses against
autologous cancer cells as well as invading microbes. Whereas the
majority of FoxP3-expressing CD4+ T cells are considered to be
suppression-competent Treg cells in mice, there is accumulating
evidence that FOXP3+CD4+ T cells in humans are heterogeneous
in phenotype and function (2). For example, any human conven-
tional CD4+ T cell can transiently up-regulate FOXP3 upon acti-
vation; such FOXP3+ T cells are hardly suppressive (3). In addition,
not all FOXP3-expressing CD4+ T cells in peripheral blood
mononuclear cells (PBMCs) possess suppressive function (4). It is
therefore imperative to determine how functionally and develop-
mentally distinct human FOXP3+ subpopulations can be reliably
delineated to better understand the roles of Treg cells in immu-
nological diseases and to specifically target them for the control of
pathological and physiological immune responses.
Efforts have been made for a decade to divide human

FOXP3+ T cells into functionally or developmentally distinct

subpopulations based on the expression of various cell surface or
intracellular molecules, for example, CD25, CD127, CD45RA
(or CD45RO), ICOS, HLA-DR, and Helios (5–8). We have
found that FOXP3+CD25+CD4+ T cells can be divided into
naïve/resting Treg cells as CD25+CD45RA+FOXP3low (nTreg),
effector/activated Treg cells as CD25highCD45RA−FOXP3high

(eTreg), and nonsuppressive CD4+ T cells as CD25+CD45RA−

FOXP3low (FOXP3+ non-Treg) (4). Upon antigenic stimulation,
nTreg cells differentiate into eTreg cells, the majority of which
die by apoptosis after exerting suppression. In contrast, CD45RA−

FOXP3low non-Treg cells are capable of secreting inflammatory
cytokines. This functional and phenotypic delineation of FOXP3-
expressing CD4+ T-cell subpopulations is useful in assessing Treg
cell development, function, and their status in immunological dis-
eases and aging. It remains challenging, however, how these two
populations with opposite functions, i.e., the highly suppressive
FOXP3high eTreg population and the nonsuppressive and cytokine-
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secreting FOXP3low non-Treg population, can be more discretely
and reliably differentiated by specific molecular markers, especially,
those expressed on the cell surface. This is critically important in
analyzing the possible contribution of Treg cells to the dynamics of
immune responses and preparing a pure suppression-competent
Treg cell preparation for cell therapy of immunological diseases.
In this report, we have searched for cell surface markers

specific for FOXP3+ T-cell subpopulations, in particular, sup-
pression-competent eTreg cells, by evaluating a panel of cur-
rently available monoclonal antibodies reactive with human
T cells. We show that the expression of CD15s (sialyl Lewis x)
is able to accurately delineate eTreg cells from other FOXP3+

T cells, enabling assessment of Treg-mediated suppression in
various immunological conditions and targeting them to con-
trol immune responses.

Results
Cell Surface Molecules Specific for FOXP3+ Subsets. To search for
specific surface markers that are able to differentiate functional
subsets among FOXP3-expressing CD4+ T cells, we conducted
a multiparameter flow cytofluorometric analysis of human CD4+

T cells by using the currently available 323 monoclonal antibodies
reactive with human T cells. We compared each putative marker
with known Treg markers, such as CD25, CD45RA, ICOS (5),
HLA-DR (6), Ki-67, Helios (8), and FOXP3. The analysis revealed
that 18 surface markers were highly expressed on FOXP3high eTreg
cells compared with FOXP3low non-Treg cells (4). They included
12 molecules [CD15s, CLA, HLA-DQ, CD30, CD66B, CD101,
CD275 (ICOS-L), CCR5, CCR6, CCR4, CD137, and CD71] newly
reported here and 6 markers [CD25 (2), HLA-DR (6), CD39 (7, 9),
CD95 (10), CD147 (11), and CD278, i.e., ICOS (5)] previously
reported (Fig. 1A and Figs. S1–S3).
To assess the specificities of these molecules for FOXP3high

eTreg cells, we calculated the percentage of Marker+ cells among
FOXP3+ or FOXP3−CD4+ T cells and the ratio of the former to
the latter (Fig. 1B), with a high ratio indicative of more specific
expression of the marker by FOXP3+CD4+ T cells. We also
compared FOXP3 mean fluorescence intensities (MFIs) of
Marker+FOXP3+CD4+ T cells (Fig. 1C). These analyses revealed
that CD15s was the marker most specifically expressed by
FOXP3+ cells, in particular by CD45RA− cells with the highest
FOXP3MFI. In addition, in contrast with CD15s, FOXP3+ T cells
scarcely expressed nonsialylated CD15 (Fig. 1D). Our search
for markers that were preferentially down-regulated by eTreg
cells, compared with conventional CD4+ T cells, identified seven
markers, i.e., CD26, CD55, CD100, CD130, CD221, CD305, and
CD321; none of them was, however, as discriminative as CD127
(12, 13) (Figs. S1 and S4).
Comparison of surface markers with intracellular expression

of the proliferation marker Ki-67 or the transcription factor
Helios revealed a correlation between Ki-67 and CD71, ICOS, or
ICOS-L, and between Helios and CD39 in some, but not all,
healthy donors (Figs. S2, S3, and S5).
Use of CD15s and CD45RA indeed enabled us to dissect

FOXP3+CD4+ T cells into three discrete fractions; that is, CD15s−

CD45RA+ cells (which were FOXP3low), CD15s+CD45RA− cells
(FOXP3high), and CD15s−CD45RA− cells (FOXP3low) (Fig. 1E).
CD15s was also expressed by some CD45RA−FOXP3− memory or
activated conventional T cells but not by CD45RA+FOXP3− naïve
T cells. Functionally, in accordance with the production of in-
flammatory cytokines such as IL-2 and IFN-γ by some FOXP3low

cells, in particular by CD45RA−FOXP3low cells (4), CD45RA−

CD15s−FOXP3+ cells in healthy individuals actively produced
IFN-γ and IL-2, whereas CD15s+CD45RA− or CD15s−CD45RA+

cells did not (Fig. 1F).
Finally, CD15s+CD45RA−FOXP3+ Treg cells displayed equiv-

alent or higher levels of various markers formerly described as
expressed by human Treg cells (e.g., CD39, CCR4, intracellular

CTLA-4, CD25, and Ki-67) compared with FOXP3highCD45RA−

Treg cells defined by CD45RA and FOXP3 expression levels (4)
(Fig. 1G).
Taken together, within the FOXP3+ population, CD15s rep-

resents a specific cell surface marker for eTreg cells, which are
CD15s+CD45RA−, and differentiate them from cytokine-secreting
FOXP3+ non-Treg cells as CD15s−CD45RA− and nTreg cells
as CD15s−CD45RA+.

CD15s Defines Suppression-Competent FOXP3high Treg Cells.To confirm
that CD15s expression is indeed a marker that is able to dis-
tinguish functional eTreg cells from FOXP3+ non-Treg cells,
we prepared each population as live cells by sorting CD15s+

CD45RA−CD127lowCD25+CD4+ T cells and CD15s−CD45RA−

CD127lowCD25+CD4+ T cells (Fig. 2A). The CD15s+ population
expressed the highest level of FOXP3 (Fig. 2A) and was highly
suppressive, whereas the CD15s− population exhibited the lowest
level of FOXP3 expression and lacked significant suppressive
function (Fig. 2B and Fig. S6).
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We also examined in vitro whether CD15s expression could be
induced in naïve Treg cells and/or FOXP3+ T cells derived from
conventional T cells, by T-cell receptor (TCR) stimulation in the
presence of high dose IL-2 and rapamycin (14, 15). Whereas few
expanding nTreg cells expressed CD15s after 7 d of culture, a
significant proportion of expanding cells up-regulated CD15s by
day 14, whereas CD15s was only weakly expressed on expanding
conventional CD4+ T cells (Fig. 2D).
These results indicate that highly suppression-competent eTreg

cells and nonsuppressive FOXP3+ T cells in PBMCs can be
purified as CD15s+ or CD15s−CD45RA−CD127lowCD25+CD4+

live cells, respectively, by flow cytometry-based cell separation.
In addition, CD15s can differentiate between FOXP3+ natural
Treg cells and FOXP3+ cells induced from conventional T cells
by TCR stimulation.

CD15s Expression in Developing Treg Cells in the Thymus. In the
thymus, ∼15% of CD4/CD8 double-negative (DN) thymocytes,
1∼2% of double-positive (DP) thymocytes, and ∼10% of CD4
single-positive (SP) thymocytes including FOXP3+ and FOXP3−

cells expressed CD15s (Fig. 3A). Approximately half of FOXP3+

CD4 SP thymocytes and FOXP3+ DP thymocytes, which consti-
tuted 1∼2% of DP thymocytes (16), were CD15s+ (Fig. 3B). At
the CD4 SP stage, FOXP3high CD4 SP thymocytes, which were
largely CD45RA−, CD31−, ICOS+, Helios+, and CD25+, included
CD15s+ cells, whereas FOXP3lowCD4 SP thymocytes did not.
Such CD15s+FOXP3high cells included Ki-67+ cells. In contrast,
FOXP3low CD4 SP thymocytes, which were Helios+, expressed
little or no CD15s, Ki-67, or ICOS, and only low levels of CD25;
some of them were CD31+ and CD45RA+. Overall, FOXP3high

cells’ expression patterns of cell surface markers, including
CD15s, were largely similar among FOXP3+ DP thymocytes, CD4
SP thymocytes, and peripheral FOXP3+CD4+ T cells. FOXP3low

thymocytes at DP stage, which included some CD45RA+ and/or
CD31+ cells, were also similar to FOXP3low CD4 SP thymocytes
and CD15s−CD45RA+FOXP3+ naïve Treg cells in the periphery.

Because peripheral eTreg cells appear to be mainly derived from
naïve Treg cells (4), the cell fate of FOXP3high CD4SP cells re-
mains to be determined, in particular, whether they might down-
regulate FOXP3 expression together with other activation markers
including CD15s to become FOXP3lowCD45RA+CD31+ cells,
constitute a part of peripheral FOXP3high eTreg cells, or die by
apoptosis upon activation in the thymus.

CD15s+ T-Cell Depletion Induces Tumor Antigen-Specific CD4+ T-Cell
Responses and Enhances Antiviral CD8+ T-Cell Responses in Vitro.We
next attempted to determine whether CD15s was able to define
Treg cells suppressing antitumor or antiviral responses. We
depleted CD15s+ cells from healthy donor CD4+ T cells and
stimulated the remaining cells for 20 d with autologous X-irra-
diated T-cell depleted PBMCs pulsed with peptides from the
NY-ESO-1 protein, an antigen commonly expressed by human
germ-line cells and cancer cells (17). CD15s-expressing cell de-
pletion markedly enhanced the induction of IFNγ-producing
CD4+ T cells measured by ELISPOT assay (Fig. 4 A and B). In
addition, similar CD15s+ cell depletion and subsequent antigen
stimulation enhanced in vitro immune responses of an HLA-A2+

individual against an HLA–A2-restricted cytomegalovirus (CMV)
antigen as illustrated by a marked increase in the proportion
of CMV–HLA–A2 tetramer positive cells among CD8+ T cells
(Fig. 4C). These results collectively indicate that CD15s is a
specific marker for suppression-competent eTreg cells and can
be useful for boosting antitumor or antiviral T-cell responses.

CD15s+ Treg Cells in Human Immunological Diseases.We also examined
possible relevance of CD15s in analyzing the dynamics of Treg cell
subset composition in various immunological diseases, including
active systemic lupus erythematosus (SLE), active sarcoidosis,
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tometry analysis of FOXP3 and the indicated markers by DN, DP, and CD4
SP thymocytes. Vertical dashed lines separate FOXP3+ cells into FOXP3high

and FOXP3low cells. (B) Expression of CD15s and indicated markers by FOXP3-
expressing DP or CD4 SP thymocytes and peripheral FOXP3+CD4+ T cells.
Data are representative of three independent experiments.
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Sjögren syndrome, systemic sclerosis, myasthenia, and mycosis
fungoides (MF) (Fig. 5A). CD15s expression indeed revealed
disease-specific changes in the proportions of three FOXP3+

subpopulations (i.e., CD15s−CD45RA+FOXP3low nTreg cells,
CD15s+CD45RA−FOXP3high eTreg cells, and CD15s−CD45RA−

FOXP3low non-Treg cells), with general increase of FOXP3+ cells
among CD4+ T cells in these inflammatory diseases. For example,
CD15s+FOXP3+ cells increased in ratio among CD4+ T cells in
sarcoidosis, to a lesser extent in active SLE, and notably in an un-
treated patient with MF. The latter observation is in accordance
with a previous report showing circulating Treg cell expansion in
MF (18). CD45RA−FOXP3high eTreg cells increase in sarcoidosis
accompanied a decrease in CD45RA+FOXP3+ nTreg cells,
whereas CD45RA−FOXP3low non-Treg cells were increased in ac-
tive SLE (4). These alterations, in particular the significant increase
of CD15s+FOXP3+ eTreg cells in sarcoidosis and that of CD15s−

FOXP3+ non-Treg cells in active SLE, were confirmed with in-
dividual samples obtained from healthy donors (n = 8) and patients
with sarcoidosis (n = 8) or SLE (n = 8) (Fig. 5B). Notably, although
the ratio of CD15s+ eTreg cells significantly increased, their abso-
lute numbers were significantly lower in SLE patients compared
with healthy donors, a result consistent with previous observations
(4, 19, 20) (Fig. 5C). Functionally, FOXP3low cells, in particular
CD15s−CD45RA−FOXP3+CD4+ T cells from individuals with SLE
flares actively produced IL-2 and IFN-γ as observed in healthy
donors (Fig. 1F), whereas CD15s+FOXP3+ cells did not (Fig. 5D).
Altogether, these data demonstrate that CD15s expression allows

a clear segregation between eTreg and non-Treg cells, even in
conditions associated with FOXP3+CD4+ T-cell expansions.

Discussion
We have shown in this report that CD15s is highly specifically
expressed by suppression-competent FOXP3+ eTreg cells but

not by nonsuppressive FOXP3+ non-Treg T cells. CD15s is
therefore useful for assessing dynamic changes in the FOXP3+

regulatory/nonregulatory T-cell balance in physiological and
disease states. In addition, finer tuning of immune responses can
be achieved by targeting CD15s-expressing FOXP3+ eTreg cells,
rather than whole FOXP3+ cells.
CD15s (sialyl Lewis x), a tetrasaccharide carbohydrate, is the

α2-3 sialylated form of lacto-N-fucopentaose III (CD15) (21). In
addition to eTreg cells and some memory and/or activated
T cells, CD15s is highly expressed on monocytes, neutrophils, and
some myeloid precursors (22). The carbohydrate nature of this
antigen explains why previous transcriptome analyses of Treg-
specific markers failed to identify the CD15s molecule (4, 23). In
addition, eTreg cells do not express CD15, which is nonsialylated.
CD15s and CD15 synthesis is mediated by fucosyltransferase 7
(FUT7) and fucosyltransferase 9 (FUT9), respectively (24–26).
Our previous transcriptome analysis of FOXP3-expressing CD4+

A

CB

Fig. 4. Induction of in vitro T-cell immune responses by depletion of CD15s-
expressing T cells. (A) Flow cytometry analysis of CD15s and CD45RA expres-
sion by subpopulations of FOXP3+CD4+ T cells from two healthy donors
before or after in vitro depletion of CD15s+ cells. (B) CD4+ T-cell responses to
NY-ESO-1 peptides after CD15s+ cell depletion. CD15s+ cell-depleted or non-
depleted CD4+ T cells isolated from two healthy donors as shown in A were
cultured with T-cell–depleted autologous PBMCs pulsed with overlapping
NY-ESO-1 peptides covering the entire sequence of NY-ESO-1 protein. IFN-
γ–secreting CD4+ T-cell counts were measured by ELISpot assay. (C) CD8+ T-cell
responses by the same donors to CMV peptides after CD15s+ cell depletion.
PBMCs from HLA-A2+ individuals were CD15s+ cell depleted or nondepleted
and cultured in the presence of 10 μM CMV 495–503 HLA-A*0201–restricted
peptide for 7 d, and analyzed for the percentages of CMV tetramer-positive
CD8+ T cells. Data are representative of two independent experiments.

A

B

C

D

Fig. 5. CD15s+ eTreg cells in patients with immunological diseases. (A) Flow
cytometry analysis of PBMCs gated on CD4+ T cells of a representative
healthy donor and of patients with active sarcoidosis, active SLE, Sjögren
syndrome, systemic sclerosis, myasthenia gravis, or untreated mycosis fun-
goides. Expression of CD45RA and FOXP3 on whole CD4+ T cells (Top) and of
CD15s and FOXP3 on CD45RA−CD4+ T cells (Bottom). Numbers indicate
percentage of respective populations among whole CD4+ T cells. (B) Pro-
portions of FOXP3+ subsets among CD4+ T cells in eight healthy donors,
eight patients with active sarcoidosis, and eight patients with active SLE.
Mean values are in red. For comparisons and to establish statistical signifi-
cance, a nonparametric Mann–Whitney u test was performed with P < 0.05
as significant. (C) Absolute counts of CD15s+ eTreg cells in eight healthy
donors and the eight active SLE patients shown in B are compared using a
nonparametric Mann–Whitney u test. Mean values are shown in red with P <
0.05 as significant. (D) Flow cytometry of the production of IL-2 and IFN-γ by
CD4+ T cells from an active SLE patient and FOXP3+ subpopulations gated as
shown after stimulation with PMA and ionomycin for 5 h. Percentages of
cytokine-secreting cells are shown. Data are representative of three in-
dependent experiments.
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T cells indeed showed that FUT7 was highly expressed by eTreg
cells, compared with other FOXP3+ or FOXP3− subsets,
whereas FUT9 was not expressed by CD4+ T cells (4). This in-
dicates that CD15 sialylation is highly specific for eTreg cells.
Functionally, CD15s is a ligand for selectins and is involved in
the cellular interaction with endothelial cells, promoting the
migration of CD15s+ lymphocytes from the peripheral blood into
the tissues (27). Murine CD4+CD25+ Treg cells isolated from
FUT7−/− mice were unable to prevent a delayed type hyper-
sensitivity reaction (28). CD15s does not appear to play a sig-
nificant role in Treg-mediated suppression because eTreg cells
coated with anti-CD15s mAb for their isolation, hence blocked
in their interaction with selectin, exhibited an equivalent in vitro
suppressive activity as eTreg cells isolated by CD45RA and
CD25 expression. Taken together, CD15s is likely involved in the
transmigration of eTreg cells toward target tissues to suppress
tissue-localized inflammation.
We have previously shown that FOXP3-expressing CD4+

T cells in humans could be separated into three subsets based on
their expression levels of intracellular FOXP3 and of CD45RA
(4). CD45RA+FOXP3lowCD4+ nTreg cells, which correspond to
thymus-derived FoxP3+ Treg cells in mice raised in a specific
pathogen-free environment, are easily and distinctly distin-
guished from other T cells. They can also be reliably isolated
from human peripheral blood as live CD45RA+CD25+CD4+

T cells (4). In contrast, the CD45RA−FOXP3+ population is
functionally and phenotypically heterogeneous: FOXP3highCD4+

T cells, which are completely demethylated at the Treg-specific
demethylated region of the FOXP3 gene, are highly suppressive,
whereas FOXP3lowCD4+ T cells, which were hardly demethy-
lated at the region, failed to show suppressive activity. The latter
appear to correspond to, or at least include, those conventional
T cells with an activation-induced FOXP3 expression, which is
not high enough to induce a suppressive function (2). FOXP3high

CD4+ T cells include Treg cells expressing HLA-DR and/or
ICOS. HLA-DR expression reportedly characterizes highly and
rapidly suppressive Treg cells (6), whereas ICOS+ cells appear to
be more prone to produce IL-10 (5). ICOS expression was found
to be highly correlated with Ki-67 expression in the present
study, indicating that ICOS expression may primarily be a pro-
liferation marker rather than a marker defining a specific eTreg
population. In addition, it was proposed that the transcription
factor Helios could represent a marker for thymus-derived Treg
cells (8), although conventional CD4+ T cells with induced ex-
pression of FOXP3 and other activated CD4+ T cells can also
express Helios (29–31). We have failed to find a specific surface
marker associated with Helios expression, although CD39 showed a
correlation in some healthy donors but not in others. A recent study
reported TIGIT as a specific marker for highly suppressive Treg
cells in both mice and humans (32). Human TIGIT+FOXP3+CD4+

T cells were shown to completely suppress T-cell proliferation,
whereas TIGIT−FOXP3+CD4+ T cells were poorly suppressive. It
remains to be determined whether TIGIT+FOXP3+CD4+ T cells,
which were CD45RO+ (i.e., CD45RA−), also contain FOXP3low

non-Treg cells and to what extent TIGIT+FOXP3+CD4+ T cells are
similar to CD15s+ eTreg cells. Collectively, compared with these
Treg markers, an important advantage of CD15s is in its ability to
discriminate between suppressive eTreg cells and cytokine-secreting
non-Treg cells.
Naïve or resting Treg cells differentiate into CD45RA−

FOXP3high eTreg cells upon antigenic stimulation (4). Although
the majority of such CD15s+ eTreg cells appear to be derived in
vivo from CD15s−CD45RA+ nTreg cells (4), our finding that in
vitro TCR stimulation in the presence of IL-2 and rapamycin
enhanced FOXP3 expression but failed to efficiently up-regulate
CD15s in nTreg cells suggests that longer or additional stimulations
might be required for CD15s up-regulation and possibly for final
eTreg maturation. It is therefore required, especially in vitro, to

use CD15s in combination with other markers such as CD25,
CD127, and CD45RA for the analysis and purification of
FOXP3+ subpopulations.
CD15s also enables the analysis of the behavior and dynamics of

Treg subsets in disease states more accurately and clearly than be-
fore. For example, using CD15s as a specific marker for eTreg cells,
our analysis has shown that previous estimates of eTreg cell numbers
(based on the expression of FOXP3, CD45RA, and Ki-67) are
largely similar in healthy donors to the current estimates, but slightly
overestimated in sarcoidosis (33) and slightly underestimated in SLE
(20). Application of this new definition of Treg subpopulations also
revealed an increase in CD15s+FOXP3high eTreg cells as a distinct
population in PBMCs of a patient with mild untreated MF. Further
analysis of the dynamics of Treg subpopulations using the CD15s
marker is under way for other physiological and disease states.
Finally, CD15s can be a good target to control immune re-

sponses via Treg cells, in particular by depleting eTreg cells. For
example, depletion of CD15s+ cells from CD4+ T cells isolated
from healthy donor PBMCs indeed evoked and enhanced in
vitro anti–NY-ESO-1 or anti-CMV immune responses in a sim-
ilar manner as Treg cell depletion by other markers such as
CD25 or CCR4 (17). These functional results further support the
relevance of CD15s as a marker for phenotypic and functional
study of Treg cells in various clinical settings.

Methods
Flow Cytometry Analysis of FOXP3-, Ki-67–, and Helios-Expressing CD4+ T Cells.
Blood samples were obtained from young healthy adult volunteers and
patients with active sarcoidosis, active SLE, Sjögren syndrome, systemic
sclerosis, mycosis fungoides, or myasthenia gravis. The study was done
according to the Helsinki declaration with the approval from the local hu-
man ethics committee (Comité Consultatif de Protection des Personnes dans
la Recherche Biomédicale of Pitié-Salpétrière Hospital, Paris). For the analysis
of thymocytes, the approval by the Biomedecine Agency (PFS13-007) was
obtained. Cytometry methods and mAbs are detailed in Dataset S1 and
SI Methods.

Suppression Assay. PBMCs were isolated through Ficoll gradient separation
from freshly drawn blood. CD4+ T cells were first magnetically isolated using
a CD4+ T-cell separation kit (Miltenyi Biotec) and subsequently surface
stained using a combination of flurochrome-conjugated mAbs: anti–CD4-PErCP
5.5, –CD25-PE, –CD127-Pacific blue (Human Regulatory T-Cell Mixture, BD Bio-
sciences), –CD45RA-PECy7, and –CD15s-AF647 obtained from BD Biosciences.
CD127+CD25−CD45RA+CD4+, CD127lowCD25+ naïve FOXP3lowCD45RA+CD4+,
CD127lowCD25+ effector FOXP3highCD45RA−CD4+ Treg cells, and CD127low

CD25+CD45RA−CD4+ T cells were sorted according to the gating strategy we
validated previously (4) using a FACSAria (BD Biosciences) and CD127low

CD25+CD15s−FOXP3+CD4+ T cells and CD127lowCD25+FOXP3+CD15s+CD4+

T cells according to the gating strategy depicted in Fig. 2A. CFSE labeling and
suppression assays were performed as described in SI Methods. Complete sup-
pression is characterized by fewer proliferation cycles and decreasing amplitudes
in consecutive cycle peaks, whereas ongoing proliferation or absence of sup-
pression is characterized by increasing amplitudes in consecutive cycle peaks.

nTreg Cell Expansion. The 3 × 104 FACS sorted CD45RA+CD127low/−CD25+

FOXP3lowCD4+ nTregs were immediately distributed into a U-bottom well
for culture. Cells were cultured in X-Vivo 15 media (Lonza) with 50 g/L AB
serum (Invitrogen Lifetech), and supplemented with 2 mM L-glutamine,
1 mM sodium pyruvate, 1% nonessential amino acid MEM, 100 units/mL
penicillin, 100 μg/mL streptomycin and amphotericin B (all from Gibco), and
anti-CD3/anti-CD28–coated Treg expander beads (Invitrogen Lifetech), in the
presence of 300 IU/mL IL-2 (Miltenyi Biotec) in culture media alone or in the
presence of rapamycin (Sigma-Aldrich) diluted in culture medium (1 μg/mL).
Cultures were replenished with 300–1,000 IU/mL IL-2 every 3–4 d.

In Vitro Sensitization of NY-ESO-1–Specific CD4+ T Cells and in Vitro Sensitization of
CMV-Specific CD8+ T Cells. Methods are detailed in SI Methods.

Statistical Analysis. To compare the percentage of cell subsets in healthy
donors versus patients, a nonparametric Mann–Whitney u test was used. P <
0.05 was considered significant.
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