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Abstract 

Background Data-generating processes are key to the design of Monte Carlo simulations. It is important for investi-
gators to be able to simulate data with specific characteristics.

Methods We described an iterative bisection procedure that can be used to determine the numeric values of param-
eters of a data-generating process to produce simulated samples with specified characteristics. We illustrated the 
application of the procedure in four different scenarios: (i) simulating binary outcome data from a logistic model such 
that the prevalence of the outcome is equal to a specified value; (ii) simulating binary outcome data from a logistic 
model based on treatment status and baseline covariates so that the simulated outcomes have a specified treatment 
relative risk; (iii) simulating binary outcome data from a logistic model so that the model c-statistic has a specified 
value; (iv) simulating time-to-event outcome data from a Cox proportional hazards model so that treatment induces a 
specified marginal or population-average hazard ratio.

Results In each of the four scenarios the bisection procedure converged rapidly and identified parameter values that 
resulted in the simulated data having the desired characteristics.

Conclusion An iterative bisection procedure can be used to identify numeric values for parameters in data-generat-
ing processes to generate data with specified characteristics.

Keywords Data-generating process, Simulations, Monte Carlo simulations

Introduction
Monte Carlo simulations are a critical tool in mod-
ern statistical research [1, 2]. Simulations allow one to 
investigate the properties of statistical estimators and 

procedures in settings in which analytic calculations are 
not feasible. A crucial component of any simulation is a 
data-generating process that allows the investigator to 
simulate data with specified characteristics. While a data-
generating process can often be quickly constructed, it 
is more difficult to specify the values of the parameters 
of the data-generating process to result in the simulated 
data having specified characteristics.

For instance, given a set of baseline covariates simulated 
from a multivariate distribution, a logistic model can be 
used to simulate binary outcomes so as to induce an odds 
ratio of a specified magnitude for the association between 
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a variable denoting treatment status (treatment vs. control) 
and the outcome. However, if one wanted to induce a treat-
ment effect with a specific relative risk or risk difference, 
rather than a specific odds ratio, one would need to identify 
the given log-odds ratio for treatment that resulted in the 
desired relative risk or risk difference [3, 4]. This log-odds 
ratio would depend on the distribution of baseline covari-
ates. Similarly, if one wanted to simulate binary outcome 
data such that the logistic regression model for the outcome 
had a specified c-statistic (equivalent to the area under the 
receiver operating characteristic (ROC) curve), one would 
need to determine the regression coefficients for the logistic 
regression model that result in the desired c-statistic.

We describe an iterative bisection procedure that allows 
researchers to determine the required value of parameters 
in a data-generating process to result in simulated data with 
the desired characteristics. We illustrate the iterative bisec-
tion procedure by applying it to four different examples. In 
“Determining the intercept of a logistic regression model 
so that prevalence of treatment is equal to a specified 
value when using a logistic regression model to simulate 
outcomes” section, we apply the iterative bisection proce-
dure to construct a data-generating process for simulating 
binary outcomes from a multivariable logistic regression 
model so that the prevalence of the outcome in the popu-
lation is equal to a specified probability. In “Determining 
the odds ratio for a binary treatment variable in a logistic 
regression model to induce a desired treatment risk differ-
ence or relative risk in the population” section, we apply 
the bisection procedure to construct a data-generating 
process for simulating binary outcomes using a multivari-
able logistic regression model such that a binary treatment 
(or exposure) induces a relative risk of a given magnitude. 
In “Determining the regression coefficients for a logistic 
regression model so that the model has a specified c-statis-
tic” section, we apply the bisection procedure to construct 
a data-generating process for simulating binary outcomes 
from a multivariable logistic regression model with a speci-
fied c-statistic. In “Determining the conditional hazard 
ratio for treatment/exposure in an adjusted Cox regression 
model to induce a specified marginal hazard ratio” section, 
we apply the bisection procedure to construct a data-gen-
erating process for simulating time-to-event outcomes with 
a specified marginal hazard ratio for treatment. Finally, we 
provide a summary in “Discussion” section.

Determining the intercept of a logistic regression 
model so that prevalence of treatment is equal 
to a specified value when using a logistic 
regression model to simulate outcomes
Description of method
In this section we consider a setting in which one wants 
to simulate a binary outcome that is related to a vector of 

covariates, such that the prevalence of the outcome in the 
population is equal to a specified value. Let Ptarget denote 
the specified or target prevalence of the outcome in the 
population.

The first step is to simulate a vector of covariates 
for each subject in a large super-population, say of size 
N = 1,000,000. The distribution of the baseline covariates 
can be chosen by the investigator. The application of the 
bisection procedure is independent of this distributional 
decision. Assume that we simulate p baseline covariates 
( X1, . . . ,Xp ) from a given multivariable distribution.

The second step is to specify a logistic regression model 
for generating the binary outcomes:

The regression coefficients β1, . . . ,βp can be chosen by 
the investigator to reflect the desired relationship between 
each of the p covariates and the log-odds of the outcome. 
The prevalence of the outcome in the population is pri-
marily determined by the intercept, β0 . One must deter-
mine the value of the intercept that produces the desired 
prevalence of the outcome. Lower values of β0 are associ-
ated with lower prevalences of the outcome, while higher 
values of β0 are associated with higher prevalences of the 
outcome. For a given value of β0 we can simulate a binary 
outcome for each subject in the super-population from 
a Bernoulli distribution with subject-specific parameter 
determined by formula (1). Let Yβ0

i  denote the simulated 
outcome for the ith subject when the intercept for the 
regression model (1) is set equal to β0.

The next step is to specify the endpoints of an interval for 
the parameter of interest; in this case the regression inter-
cept, β0 . Denote this interval by (β lower

0 ,β
upper
0 ) . The lower 

endpoint β lower
0  is chosen such that 1N

N

i=1

Y
β0lower
i < Ptarget . 

In other words, the prevalence of the simulated outcome is 
less than the target value when using β lower

0  . Similarly, the 
upper endpoint β

upper
0  is chosen such that 

1
N

N∑
i=1

Y
β0upper
i > Ptarget . In other words, the prevalence of 

the simulated outcome is greater than the target value 
when using βupper

0  . The endpoints can be identified through 
a grid search or by trial and error.

Once the endpoints of the interval (β lower
0 ,β

upper
0 ) have 

been determined, compute the midpoint of the interval: 

β
midpoint
0 =

β lower
0 +β

upper
0

2  (e.g., if the original endpoints of 
the interval are ± 10, the original midpoint will be 0). We 
then use βmidpoint

0  in formula (1) and simulate a binary 

outcome for each subject: Yβ
midpoint
0

i  . We then compute 
the prevalence of the outcome in the super-population: 

(1)logit(Pr(Yi = 1)) = β0 +

p∑

j=1

βjXij
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1
N

N∑
i=1

Y
β
midpoint
0

i  . If 1N
N∑
i=1

Y
β
midpoint
0

i < Ptarget , the prevalence 

of the outcome is too low and the intercept of formula 

(1) has to be increased. If 1
N

N∑
i=1

Y
β
midpoint
0

i > Ptarget , the 

prevalence is too high and the intercept of formula (1) 
has to be decreased.

If 1
N

N∑
i=1

Y
β
midpoint
0

i < Ptarget , then define a new interval: 

(β
midpoint
0 ,β

upper
0 ) . Conversely, if 1

N

N∑
i=1

Y
β
midpoint
0

i > Ptarget , 

then define a new interval (β lower
0 ,β

midpoint
0 ) . In the first 

case, the new interval is the upper half of the initial inter-
val, while the in the second case the new interval is the 
lower half of the initial interval. In either case, the width 
of the new interval is half the width of the initial interval. 
We have bisected the initial interval. One then repeats 
this process iteratively. After K iterations, the width of 
the resultant interval is 1

2K
 of the width of the initial inter-

val. The iterative process can be continued until 
1
N

N∑
i=1

Y
β
midpoint
0

i  is as close to Ptarget as desired.

Application of method
We applied the iterative bisection procedure to simu-
late data for a sample of size N = 1,000,000. We simu-
lated 10 baseline covariates. The first 5 from 
independent standard normal distributions, and the 
last five from independent Bernoulli distributions with 
parameter 0.5. The regression coefficients (equivalent 
to log-odds ratios) for the 10 covariates were set to 
�1 = log(1.25), �2 = log(1.5), �3 = log(1.75), �4 = log(2), �5 = log(2.5),

�6 = log(1.25), �7 = log(1.5), �8 = log(1.75), �9 = log(2), �10 = log(2.5).

.
Our objective was to simulate data such that the prevalence 

of the outcome was 0.10 (10%). The initial interval for 
(β lower

0 ,β
upper
0 ) was set to (-10,10). R code to implement the 

bisection procedure is provided at the author’s GitHub 
account [https:// github. com/ peter- austin/ BMC_ MRM- bisec 
tion- proce dures- for- Monte- Carlo- simul ations]. The estimates 

of βmidpoint
0 and 1

N

N∑
i=1

Y
β
midpoint
0

i  at each iteration are reported 

in Table 1. After 14 iterations of the procedure, an intercept 
equal to -4.368896 resulted in the generation of outcomes 
such that the prevalence of the outcome was 0.099923.

Determining the odds ratio for a binary treatment 
variable in a logistic regression model to induce 
a desired treatment risk difference or relative risk 
in the population
Description of method
The logistic regression model is commonly-used in 
biomedical and epidemiological research for assessing 

the association between a binary outcome and a set 
of covariates [5]. When using a logistic regression 
model, the odds ratio is the resultant measure of asso-
ciation. The odds ratio denotes the relative increase in 
the odds of the binary outcome associated with a one 
unit increase in the given covariate. Other measures of 
effect for binary outcomes include: the risk difference, 
the relative risk, and the number needed to treat, where 
the latter is the reciprocal of the risk difference. Several 
clinical commentators have suggested that these latter 
three measures of effect are preferable to the odds ratio 
for clinical decision making [6–9].

To study the performance of statistical methods for 
estimating risk differences or relative risks, one requires 
a data-generating process that can simulate data with a 
given risk difference or relative risk [3, 4]. We assume 
that our data-generating process for simulating out-
comes is a modification of the one described above. We 
modify the logistic regression model as follows:

The model has been modified by including a binary 
treatment variable (Z = 1 treated; Z = 0 control) with an 
associated log-odds ratio of γ . Thus, treatment is asso-
ciated with an increase of γ in the log-odds of the out-
come. Let RRtarget denote the target treatment relative 
risk in the population.

(2)logit(Pr(Yi = 1)) = β0 + γZi +

p∑

j=1

βjXij

Table 1 Bisection procedure to determine intercept of a 
logistic regression model to produce an outcome with a given 
prevalence (target prevalence: 0.10)

Iteration Target outcome 
prevalence

β
midpoint
0

Empirical 
outcome 
prevalence

1 0.1 0 0.729943

2 0.1 -5 0.062318

3 0.1 -2.5 0.313826

4 0.1 -3.75 0.153365

5 0.1 -4.375 0.099513

6 0.1 -4.0625 0.124133

7 0.1 -4.21875 0.111236

8 0.1 -4.29688 0.105887

9 0.1 -4.33594 0.102487

10 0.1 -4.35547 0.100863

11 0.1 -4.36523 0.100523

12 0.1 -4.37012 0.099575

13 0.1 -4.36768 0.100366

14 0.1 -4.3689 0.099923

https://github.com/peter-austin/BMC_MRM-bisection-procedures-for-Monte-Carlo-simulations
https://github.com/peter-austin/BMC_MRM-bisection-procedures-for-Monte-Carlo-simulations
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The first step is to simulate baseline covariates 
X1, . . . ,Xp from a chosen distribution. One can then 
simulate treatment status using methods described 
in “Determining the intercept of a logistic regression 
model so that prevalence of treatment is equal to a 
specified value when using a logistic regression model 
to simulate outcomes” section, so that receipt of treat-
ment has a specified association with each of the base-
line covariates and so that the prevalence of treatment 
in the population is equal to the specified value.

The second step is to set the regression coefficients 
associated with the baseline covariates in formula (2) 
to the desired quantities. One can use the methods 
described in “Determining the intercept of a logistic 
regression model so that prevalence of treatment is 
equal to a specified value when using a logistic regres-
sion model to simulate outcomes” section to determine 
the intercept ( β0 ) of formula (2) so that the prevalence 
of the outcome in the population if no one were treated 
is equal to a specified value.

We introduce the potential outcomes framework, 
as this facilitates identifying the appropriate value of 
γ [10]. Given a binary treatment Z, let Y(1) and Y(0) 
denote a subject’s outcomes under treatment (Z = 1) 
and control (Z = 0) if received under identical circum-
stances. The average treatment effect (ATE) is defined 
as E[Y(1) – Y(0)]. The marginal value of the relative risk 
is defined as E[Y(1)]/E[Y(0)].

The population relative risk due to treatment is deter-
mined by the log-odds ratio for treatment, γ . One must 
determine the value of γ that results in the desired rela-
tive risk. As the value of γ increases, the relative risk 
increases. Lower values of γ are associated with lower 
relative risks, while higher values of γ are associated 
with higher relative risks. For a given value of γ we can 
simulate the two potential outcomes for each subject 
using formula (2). First, we set Z = 0 (control) for all 
subjects in the super-population and simulate a binary 
outcome for each subject in the super-population from 
a Bernoulli distribution with subject-specific parameter 
determined by formula (2). Let Y(0)γi  denote the simu-
lated outcome under control for the ith subject when 
the log-odds ratio for treatment in regression model 
(2)  is set equal to γ . Second, we set Z = 1 (treated) for 
all subjects in the super-population and simulate a 
binary outcome for each subject in the super-popula-
tion from a Bernoulli distribution with subject-specific 
parameter determined by formula (2). Let Y(1)γi  denote 
the simulated outcome under treatment for the ith sub-
ject when log-odds ratio for treatment in regression 
model (2) is set equal to γ . The population relative risk 

when the log-odds ratio for treatment is set to γ is equal 

to E[Y(1)γi ]/Y[(0)
γ
i ] =

1
N

N∑
i=1

[Y(1)
γ
i ]

1
N

N∑
i=1

[Y(0)
γ
i ]

.

The next step is to specify the endpoints of an interval 
for the log-odds ratio for treatment, γ . Denote this inter-
val by (γ lower, γ upper) . The lower endpoint γ lower is cho-

sen such that 
1
N

N∑
i=1

[Y(1)
γ
i ]

1
N

N∑
i=1

[Y(0)
γ
i ]

< RRtarget . Similarly, the upper 

endpoint γ upper is chosen such that 
1
N

N∑
i=1

[Y(1)
γ
i ]

1
N

N∑
i=1

[Y(0)
γ
i ]

> RRtarget . 

The endpoints can be identified through a grid search or 
by trial and error.

Once the endpoints of the interval (γ lower, γ upper) have 
been determined, compute the midpoint of the interval: 
γmidpoint =

γ lower+γ upper

2  . We then use γmidpoint in formula 
(2) and simulate the two potential outcomes under treat-
ment and control for each subject: Y(1)γ

midpoint

i  and 
Y(0)

γmidpoint

i  . We then compute the treatment relative risk 

in the super-population: 
1
N

N∑
i=1

[Y(1)
γmidpoint

i ]

1
N

N∑
i=1

[Y(0)
γmidpoint

i ]

 . If 

1
N

N∑
i=1

[Y(1)
γmidpoint

i ]

1
N

N∑
i=1

[Y(0)
γmidpoint

i ]

< RRtarget , the relative risk is too low 

and γ in formula (2) has to be increased. If 
1
N

N∑
i=1

[Y(1)
γmidpoint

i ]

1
N

N∑
i=1

[Y(0)
γmidpoint

i ]

> RRtarget , the relative risk is too large 

and γ in formula (2) has to be decreased.

If 
1
N

N∑
i=1

[Y(1)
γmidpoint

i ]

1
N

N∑
i=1

[Y(0)
γmidpoint

i ]

< RRtarget , then define a new inter-

val: (γmidpoint, γ upper) . Conversely, if 
1
N

N∑
i=1

[Y(1)
γmidpoint

i ]

1
N

N∑
i=1

[Y(0)
γmidpoint

i ]

> RRtarget , then define a new interval 

(γ lower, γmidpoint) . In the first case, the new interval is 
the upper half of the initial interval, while the in the 
second case the new interval is the lower half of the 
initial interval. In either case, the width of the new 
interval is half the width of the initial interval. We have 
bisected the initial interval. One then repeats this pro-

cess iteratively until 
1
N

N∑
i=1

[Y(1)
γmidpoint

i ]

1
N

N∑
i=1

[Y(0)
γmidpoint

i ]

 is as close to 

RRtarget as desired.
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The above procedure allows one to determine the value 
of γ necessary to induce a given treatment relative. The 
procedure can be modified to induce a given treatment 

risk difference. To do so, all occurrences of 
1
N

N∑
i=1

Y(1)
γ
i

1
N

N∑
i=1

Y(0)
γ
i

 are 

replaced by 1N
N∑
i=1

[Y(1)
γ
i - Y(0)

γ
i ].

Application of method
We applied the iterative bisection procedure to simu-
late data for a sample of size N = 1,000,000. We simu-
lated 10 baseline covariates as in “Description of 
method” of “Determining the intercept of a logistic 
regression model so that prevalence of treatment is 
equal to a specified value when using a logistic regres-
sion model to simulate outcomes” section. We first sim-
ulated a binary treatment status variable using formula 
(1) with the 10 regression coefficients for the baseline 
covariates in the treatment-selection model set to 
log(1.1), log(2), log(3), log(1.5), log(1.5), log(1.1), log(2), 
log(3), log(1.5), and log(1.5). We used the bisection pro-
cess described in Determining the intercept of a logis-
tic regression model so that prevalence of treatment is 
equal to a specified value when using a logistic regres-
sion model to simulate outcomes” section to determine 
the intercept for the treatment selection model such 
that the prevalence of treatment in the population was 
0.2. The resultant intercept was -3.31749.

The regression coefficients (equivalent to log-odds 
ratios) for the 10 covariates in the outcome model (for-
mula (2)) were set to �1 = log(1.25), �2 = log(1.5),
�3 = log(1.75), �4 = log(2), �5 = log(2.5), �6 = log(1.25),

�7 = log(1.5), �8 = log(1.75), �9 = log(2), �10 = log(2.5).

We set the value of β0 to that determined in the 
first  “Description of method”  of “Determining the 
intercept of a logistic regression model so that preva-
lence of treatment is equal to a specified value when 
using a logistic regression model to simulate out-
comes” (i.e., the subsection in the Determining the 
intercept of a logistic regression model so that preva-
lence of treatment is equal to a specified value when 
using a logistic regression model to simulate outcomes 
section) section ( β0 = -4.367676) so that the prevalence 
of outcome was 0.10 (10%) if no subjects were treated.

Our objective was to simulate data such that the treat-
ment relative risk is 0.80. The initial interval for γ was 
set to (-10,10). R code to implement the bisection pro-
cedure is provided at the author’s GitHub account 
[https:// github. com/ peter- austin/ BMC_ MRM- bisec 
tion- proce dures- for- Monte- Carlo- simul ations]. The 

estimates of γmidpoint and

1
N

N∑
i=1

Y(1)
γ
i

1
N

N∑
i=1

Y(0)
γ
i

 at each iteration are 

reported in Table  2. After 16 iterations, the procedure 
identified that a treatment log-odds ratio of -0.2999878 
(equivalent to an odds ratio of 0.741) resulted in a rela-
tive risk of 0.8000121.

Determining the regression coefficients 
for a logistic regression model so that the model 
has a specified c‑statistic
Description of method
The c-statistic (equivalent to the area under the receiver 
operating characteristic (ROC) curve, which is some-
times abbreviated as the AUC) is a measure of dis-
crimination used to assess the predictive performance 
of logistic regression models [11, 12]. In this section 
we describe how to specify the coefficients of a logis-
tic regression model to simulate outcomes such that 
the underlying logistic regression model has a specified 
c-statistic. In doing so, we make use of the fact that the 
c-statistic of a univariate logistic regression model is a 
function of the variance of the covariate and the log-
odds ratio for that covariate [13]. Let AUCtarget denote 
the target c-statistic.

We modify the logistic regression model described in 
formula (1):

Table 2 Bisection procedure to determine log-odds ratio for 
treatment in a logistic regression model to produce a binary 
outcome with a given relative risk (target relative risk: 0.80)

Iteration Target relative 
risk

γmidpoint Empirical 
relative 
risk

1 0.8 0 1

2 0.8 -5 0.010792

3 0.8 -2.5 0.12165

4 0.8 -1.25 0.371719

5 0.8 -0.625 0.621492

6 0.8 -0.3125 0.792433

7 0.8 -0.15625 0.891377

8 0.8 -0.23438 0.840727

9 0.8 -0.27344 0.81629

10 0.8 -0.29297 0.804289

11 0.8 -0.30273 0.798343

12 0.8 -0.29785 0.801312

13 0.8 -0.30029 0.799827

14 0.8 -0.29907 0.800569

15 0.8 -0.29968 0.800198

16 0.8 -0.29999 0.800012

https://github.com/peter-austin/BMC_MRM-bisection-procedures-for-Monte-Carlo-simulations
https://github.com/peter-austin/BMC_MRM-bisection-procedures-for-Monte-Carlo-simulations
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The regression coefficients β1, . . . ,βp can be chosen 
by the investigator to reflect the desired relationship 
between each of the covariates and the log-odds of the 
outcome. By introducing the scalar σ , we are modify-
ing each log-odds ratio, but doing so in such a way that 
the ratio of any two log-odds ratios remains constant 
after modification. We need to identify the value of σ 
required to induce the desired c-statistic. Larger values 
of σ are associated with larger values of the c-statistic, 
while lower values of σ are associated with smaller val-
ues of the c-statistic.

The first step is to simulate a vector of covariates for 
each subject in a large super-population, say of size 
N = 1,000,000. The distribution of the baseline covari-
ates can be chosen by the investigator. The application 
of the bisection procedure is independent of this dis-
tributional decision.

For a given value of σ we can simulate a binary out-
come for each subject in the super-population from a 
Bernoulli distribution with subject-specific parameter 
determined by formula (3). Let Yσ

i  denote the simu-
lated outcome for the ith subject when σ is a constant 
scalar as shown in formula (3).

The next step is to specify the endpoints of an inter-
val for σ . Denote this interval by (σ lower, σ upper) . The 
lower endpoint σ lower is chosen such that when binary 
outcomes are simulated using a Bernoulli distribution 
with subject-specific parameter determined using for-
mula (3), the c-statistic of the logistic regression model 
fit to the simulated data has a c-statistic that is less than 
AUCtarget . Similarly, the upper endpoint σ upper is cho-
sen that when binary outcomes are simulated using a 
Bernoulli distribution with subject-specific parame-
ter determined using formula (3), the c-statistic of the 
logistic regression model fit to the simulated data has a 
c-statistic that is greater than AUCtarget . The endpoints 
can be identified through a grid search or by trial and 
error.

Once the endpoints of the interval (σ lower, σ upper) have 
been determined, compute the midpoint of the interval: 
σmidpoint = σ lower+σ upper

2  . We then use σmidpoint in for-
mula (3) and simulate a binary outcome for each sub-
ject: Yσmidpoint

i  . We fit a logistic regression model in the 
simulated sample and determine its c-statistic, which 
we refer to as AUCσmidpoint

 . If AUCσmidpoint
< AUCtarget , 

the c-statistic is too low and σ has to be increased. If 
AUCσmidpoint

> AUCtarget , the c-statistic is too large and 
σmidpoint has to be decreased.

(3)logit(Pr(Yi = 1)) = β0 + σ

p∑

j=1

βjXij
If AUCσmidpoint

< AUCtarget , then define a new interval: 
(σmidpoint, σ upper) . Conversely, if AUCσmidpoint

> AUCtarget , 
then define a new interval (σ lower, σmidpoint) . One then 
repeats this process iteratively until AUCσmidpoint

 is as 
close to AUCtarget as desired.

Application of method
We applied the iterative bisection procedure to simulate 
data for a sample of size N = 1,000,000. We simulated 10 
baseline covariates as in “Description of method” of 
“Determining the intercept of a logistic regression model 
so that prevalence of treatment is equal to a specified 
value when using a logistic regression model to simulate 
outcomes” section. As above, the regression coefficients 
(equivalent to log-odds ratios) for the 10 covariates in the 
outcome model (formula (3)) were set to �1 = log(1.25),
�2 = log(1.5), �3 = log(1.75), �4 = log(2), �5 = log(2.5),
�6 = log(1.25), �7 = log(1.5), �8 = log(1.75), �9 = log(2),

�10 = log(2.5).

We set the value of β0 to that determined in the 
first “Description of method” of “Determining the inter-
cept of a logistic regression model so that prevalence 
of treatment is equal to a specified value when using a 
logistic regression model to simulate outcomes” section 
( β0 = -4.368896).

Our objective was to simulate binary outcomes such 
that c-statistic of the logistic regression model was 0.8. 
The initial interval for σ was set to (0,10). R code to 
implement the bisection procedure is provided at the 
author’s GitHub account [https:// github. com/ peter- aus-
tin/ BMC_ MRM- bisec tion- proce dures- for- Monte- Carlo- 
simul ations. The values of σmidpoint, and AUCσmidpoint

 at 
each iteration are reported in Table 3. After 11 iterations 
of the bisection procedure, σ = 0.8349609 resulted in an 
empirical c-statistic of 0.8006215.

Determining the conditional hazard ratio 
for treatment/exposure in an adjusted Cox 
regression model to induce a specified marginal 
hazard ratio
Description of method
The Cox proportional hazard regression is frequently 
used in biomedical and epidemiological research [14]. 
When fitting a multivariable Cox regression model, the 
regression coefficients, when exponentiated, are inter-
pretated as conditional (or adjusted) hazard ratios. For 
a given covariate, the conditional hazard ratio compares 
the relative difference in the hazard of the outcome 
between two subjects for whom the covariate in question 
differs by one unit and for whom all the other covariates 
are identical. In contrast to the conditional (or adjusted) 

https://github.com/peter-austin/BMC_MRM-bisection-procedures-for-Monte-Carlo-simulations
https://github.com/peter-austin/BMC_MRM-bisection-procedures-for-Monte-Carlo-simulations
https://github.com/peter-austin/BMC_MRM-bisection-procedures-for-Monte-Carlo-simulations
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hazard ratio is the marginal (or population-average) haz-
ard ratio. The marginal hazard ratio denotes the relative 
difference in the hazard function between two popula-
tions, for whom the covariate in question differs by one 
unit, and all other covariates are identical between popu-
lations. Due to the phenomenon known as the non-col-
lapsibility of the hazard ratio, marginal and conditional 
hazard ratios do not coincide (unless one is null) [15].

Bender and colleagues have described data-gener-
ating processes for time-to-event outcomes based on 
an underlying hazard regression model [16]. This data-
generating process simulates time-to-event outcomes 
with specified conditional hazard ratios. One can use the 
bisection approach with Bender’s data-generating pro-
cess to induce data with a desired marginal effect for a 
given covariate.

Assume that we simulate p baseline covariates 
( X1, . . . ,Xp ) from a given multivariable distribution. Fur-
thermore, assume that we have the following Cox pro-
portional hazards model:

where hi(t) denotes the hazard function for the ith 
subject,  h0(t)  denotes the baseline hazard function,  and 
where Z denotes a binary treatment variable (Z = 1 
treated; Z = 0 control) with an associated conditional 
log-hazard ratio of γ . Thus, treatment is associated with 
an increase of γ in the log-hazard of the outcome. Let 
HRtarget denote the target marginal hazard ratio in the 
population.

The first step is to simulate baseline covariates 
X1, . . . ,Xp from a chosen distribution. One can then 

(4)log(hi(t)) = log(h0(t))+ γZi +

p∑

j=1

βjXij

simulate treatment status (Z) using methods described 
above, so that receipt of treatment has a specified asso-
ciation with each of the baseline covariates and the 
prevalence of treatment in the population is equal to the 
specified value.

The second step is to set the regression coefficients 
associated with the baseline covariates in formula (4) to 
the desired quantities.

As above, we use the potential outcomes framework. 
The marginal hazard ratio due to treatment is determined 
by the log-hazard ratio for treatment, γ . One must deter-
mine the value of γ that results in the desired marginal 
hazard ratio. For a given value of γ we can use Bender’s 
approach to simulate the two potential outcomes for each 
subject using formula (4). First, we set Z = 0 (control) for 
all subjects in the super-population and simulate a time-
to-event outcome for each subject in the super-popu-
lation. Let T(0)γi  denote the simulated outcome under 
control for the ith subject when the log-hazard ratio for 
treatment in regression model (4) is set to γ . Second, we 
set Z = 1 (treated) for all subjects in the super-population 
and simulate a time-to-event outcome for each subject 
in the super-population. Let T(1)γi  denote the simulated 
outcome under treatment for the ith subject when the 
log-hazard ratio for treatment in regression model (4) 
is set to γ . One then creates a large super-population 
by concatenating the two simulated datasets (one under 
control and one under treatment). Using a univariate Cox 
proportional hazards model, one then regresses the haz-
ard of the outcome on the variable denoting treatment 
status. The resultant hazard ratio is an estimate of the 
marginal hazard ratio.

The next step is to specify the endpoints of an inter-
val for the log-hazard ratio for treatment, γ . Denote this 
interval by (γ lower, γ upper) . The lower endpoint γ lower is 
chosen such that the estimated marginal hazard ratio is 
less than HRtarget . Similarly, the upper endpoint γ upper 
is chosen such that the estimated marginal hazard ratio 
is greater than HRtarget . The endpoints can be identified 
through a grid search or by trial and error. 

Once the endpoints of the interval (γ lower, γ upper) have 
been determined, compute the midpoint of the interval: 
γmidpoint =

γ lower+γ upper

2  . We then use γmidpoint in for-
mula (4) and simulate the two potential outcomes under 
treatment and control for each subject: T(1)γ

midpoint

i  and 
T(0)

γmidpoint

i  . We then compute the marginal treatment 
when the dataset consisting of both potential outcomes 
for all subjects is used to regress the hazard of the out-
come on treatment status. If the estimated marginal haz-
ard ratio is less than HRtarget , the hazard ratio is too low 
and γ in formula (4) must be increased. If the estimated 

Table 3 Bisection procedure to determine σ for multiplying the 
coefficients of a logistic regression model to produce a binary 
outcome such that the outcomes model has a given c-statistic 
(target c-statistic: 0.80)

Iteration Target 
c-statistic

σmidpoint Empirical 
c-statistic 
(AUCσ

midpoint

)

1 0.8 5 0.983782

2 0.8 2.5 0.944541

3 0.8 1.25 0.868001

4 0.8 0.625 0.742962

5 0.8 0.9375 0.821941

6 0.8 0.78125 0.788305

7 0.8 0.859375 0.805549

8 0.8 0.820313 0.79756

9 0.8 0.839844 0.801353

10 0.8 0.830078 0.798494

11 0.8 0.834961 0.800622
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marginal hazard ratio is greater than HRtarget , the hazard 
ratio is too large and γ in formula (4) must be decreased.

If the estimated marginal hazard ratio is less than 
HRtarget , then define a new interval: (γmidpoint, γ upper) . 
Conversely, if the estimated marginal hazard ratio 
is greater than HRtarget , then define a new interval 
(γ lower, γmidpoint) . In the first case, the new interval is 
the upper half of the initial interval, while the in the sec-
ond case the new interval is the lower half of the initial 
interval. In either case, the width of the new interval is 
half the width of the initial interval. We have bisected 
the initial interval. One then repeats this process itera-
tively until the estimated marginal hazard ratio is as 
close to the target marginal hazard ratio, HRtarget , as 
desired.

Application of method
We applied the iterative bisection procedure to simu-
late data for a sample of size N = 1,000,000. We simu-
lated 10 baseline covariates as in “Description of 
method” of “Determining the intercept of a logistic 
regression model so that prevalence of treatment is 
equal to a specified value when using a logistic regres-
sion model to simulate outcomes” section. We used 
the regression coefficients for the treatment-selection 
model described in “Description of method” of “Deter-
mining the odds ratio for a binary treatment variable 
in a logistic regression model to induce a desired treat-
ment risk difference or relative risk in the popula-
tion” section, with the same intercept as determined 
in “Description of method” of “Determining the odds 
ratio for a binary treatment variable in a logistic regres-
sion model to induce a desired treatment risk differ-
ence or relative risk in the population” section, so that 
the prevalence of treatment was 0.20.

The regression coefficients for the Cox regression 
model described in formula (4) were set to �1 = log(1.25),
�2 = log(1.5), �3 = log(1.75), �4 = log(2), �5 = log(2.5),
�6 = log(1.25), �7 = log(1.5), �8 = log(1.75), �9 = log(2),

�10 = log(2.5).

Our objective was to simulate data such that the mar-
ginal hazard ratio for treatment was 0.80. The initial 
interval for γ was set to (-10,10). R code to implement the 
bisection procedure is provided at the author’s GitHub 
account [https:// github. com/ peter- austin/ BMC_ MRM- 
bisec tion- proce dures- for- Monte- Carlo- simul ations]. The 
estimates of γmidpoint and HR

γmidpoint

marginal at each iteration are 
reported in Table  4. After 12 iterations of the bisection 
procedure, a conditional log-hazard ratio for treatment 
equal to 0.6298828 resulted in simulated outcomes with a 
marginal hazard ratio of 0.7991514.

Discussion
We illustrated the application of an iterative bisec-
tion procedure that allows investigators to select the 
numeric values of parameters in a data-generating pro-
cess to produce simulated datasets with specified char-
acteristics. This will facilitate designing data-generating 
processes that produce simulated datasets that are tai-
lored to the investigators’ specifications.

We illustrated the use of the bisection procedure 
when there is one characteristic that requires speci-
fication (e.g., the prevalence of the outcome or the 
c-statistic of a logistic regression model). The proce-
dure can be modified to simulate data such that two 
characteristics are fixed at specified values (e.g., both 
the prevalence of the outcome and the c-statistic of the 
logistic regression model). To do so, one would apply 
the procedure sequentially and then iteratively repeat 
the sequential process until both characteristics are 
close to the target values. It is necessary to repeat the 
process iteratively as modifying the parameter values 
during the second application of the procedure (e.g., 
for the c-statistic of the regression model) may modify 
the value of the first characteristic (e.g., the prevalence 
of the outcome).

The bisection procedure has been successfully used in 
previous studies that used simulations to: assess the abil-
ity to rank hospitals by their performance on composite 
indicators [17], describe a data-generating process for 
data with a specified marginal odds ratio [18], describe a 

Table 4 Bisection procedure to determine conditional log-
hazard ratio for treatment in a Cox proportional hazards model to 
produce a time-to-event outcome with a given marginal hazard 
ratio for treatment (target marginal hazard ratio for treatment: 
0.80)

Iteration Target marginal 
hazard ratio

γmidpoint Empirical marginal 
hazard ratio 
(HR

γmidpoint

marginal )

1 0.8 0 0.000354

2 0.8 5 2.203321

3 0.8 2.5 1.561186

4 0.8 1.25 1.114086

5 0.8 0.625 0.796174

6 0.8 0.9375 0.969266

7 0.8 0.78125 0.887425

8 0.8 0.703125 0.843299

9 0.8 0.664063 0.820148

10 0.8 0.644531 0.808168

11 0.8 0.634766 0.802396

12 0.8 0.629883 0.799151

https://github.com/peter-austin/BMC_MRM-bisection-procedures-for-Monte-Carlo-simulations
https://github.com/peter-austin/BMC_MRM-bisection-procedures-for-Monte-Carlo-simulations
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data-generating process for data with a specified risk dif-
ference or number needed to treat [19], to determine the 
rate parameter for an exponential censoring distribution 
so as to induce the desired proportion of censoring [20], 
in a study of the performance of double propensity score 
adjustment [21], in a study on the performance of the 
generalized propensity score for estimating the effect of 
quantitative exposures on time-to-event outcomes [22], 
to assess the performance of propensity score methods 
for estimating marginal hazard ratios [23], in a study of 
the use of the bootstrap with propensity score match-
ing [24], in a comparison of algorithms for matching 
on the propensity score [25], assess the use of optimal 
matching with survival outcomes [26], to assess meth-
ods of variance estimation when using inverse prob-
ability of treatment weighting with survival outcomes 
[27], to assess the use of propensity score matching in 
the presence of competing risks [28], to assess the per-
formance of calibration metrics for survival models [29], 
to assess the performance of variance estimators for sur-
vival outcomes when using propensity score matching 
with replacement [30], to assess the effect of constraints 
on the matching ratio when using full matching [31], to 
examine the consequences multiply-imputing missing 
potential outcomes under control [32], and to examine 
sample size and power calculations when using inverse 
probability of treatment weighting [33].

Conclusion
We have a described an iterative bisection procedure 
that can be used in designing data-generating pro-
cesses that produce simulated datasets with specific 
characteristics.
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