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Abstract: Powdery mildew severely affects wheat growth and yield; therefore, its effective monitoring
is essential for the prevention and control of the disease and global food security. In the present study,
a spectroradiometer and thermal infrared cameras were used to obtain hyperspectral signature and
thermal infrared images data, and thermal infrared temperature parameters (TP) and texture features
(TF) were extracted from the thermal infrared images and RGB images of wheat with powdery
mildew, during the wheat flowering and filling periods. Based on the ten vegetation indices from the
hyperspectral data (VI), TF and TP were integrated, and partial least square regression, random forest
regression (RFR), and support vector machine regression (SVR) algorithms were used to construct a
prediction model for a wheat powdery mildew disease index. According to the results, the prediction
accuracy of RFR was higher than in other models, under both single data source modeling and multi-
source data modeling; among the three data sources, VI was the most suitable for powdery mildew
monitoring, followed by TP, and finally TF. The RFR model had stable performance in multi-source
data fusion modeling (VI&TP&TF), and had the optimal estimation performance with 0.872 and 0.862
of R2 for calibration and validation, respectively. The application of multi-source data collaborative
modeling could improve the accuracy of remote sensing monitoring of wheat powdery mildew, and
facilitate the achievement of high-precision remote sensing monitoring of crop disease status.

Keywords: wheat powdery mildew; machine learning; information fusion; remote sensing monitoring

1. Introduction

In recent years, multiple crop diseases and insect pests have emerged, with consid-
erable impacts on yield and productivity following local outbreaks. According to the
United Nations Food and Agriculture Organization (FAO), 20%–40% of crops globally are
damaged by disease and insect pests annually [1]. Powdery mildew is the major wheat
disease; it causes considerable yield reductions or even no harvest, posing a major threat to
wheat production and global food security. Conventional methods of monitoring wheat
disease are time-consuming and laborious, and are associated with mechanical damage to
crops. Therefore, it is essential to identify and develop approaches of carrying out rapid
and damage-free wheat disease monitoring.

Plant disease and insect pest infestations lead to biomass reductions, leaf structure
destruction, and chlorophyll and water content reductions. Shifts in chlorophyll, water, and
other biochemical components in plant tissues would inevitably yield diverse absorption
and reflectance characteristics on the plant reflectance spectrum curve, which provides a
theoretical basis and facilitates the real-time monitoring of wheat diseases using remote
sensing technologies [2]. In recent years, with continuous advancements in remote sensing
technologies, numerous scholars have applied technologies to monitor wheat diseases. Gen-
erally, different crops, varieties, and diseases exhibit diverse spectral characteristics, which
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leads to varying reflectance sensitivities at different bands following disease infestation [3].
Consequently, the identification of crop diseases and crop disease incidence estimation can
be achieved based on changes in spectral responses and reflectance characteristics [4–6].
Researchers have previously developed disease monitoring indices following the extraction
of disease-sensitive bands for monitoring the infestation of crops by bacterial diseases,
such as powdery mildew index (PMI) [7], double green vegetation index [8], and red edge
vegetation stress index (RVSI) [9].

The modeling algorithms applied in remote sensing influence the accuracy of remote
sensing technologies. Today, the algorithms applied in disease and pest monitoring with
remote sensing technologies are mainly empirical models and machine learning algo-
rithms [10,11]. Among them, the empirical models are relatively simple; however, the
data are easily influenced by external conditions and have poor universality. In recent
years, machine learning methods have emerged, with rapid development. Crop disease
monitoring models established based on machine learning methods consider training error
and generalization ability, and address the challenges associated with slight changes in
reflection coefficient during crop disease detection [12,13]. Gu et al. [14] used hyperspectral
imaging technologies to monitor tobacco infected by tomato spotted wilt virus and reported
that the combination of a successive projections algorithm (SPA) and boosted regression
tree was the optimal modeling approach. In addition, Liu et al. [15] established a wheat wilt
monitoring model using an improved backward propagation neural network. Wheat is a
crop planted in dense rows; if only a single spectral data type is applied in disease monitor-
ing activities, the model is often insensitive to changes in canopy spectrum reflectance, and
the reflectance data can be saturated, leading to significant model prediction errors [16,17].

Texture information obtained using imaging spectroscopy tools can reflect disease
spot sizes and infestation levels of bacterial diseases [18], in addition to integrating plant
morphology and canopy structure information in the spectral data, which enhances the
accuracy of remote sensing tools in crop disease monitoring activities [19]. Many researchers
have exploited the complementary advantages of spectrum and texture information, which
has significantly improved crop growth parameters and the inversion effect of disease
severity [20,21]. For example, Guo et al. [22] used vegetation index (VI) and texture features
(TF) data obtained using an unmanned aerial vehicle (UAV) platform to establish a wheat
stripe rust monitoring model based on partial least squares regression (PLSR). TF can
provide plant morphology data that could be applied in the monitoring of crop growth
based on remote sensing technologies, which can address the saturation and low accuracy
shortcomings associated with single spectral information source-based monitoring, and in
turn enhance the robustness of a model and model inversion performance.

Infrared thermal imaging technologies have high sensitivity and early warning ca-
pacity. Wheat plants are infected by powdery mildew fungus, and the early symptoms
are mostly manifested by changes in internal physiological reactions. Thermal infrared
images can reveal temperature changes infected regions that cannot be discerned by visible
light images [23]. Mahlein et al. [24] used an infrared thermal instrument (IRT) to measure
wheat canopy temperature (CT) and found that the temperature of diseased spikelets was
significantly higher than that of healthy spikelets. Therefore, infrared thermal imaging
technologies can be used to monitor crop stress during growth and physiological condi-
tions. Many researchers have begun to combine IRT with other remote sensing data sources
in plant disease monitoring activities. For example, Zarco-Tejada et al. [25] confirmed
that the combination of VI, sun induced fluorescence (SIF), and crop water stress index
(CWSI) could be used to effectively monitor diseased trees, and the identification accuracy
rate exceeds 80%. In addition, Poblete et al. [26] combined the spectrum, SIF and CWSI,
which could effectively distinguish diseased and non-diseased olive trees, whereas Zhang
et al. [27] used UAV multi-spectral VI in combination with CT information to estimate
disease severity in disease-stressed chickpea, with significantly enhanced detection accu-
racy. The results of the above studies indicate that thermal infrared data can reliably reflect
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abnormal conditions in the CT of stressed crops, and can facilitate disease identification
and disease classification when combined with other remote sensing data sources.

In the wake of rapid advancements in modern electronic information science, numer-
ous sensors are available for application in the detection of crop morphology and canopy
structure, such as reflectance spectrometers, chlorophyll fluorescence meters, and IRT and
RGB cameras, which detect crop morphology and growth status based on different factors
and principles [28]. However, crop information associated with a single information source
is often potentially biased and has certain limitations. Data from different sensor types can
be deployed synergistically to enhance target detection and recognition capabilities [29].
Compared to a single sensor data source, multi-sensor data sources can enhance the reli-
ability and robustness of real-time detection [30]. At present, few studies have reported
on the monitoring of wheat powdery mildew disease based on a synergy of spectral data
and thermal infrared temperature data; in particular, there is a dearth of studies on disease
monitoring using approaches that synergize VI, TF and temperature parameters (TP).

To further explore the synergistic effects of multimodal data obtained from different
sensors in disease monitoring, in the present study, multimodal data on the incidence
of wheat powdery mildew was obtained using hyperspectral surface spectrometer and
thermal infrared camera, and compared with ground disease investigations. Multimodal
data were obtained using modern modeling and inversion algorithms, such as PLSR,
support vector machine regression (SVR), and random forest regression (RFR). The results
of the present study could provide a technical basis for the rapid and large-scale monitoring
of wheat powdery mildew, and facilitate the prevention and precise control of wheat
powdery mildew, in addition to the improvement of pesticide efficiency and food safety.

2. Materials and Methods
2.1. Experimental Design

Experiment 1 (EXP.1): The experiment was conducted in the 2020–2021 wheat growing
season at the Science and Education Demonstration Park (34◦51′ N, 113◦35′ E) of Henan
Agricultural University, Zhengzhou, China. The tested varieties were varieties susceptible
to wheat powdery mildew: Aikang 58 and Yumai 49–198. The first crop was corn, and
the stalks were crushed and returned to the field. The soil was loam, the 0~30-cm soil
contained 0.99–1.18 g kg−1 of total nitrogen (N), 0.023–0.034 g kg−1 of available phosphorus,
0.114–0.116 g kg−1 of available potassium, and 11.4–15.3 g kg−1 of organic matter. In the
experiments, relatively high water and N fertilizer amounts were used to create favorable
conditions for powdery mildew. The amount of N applied was 270 kg·hm−2, and the
irrigation amount during the wintering period-jointing stage was 900 m3·hm−2. Powdery
mildew fungus was inoculated at the jointing stage, and the wheat was infected from the
flowering stage, and the canopy spectrum data were obtained at the flowering and filling
stages. Other field management approaches were similar to those applied locally.

Experiment 2 (EXP.2): Carried out simultaneously with experiment 1, experiment 2
was a variety comparison experiment in the field, involving Yanzhan 4110, Nongmai 18,
Zhoumai 27, Jinfeng 205, Zhengmai 1342, Xumai 318, Bainong 207, and Xinmai 26. The
amount of N applied was 225 kg·hm−2, and the irrigation amount during the wintering
period-jointing stage was 675 m3·hm−2. The experimental area was close to fences and
pig farms, and the terrain was low-lying. Due to the terrain, air humidity, rainfall, and
diseases in previous years, the wheat growth environment was suitable for the occurrence
and spread of wheat powdery mildew, without field inoculation. Disease emergence was
natural and more severe. Other field management approaches were similar to those applied
in EXP.1.

2.2. Ground Data Collection
2.2.1. Investigation of Powdery Mildew

During the wheat flowering and filling periods, wheat powdery mildew incidence
was investigated manually, and 77 and 37 samples were collected in EXP.1 and EXP.2,
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respectively. About 0.2 m2 of the experimental area was investigated at each point, and
20 representative wheat plants were selected to test for powdery mildew infection. The
survey was conducted in strict accordance with the technical specifications for crop disease
monitoring (Chinese Standard: NY/T 2738.2-2015) [31]. The ratio of the leaf area covered
by the diseased mycelium layer on the diseased leaf to the total leaf area was expressed
based on a grading method, with eight levels representing 1%, 5%, 10%, 20%, 40%, 60%,
80%, and 100% coverage. The grid method was used to calculate the ratio of the diseased
spot area to the leaf area. The operation involved using grids to cover the leaves, recording
the total number of grids with disease spots, to facilitate the calculation of the ratio of the
diseased spot area to leaf area. The closest value between grades was selected as the actual
level. For example, at onset with a severity of less than 1%, the coverage was considered
1%. The average severity of diseased leaves was calculated as follows (1):

D =
∑ (Di× Li)

L
× 100 (1)

where, D is the average disease severity in leaves, and the unit is percentage (%); Di is each
severity value; Li is the number of diseased leaves corresponding to each severity value,
and the unit is slice; and L is the total number of leaves under investigation, and the unit
is slice.

On the basis of the severity of disease in leaves, the disease index (DI) is calculated to
represent the average level of disease occurrence (Equation (2)).

DI = F×D× 100 (2)

where, DI is the disease index; F is the diseased leaf rate; D is the average severity of disease
in leaves.

2.2.2. Canopy Spectrum Data Measurement

From 10:00 to 14:00 (Beijing local time) with little wind and clear weather, a FieldSpec
handheld spectrometer (FieldSpec Handheld 2, Analytical Spectral Devices, Boulder, CO,
USA) was used to obtain wheat canopy spectrum data, and the probe was 1.0 m from the
top of the wheat crop. The field of view of the spectrometer was 25◦, in the 325–1075 nm
band, the spectral sampling interval was 1.4 nm, and the spectral resolution was 3.0 nm. A
0.4-m × 0.4-m BaSO4 calibration plate was used to calculate black and baseline reflectance.
Ten spectral reflectance values were recorded at each sampling point as samples, and the
average value was considered the spectral reflectance of the sampling area.

2.2.3. Thermal Infrared Image and RGB Image Acquisition

An FLIR T650sc thermal infrared camera (FLIR Systems, Inc., Wilsonville, OR, USA)
was used to obtain the wheat canopy temperature (CT) and RGB images. The device has
dual thermal infrared and visible light sensors, and the image resolution is 640 × 480 pixels.
Synchronous with the spectral reflectance measurement, the lens was 1.0 m from the top
of the wheat crop, and the thermal infrared and RGB images were obtained vertically
(Figure 1).
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Figure 1. Wheat canopy RGB image (a) and thermal infrared image (b) obtained using thermal
infrared camera.

2.3. Data Processing Methods
2.3.1. Spectral Vegetation Index (VI)

Before extracting the VIs, the bands with high noise before 400 nm and after 1000 nm
were removed, and then the Savitzky-Golay function was used to smoothen the spectra
in MATLAB 7.0 (The MathWorks Inc., Natick, MA, USA). VIs associated with the disease
were pre-selected by consulting relevant literatures (Table 1). Considering the potential
existence of the collinearity problem among VIs, SPA was used to optimize VIs and reduce
their multicollinearity. SPA is a forward variable selection method that selects characteristic
variables by calculating the sizes of the projection vector of the remaining variables and
the selected variables, which can ensure that the linear relationship between the selected
variables is minimized, so as to eliminate redundant information between variables and
reduce multicollinearity, to achieve the purpose of selecting sensitive variables [32].

Table 1. Spectral vegetation indices.

Vegetation Index Formula References

Modified simple ration (MSR) MSR = (R800/R670 − 1)/(R800/R670 + 1)0.5 [33]
Photochemical reflectance index (PRI) PRI = (R531 − R570)/(R531 + R570) [34]
Physiological reflectance index (PHRI) PhRI = (R550 − R531)/(R550 + R531) [35]

Transformed chlorophyll absorption in reflectance
index (TCARI) TCARI = 3(R700 − R650)− 0.2(R700/R500)/(R700/R670) [36]

Red-edge vegetation stress index (RVSI) RVSI = ((R712 + R752)/2)− R732 [37]
Structural independent pigment index (SIPI) SIPI = (R800 − R445)/(R800 − R680) [38]

Visible atmospherically resistant index (VARI) VARI = (R550 − R670)/(R550 + R670 − R480) [39]
Renormalized difference vegetation index (RDVI) RDVI = (R800 − R670)/(R800 + R670)

0.5 [40]
Anthocyanin reflectance index (ARI) ARI = (R550)

−1/(R700)
−1 [41]

Damage sensitive spectral index 2 (DSSI2) DSSI2 = (R747 − R901 − R537 − R572)/(R747 − R901 + R537 − R572) [42]
Greenness index (GI) GI = R554/R677 [43]

Plant senescence reflectance index (PSRI) PSRI = (R680 − R500)/R750 [44]
Normalized pigment chlorophyll

Index (NPCI) NPCI = (R680 − R430)/(R680 − R430) [43]

Nitrogen reflectance index (NRI) NRI = (R570 − R670)/(R570 − R670) [45]
Healthy index (HI) HI = (R534 − R698)/(R534 + R698)− 0.5R704 [7]

Powdery mildew index (PMI) PMI = (R520 − R584)/(R520 + R584)− R724 [7]
Triangular vegetation index (TVI) TVI = 0.5[120(R750 − R550)− 200(R670 − R550)] [46]

Green normalized difference vegetation index (GNDVI) GNDVI = (R800 − R550)/(R800 + R550) [47]
Nir shoulder region index (NSRI) NSRI = R890/R780 [48]

Soil-adjusted vegetation index (SAVI) SAVI = 1.5(R800 − R670)/(R800 + R670 + 0.5) [49]
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2.3.2. RGB Image Texture Features (TF)

The gray level co-occurrence matrix (GLCM) method, proposed by Haralick in 1973 [50]
is one of the most widely used texture extraction methods. The method has the advantages
of rotation invariance, multi-scale characteristics, and low computational complexity, and
is widely used in image processing, pattern recognition, and remote sensing monitor-
ing [51,52]. In ENVI (Harris, Bloomfield, CO, USA), the gray level image of the RGB image
was subjected to 3 × 3 sliding filtering using GLCM. Eight texture feature maps in the
directions of 0◦, 45◦, 90◦ and 135◦ were extracted (Figure 2, Table 2), and the average of
four directions was taken as the final texture feature map. To ensure that the extracted
texture features are all based on canopy vegetation, a K-means clustering algorithm is used
for bare soil rejection. The soil and vegetation mask is shown in Figure 3.
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Figure 2. Eight texture feature maps of gray-level co-occurrence matrix from RGB image of wheat
canopy in the 0◦ direction.

Table 2. Texture feature calculation formula.

Texture Equation Description

Mean, MEA MEA =
G
∑

i,j=1
(iP(i, j)) Reflects the average of the greyscale

Variance, VAR VAR =
G
∑

i=1

G
∑

J=1
(i− u)2P(i, j) Reflects the magnitude of grey scale variation

Homogeneity, HOM HOM =
G
∑

i=1

G
∑

J=1

P(i,j)
1+(i−j)2

Reflects the roughness of image texture

Contrast, CON CON =
G
∑

i=1

G
∑

J=1
(i− j)2P(i, j)

Reflects the local variations in the gray-level
co-occurrence matrix

Dissimilarity, DIS DIS =
G
∑

i=1

G
∑

J=1
P(i, j)|i− j| Same as contrast, used to detect similarity

Entropy, ENT ENT = −
G
∑

i=1

G
∑

J=1
P(i, j)logP(i, j)

Reflects the degree of the gray distribution
and the thickness of the texture

Second moment, SEM SEC =
G
∑

i=1

G
∑

J=1
P2(i, j)

Reflects the homogeneity of an image’s
distribution of greyscale

Correlation, COR COR =
G
∑

i=1

G
∑

J=1

(i−MEAj)(j−MEAj)P(i,j)
√

VARi
√

VARj

Reflects the length of the extension of a
certain grey value in a certain direction

Note: i and j indicate the row and column number of the images, respectively; P(i, j) is the relative frequency of
two neighboring pixels.
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2.3.3. Thermal Infrared Temperature Parameters (TP)

The thermal infrared image was annotated and combined with K-means clustering
segmentation results (Figure 3) using FLIR Tools (FLIR Systems Inc., Wilsonville, OR,
US), and the temperature parameters were extracted. Considering that CT changes with
the daily change in atmospheric temperature, the canopy temperature difference (CTD),
canopy temperature ratio (CTR), and normalized relative canopy temperature (NRCT) were
extracted to eliminate the influence of atmospheric temperature on CT. The temperature
parameter formula was as follows:

CTD = CTi −AT (3)

CTR =
CTi
AT

(4)

NRCT =
CTi − CTmin

CTmax − CTmin
(5)

where, AT is the atmospheric temperature, CTi is the CT of the i-th pixel in the image,
CTmax is the highest temperature measured in the entire experimental field, and CTmin is
the lowest temperature measured in the entire experimental field.



Sensors 2022, 22, 31 8 of 19

2.3.4. Estimation Model

(1) PLSR

PLSR is a classic modeling method, which includes the characteristics of principal
component analysis (PCA), canonical correlation analysis, and multiple linear regression
analysis, and is often used for quantitative analysis in remote sensing [53]. PLSR transforms
the original variables with high data redundancy into a few variables by selecting the
optimal latent variables, to describe the linear model of the relationship between the
predicted value and the true value.

(2) SVR

The basic idea of SVR is to use training samples to establish a regression hyperplane,
and to approximate the samples to the hyperplane to minimize the total deviation from the
sample point to the plane [54]. The commonly used kernel functions of the SVR algorithm
include the linear kernel function, radial basis function (RBF) kernel function, polynomial
kernel function, and Sigmoid kernel function. Among them, the RBF kernel function
can handle the complex nonlinear problem between the independent variable and the
dependent variable.

(3) RFR

RFR is a machine learning algorithm based on a classification regression tree [55].
RFR uses the bootstrap resampling method to extract multiple samples from the original
sample, models each bootstrap sample into a decision tree, combines them into multiple
decision trees for prediction, and then applies the majority voting method to determine
the final classification result of the joint prediction model. The advantage of the method
is that the training speed is relatively fast and it does not require cross-validation. In
addition, the randomness of sampling and feature selection make the random forest averts
overfitting [56]. It is widely used in classification and prediction in remote sensing-based
monitoring activities.

2.3.5. Model Validation

With VI, TP and TF as independent variables, and DI as the dependent variable, a
monitoring model for wheat powdery mildew disease index was established based on
the three algorithms above. The workflow from feature extraction to model building and
evaluation was demonstrated in Figure 3. To make the model evaluation results more
objective, EXP.1 test data were used as the modeling set, and EXP.2 test data were used as
the verification set. The accuracy of the wheat powdery mildew disease index monitoring
model was evaluated based on three indicators: coefficient of determination (R2), root mean
square error (RMSE), and relative error (RE). The closer R2 is to 1, the lower the RMSE,
and the lower the RE, the higher the accuracy of the monitoring model. The formula was
as follows:

R2 =
∑n

i=1(xi − x)2 × (yi − y)2

∑n
i=1(xi − x)2 ×∑n

i=1(yi − y)2 (6)

RMSE =

√
∑n

i=1(yi − xi)
2

n
(7)

RE (%) =

√√√√ 1
n
×

n

∑
i=1

(
yi − xi

xi

)2
× 100 (8)

where, xi, x, yi, and y are the measured DI, average DI, predicted DI, and average DI,
respectively; n is the number of samples.
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3. Results
3.1. Changes in Wheat Canopy Spectra under Different Powdery Mildew Severity Levels

With an increase in DI, the spectral reflectance of the visible light band from 400 to
780 nm increased gradually, and the discrimination of DI was better (Figure 4a). The
spectral reflectance of the near-infrared bands region across 780 nm–1000 nm was less
distinguishable when the disease was mild; when the disease was more than moderate, the
spectral reflectance increased gradually; and when the disease was severe (such as DI = 80),
the spectral reflectance rose sharply due to severe damage to the canopy structure, even
higher than the spectral reflectance of healthy wheat. From the perspective of the correlation
between disease severity and reflectance (Figure 4b), there was a positive correlation in the
visible light band from 400 to 730 nm, and a negative correlation in the near-infrared region
from 730 to 1000 nm, especially at 600–700 nm (r = 0.373–0.431, probability value, p < 0.01)
and 780–960 nm (r=−0.355–−0.294, p < 0.01), which can be considered as disease-sensitive
bands for the real-time monitoring of disease progression.
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3.2. Selection of Vegetation Index

Based on the reported VIs related to plant disease, the correlations between 20 VIs and
DI were analyzed. The VI with the highest correlation was NSRI (r = 0.743) (Figure 5a),
followed by GI and NPCI. Because VI is a combination of bands, and there is a certain
degree of information duplication between bands, there is considerable multicollinearity
among the spectral parameters. Therefore, the SPA algorithm is used to optimize the VI.
The minimum number of sensitive variables extracted was two, and the maximum number
of sensitive variables was twenty. RMSE decreased with an increase in the number of
variables. RMSE was the minimum (RMSE = 15.575) when the number of variables was
10; however, with an increase in the number of variables, the RMSE increased gradually
(Figure 5b). After SPA screening, there were 10 VIs, namely NSRI, NPCI, PSRI, PRI, ARI,
SIPI, PMI, MSR, RVSI, and GNDVI. According to the results, when a single VI was used to
estimate the DI, the linear R2 was low (R2 < 0.56), and the error in monitoring powdery
mildew disease was relatively large (Figure 6).
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Figure 6. Linear relationship of the optimal vegetation indices with wheat disease index (DI).

3.3. Selection of Texture Feature Parameters

Analysis of the correlation between TF parameters of canopy RGB images and DI
showed that the correlation coefficients were all positive. Excluding the correlation co-
efficient between the correlation and DI, which was not significant, all the others were
significant, among which entropy was the highest (r = 0.486, p < 0.01) (Figure 7a). The eight
extracted TFs were all calculated from grayscale images, and considering the potential
multicollinearity among TFs, the SPA algorithm was used to optimize the variables. The
RMSE was the lowest (RMSE = 18.043) when the number of TF variables was five. Five TF
parameters, mean, variance, homogeneity, entropy, and second moment, were selected as
the input variables in the estimation model (Figure 7b).
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3.4. Selection of Thermal Infrared Temperature Parameters

The TP parameters from thermal infrared images were extracted to analyze their
correlation with DI, and the results showed that the correlation coefficient between CT and
DI was 0.382, and was significant (p < 0.01) (Figure 8). Considering CT changes with daily
atmospheric temperature changes, the CTD, CTR and NRCT were extracted to eliminate the
influence of atmospheric temperature on CT. After eliminating the influence of atmospheric
temperature, the significant level of correlation of TP was further improved, with a very
significant level (p < 0.01) observed. Combining the principle of strong correlation and
eliminating duplicate information, two TPs, CTD, and NRCT, were selected as input
variables for the subsequent steps of modeling and analysis.
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3.5. Comparison of Different Model Algorithms Based on Single Data Sources

With a single data source as an independent variable, three methods, including, PLSR,
SVR and RFR, were used to invert the DI of wheat powdery mildew (Table 3, Figure 9).
Comprehensive comparison revealed that the RFR model performed optimally, followed
by the SVR and PLSR models. Based on the performance results of the three data sources,
regardless of which method was used to estimate wheat DI, the performance of the VI
was the best, followed by TP and TF. Based on combinations modeling methods and
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independent variable data type, the RFR method with VI as the independent variable
was the best combination, with R2, RMSE, and RE values of 0.690, 14.488, and 18.42%,
respectively, in the calibration set, and R2, RMSE, and RE values of 0.680, 14.298, and
18.16%, respectively, in the validation set. The SVR method with VI as an independent
variable was the second best combination, with R2, RMSE and RE values of 0.670, 14.757,
and 18.69%, respectively, in the calibration set, and R2, RMSE, and RE values of 0.666,
15.578, and 18.16%, respectively, in the validation set.

Table 3. Estimation performance of single data source model based on different algorithms.

Independent
Variable Type

Number of
Variables

Modeling
Method

Calibration Set Validation Set

R2 RMSE RE R2 RMSE RE

VI 10
PLSR 0.666 15.014 19.24% 0.650 16.425 19.86%
SVR 0.670 14.757 18.69% 0.666 15.578 19.28%
RFR 0.690 14.488 18.42% 0.680 14.298 18.16%

TF 5
PLSR 0.509 17.852 32.03% 0.486 18.367 32.05%
SVR 0.517 18.616 30.70% 0.514 17.489 30.23%
RFR 0.537 17.621 29.18% 0.537 17.799 27.95%

TP 2
PLSR 0.553 17.420 29.27% 0.546 17.673 29.66%
SVR 0.567 17.347 28.96% 0.571 17.094 27.13%
RFR 0.575 16.470 27.83% 0.577 16.791 27.79%
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3.6. Comparison of Different Model Algorithms Based on Multi-Source Data Combination

To fully exploit the information obtained from different data sources, TP, TF, and VI
were combined to carry out a comparative analysis of three modeling methods (Table 4,
Figure 9). After fusing TF on the basis of VI data, the average R2, RMSE, and RE values in
the calibration set were 0.743, 12.91, and 17.57%, respectively, with the R2 value representing
an average increase of 10% when compared with the R2 of single VI data source. The mean
R2, RMSE, and RE values in the validation set were 0.742, 12.849, and 17.71%, respectively,
and the R2 value represented a 11.6% increase when compared to the R2 of the single VI
data source. The addition of TP based on VI data enhanced the accuracy of the combined
model. The average R2 values in the validation and calibration sets were 0.779 and 0.772,
respectively, the RMSE values were 12.823 and 12.467, respectively, and the RE values were
15.56% and 15.62%, respectively. The R2 values were 15.4% and 16% higher, respectively,
than the R2 values based on the single VI data source. In addition, in the combined TP
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and TF modelling, the estimation performance was superior to those of the single data
sources, both TP or TF; however, the model was inferior to VI based on both the calibration
and validation sets. The results indicate that when using single data source-based VI
as a benchmark, TF has a minor positive effect on model accuracy when performing
multi-data collaboration modeling, whereas TP has a relatively high positive effect on
model improvement.

Table 4. Estimation performance of multi-source collaboration models based on different algorithms.

Independent
Variable Type

Number of
Variables

Modeling
Method

Calibration Set Validation Set

R2 RMSE RE R2 RMSE RE

TP&TF 7
PLSR 0.624 16.265 21.67% 0.623 16.151 22.67%
SVR 0.641 15.413 20.39% 0.637 15.900 20.91%
RFR 0.646 15.328 20.29% 0.641 15.687 20.77%

VI&TF 15
PLSR 0.723 13.417 18.37% 0.728 13.236 18.15%
SVR 0.744 13.211 17.33% 0.738 13.107 17.27%
RFR 0.762 12.102 17.02% 0.761 12.203 17.71%

VI&TP 12
PLSR 0.763 13.385 16.08% 0.746 13.375 16.20%
SVR 0.784 12.554 15.43% 0.776 12.221 15.59%
RFR 0.791 12.531 15.51% 0.794 11.804 15.07%

VI&TP&TF 17
PLSR 0.840 11.606 14.07% 0.831 10.947 14.09%
SVR 0.857 11.277 13.66% 0.854 10.200 13.07%
RFR 0.872 10.108 12.54% 0.862 10.049 12.31%

Three modeling methods were used to synergize three data sources, VI, TF, and TP.
The R2 values of the calibration and validation sets were further improved compared with
the R2 value following combination of the two data sources. The average R2 values of the
calibration and validation sets in the model with the three data sources combined were
0.856 and 0.849, respectively, the RMSE values were 10.997 and 10.399, respectively, and
the RE values were 13.42% and 13.16%, respectively. The R2 values were 26.8% and 27.6%
higher, respectively, than the R2 values of the single VI data source model. Comparison of
the modeling algorithm results showed that the RFR model had the highest R2, the lowest
RMSE and RE, and the greatest DI predictive capacity, followed by the SVR model and PLSR
models (Figure 10). The R2 values of the RFR fusion model of the three data sources were
0.872 and 0.862 in the calibration and validation sets, respectively, the RMSE values were
10.108 and 10.049, respectively, and the RE values were 12.54% and 12.31%, respectively. The
above results indicate that collaborative modeling with multiple data sources is superior to
single data source-based modeling, with the combined model exhibiting better fit, accuracy,
and predictive ability (Figure 9).
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4. Discussion
4.1. Combining VI and TF to Monitor Crop Diseases

Previous literature has confirmed the importance of reflectance spectrum data in crop
disease monitoring and its application prospects. The visible light and near-infrared regions
are the sensitive bands for spectral identification of different crop diseases and insect pests;
furthermore, the spectral sensitivity bands of different crops and different diseases vary.
The sensitive bands of wheat powdery mildew are located at 490–780 nm [57], and wheat
powdery mildew monitoring is mainly based on the sensitive band [58,59], and different
forms of disease VI can be established according to the reflection characteristics of the
disease [7–9]. Disease emergence involves gradual development that alters internal tissue
physiology and biochemistry, and, in turn, the external morphological structure, and then
manifests externally as disease that can be detected by remote sensing. Due to the combined
effects of internal and external factors, such as mesophyll cells, water, chlorophyll, and
leaf yellowing and dryness, the ability to extract disease information from a single band is
often limited. The VIs with good performance in the present study were NSRI, NPCI, and
CVI. Among them, NSRI performed optimally, with a linear R2 of only 0.552, which hardly
meets the information requirements for accurate crop protection.

The onset of powdery mildew disease has a significant bottom-up characteristic. In the
early and middle stages of the disease, the disease is mainly concentrated in the middle and
lower levels of the plant. However, the canopy reflectance spectra data mainly originate
from the upper level, which leads to lack of consistency between the collected canopy
spectra data and disease characteristics, and increases the challenge of monitoring powdery
mildew using canopy spectrum data only. Therefore, the use of multivariate analysis
methods to identify and monitor disease has become a hotspot in quantitative remote
sensing research.

In the present study, multiple VIs were used as independent variables, and three
algorithms PLSR, SVR, and RFR were used to predict DI. The results showed that the RFR
model had the highest monitoring accuracy; however, R2 was still lower than 0.7. From
the perspective of precise crop protection and disease prevention and control, the spectral
data could not be used to monitor wheat powdery mildew reliably. Some scholars have
attempted to incorporate fluorescence data in modeling when using hyperspectral data for
disease monitoring, and achieved good monitoring results [60]. When a pathogen infects
plants, the canopy structure changes following physiological and biochemical responses,
and the TF can reflect the change in canopy structure caused by pathogen infestation to
a certain degree [61,62]. Researchers have used hyperspectral VI in combination with
TF to monitor wheat stripe rust, and reported that the estimation results of the two com-
bined data sources were significantly better than that of the single data source [22]. In
the present study, the VI and TF were modeled together, and model accuracy improved
when compared with when the VI from a single data source was used. However, the
highest accuracy of the combined model in the validation set was only 0.761, the opti-
mization effect was limited, and it did not satisfy the requirements of accurate monitoring,
which could be due to the gradual senescence of wheat leaves after the flowering pe-
riod, and the increased background complexity of withered plants. Furthermore, multiple
factors in some plots, such as disease, drought, senescence, and atmospheric tempera-
ture, which make it impossible to accurately distinguish whether the withered leaves and
structural changes are attributed to disease stress, could have adversely influenced the
modelling findings.

4.2. Combining VI and TP to Monitor Crop Disease

Thermal infrared imaging technologies have great application potential in remote
sensing monitoring activities [63–65]. After crops are infected by fungi and pathogens,
cell membrane permeability increases, water is lost, and plants exhibit dehydration and
wilting. In addition, stomata are closed and heat loss on the leaf surface changes, which
leads to leaf surface temperature response. At the onset of crop disease, changes in heat
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radiation energy caused by plant water loss, stomata closure, and increased respiration
can be intuitively reflected in infrared heat maps; however, most studies have focused
on disease classification and disease identification. Calderón et al. [66] demonstrated the
capacity of using canopy temperature information and hyperspectral VI to identify olive
trees with yellow dwarf disease; however, they did not estimate disease severity. In the
previous monitoring research on wheat powdery mildew, no studies have reported the
combination of VI and TP. The correlation analyses carried out in the present study showed
that the thermal infrared temperature was sensitive to disease, and it was more effective to
convert CT into CTD, CTR, and NRCT. Compared to canopy TF, temperature information
had a greater role in disease monitoring. The RFR model performed best (R2 = 0.577)
and was slightly more accurate than the TF-RFR model; however, it was significantly less
accurate than the VI-RFR model. VI as a single data source was more suitable for monitoring
wheat powdery mildew, followed by canopy TP and canopy TF. To further improve the
information limitations of single data sources, VI and canopy TP were modeled together
(VI&TP). Model accuracies of different algorithms were higher than that of VI&TF on the
whole, indicating that canopy temperature information has great application potential in
disease monitoring.

Previous studies have also demonstrated that spectral information, texture informa-
tion, and thermal infrared information have the ability to monitor crop diseases [22,24,26];
however, no study has reported their joint application in wheat powdery mildew moni-
toring. To that end, the present study conducted fusion modeling based on VI, TF, and
TP (VI&TF&TP). According to the results, the combination of the three data sources had
obvious advantages over single data sources or two combined data sources. Among them,
the R2 values of the three data source models based on the RFR algorithm was 0.862, which
provides technical support and a reference method for the prevention and precise control
of wheat powdery mildew.

4.3. Machine Learning Algorithms in Disease Monitoring

In the wake of rapid advancements in computer modeling science, machine learning
technology has been applied extensively in crop disease monitoring, with the achievement
of remarkable results [67,68]. Jiang et al. [69] demonstrated the high estimation capacity
of the RFR model in the monitoring of mangrove disease and insect pests. In addition,
Zhang et al. [70] demonstrated the good classification performance of the RFR model
in the identification of wheat grains infected with Fusarium. In the present study, three
modeling methods (PLSR, SVR, RFR) were used to monitor wheat powdery mildew DI.
The RFR model performed best, regardless of whether it was based on single data source
modeling or multi-source data modeling. This is mainly because the RFR algorithm has
good anti-noise ability and does not easily exhibit over-fitting [71]. In the present study,
SVR was used to integrate information from three data sources, and the average accuracy
that the model achieved was 0.77. Considering the operation efficiency and prediction
accuracy of the model, the method is effective for monitoring the disease. In contrast, the
performance of the PLSR model was slightly worse, which might be because PLSR was
better at addressing multicollinearity between parameters [72], and the parameters used in
the present study were optimized by the SPA algorithm, which eliminated the influence of
multicollinearity, resulting in an inability to maximize the performance of the PLSR model.

Although the overall performance of the RFR model in the present study was the
best, the estimated value was lower than the actual value under more severe disease
conditions, which was also observed in the other model algorithms. Generally, the greater
the population density of wheat powdery mildew, the worse the air permeability, and the
more severe the disease, which decreases the sensitivity of spectral and thermal imaging
data to disease severity. Under the condition of multi-source data fusion, the saturation
of the model was alleviated, which also demonstrates the effectiveness of multi-data
source fusion.



Sensors 2022, 22, 31 16 of 19

When applying different model algorithms to monitor wheat powdery mildew in
collaboration with VI, TF, and TP, the present study did not consider the contribution
rates of different data source parameters to the model. How to use different algorithms to
determine the weights of different data source parameters to further improve the accuracy
of the model remains to be further studied. The occurrence and characteristics of powdery
mildew are certainly associated with crop variety, growth period, and other diverse factors.
Using targeted information extraction algorithms to clarify the effects and contribution
levels of each influencing factor could facilitate the integration multiple effect factors to
accurately monitor disease occurrence, and provide a theoretical basis for crop protection
and precise operations.

5. Conclusions

Based on multi-source data fusion and machine learning, the present study explores
the application potential of canopy spectral vegetation index, thermal infrared information,
and texture feature information obtained using different sensors in wheat powdery mildew
monitoring. In the case of wheat disease index prediction based on single data source, spec-
tral information is better than thermal infrared information and texture features. Regardless
of the modeling method, the results obtained following the fusion of data from multiple
sources are more reliable than the data obtained from a single data source. When using
the combination of vegetation index, thermal infrared information and texture features,
higher prediction precision can be achieved. Regardless of whether single data source or
multi-source data is used, the monitoring accuracy of the RFR model is higher than that of
other algorithm models. Therefore, the combination of multi-source data fusion and the
RFR model have broad application prospects in wheat powdery mildew monitoring, which
could not only promote disease prevention and control but also reduce pesticide use and
enhance the efficiency of disease prevention and control activities. However, the models
identified should be tested under different crop types, growth stages, and environmental
conditions, to further evaluate the robustness of the models.
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