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5,6-Dimethylxanthenone-4-acetic acid (DMXAA) is currently undergoing clinical evaluation as an antivascular agent for the treatment
of cancer. We have previously demonstrated that DMXAA induces apoptosis of vascular endothelial cells in murine tumour sections
and in a breast carcinoma biopsy from one patient in a Phase I trial. We wished to determine the tissue selectivity of this effect and its
relationship to induced blood flow changes. Mice with Colon 38 tumours were treated with DMXAA and tissues were examined for
apoptosis by TdT-mediated dUTP nick-end labelling (TUNEL). Hoechst 33342 was used to stain functional vessels, with the loss of
stained vessels used as a measure of tumour vascular collapse. Treatment with DMXAA at 25 mg kg�1, its maximum tolerated dose
(MTD), showed, after 3 h, a 12-fold increase in TUNEL staining of tumour vascular endothelial cells. In contrast, tissue from the heart,
brain, liver and spleen showed no increase. Induction of apoptosis in tumour tissue was both dose-dependent, observable at doses as
low as 5 mg kg�1, and time-dependent. Apoptosis was significantly lower in Colon 38 tumours of mice, with a targeted disruption in
the TNF gene (TNF�/�), or in the TNF receptor 1 gene (TNFR�/�), as compared with that in wild-type mice. Increasing the DMXAA
dose to 50 mg kg�1 in these knockout mice raised tumour apoptosis to a level comparable to that induced in wild-type mice given
DMXAA at the MTD. For all the data, a significant correlation (r¼ 0.94; Po0.001) was found between logarithmic percentage
apoptosis induction and the logarithmic density of Hoechst-stained vessels. These results suggest that blood flow inhibition caused by
DMXAA is tumour tissue-specific and is a consequence of induction of apoptosis in tumour vascular endothelial cells.
British Journal of Cancer (2004) 90, 906 – 910. doi:10.1038/sj.bjc.6601606 www.bjcancer.com
& 2004 Cancer Research UK

Keywords: antivascular; blood flow; Hoechst 33342; knockout mice; tumour necrosis factor; apoptosis

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

5,6-dimethylxanthenone-4-acetic acid (DMXAA), a new anticancer
agent synthesised in this laboratory (Rewcastle et al, 1991), is
currently undergoing clinical evaluation as an antivascular agent
for the treatment of cancer. In mice with transplantable tumours,
DMXAA caused cessation of tumour blood flow, vascular collapse
and tumour necrosis (Rewcastle et al, 1991; Zwi et al, 1994; Lash
et al, 1998). DMXAA also increased tumour necrosis factor (TNF)
concentrations in both plasma and tumour tissue of mice (Philpott
et al, 1995; Ching et al, 1999). We have previously used TdT-
mediated dUTP nick-end labelling (TUNEL) assays to demonstrate
the induction of apoptosis of the vascular endothelium in Colon 38
tumours in mice treated with DMXAA at its optimal dose (Ching
et al, 2002). Staining was detectable within 30 min of administra-
tion, intensified with time, and necrosis of adjacent tumour tissue
was evident after 3 h. Some apoptosis of splenic tissue was detected
in tumour-bearing mice, but none was observed in the liver tissue.
Of particular interest was the finding of TUNEL staining of tumour
vascular endothelium in breast tumour biopsies taken from a
patient 3 and 24 h after infusion of DMXAA (3100 mg m�2) in a
Phase I clinical trial. Thus, DMXAA is capable of inducing
apoptosis in vascular endothelial cells in both mice and human
tumours.

The finding of a rapid onset of tumour endothelial apoptosis,
occurring before the appearance of detectable TNF in tumour
tissue (Ching et al, 1999), suggests that DMXAA exerts a direct
effect on tumour vasculature, and is of particular relevance to
clinical trials. In this report, we have used in vivo vascular labelling
techniques to investigate the relationship between apoptosis
induction and tumour blood flow reduction. To investigate the
role of TNF, we utilised mice with a targeted disruption of the TNF
gene (TNF�/�) or of the TNF receptor 1 gene (TNFR�/�).

MATERIALS AND METHODS

Materials

DMXAA was synthesised at the Auckland Cancer Society Research
Centre (Rewcastle et al, 1991) and dissolved in minimal 5%
sodium bicarbonate for intraperitoneal injection into mice
(25 mg kg�1) in a volume of 0.01 ml g�1 body weight. Hoechst
33342 (Sigma Chemical Co., St Louis, MO, USA) was dissolved at
8 mg ml�1 in saline and stored at �801C.

Mice

All mice were housed and used under institutional, ethical
guidelines. All animal experiments have been carried out withReceived 22 September 2003; accepted 27 October 2003
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ethical committee approval. The ethical guidelines that were
followed meet the standards required by the UKCCCR guidelines
(Workman et al, 1998). C57Bl/6 mice were obtained from the
Animal Resource Unit, University of Auckland. TNF�/� and
TNFR�/� knockout mice on a C57Bl/6 background were offspring
from breeding pairs obtained, respectively, from the Centenary
Institute, Sydney, Australia, and Jackson Laboratory, Bar Harbor,
ME, USA. Colon 38 tumour fragments (1 mm3) were implanted
subcutaneously in the left flank of anaesthetised (82 mg kg�1

sodium pentobarbitone) mice. Tumours were used when they had
reached approximately 6 mm in diameter, generally 10 days after
implantation. At least three mice were assigned for each group.

Histochemistry

Apoptosis was determined using the TUNEL assay for the
identification of double-stranded DNA breaks using the In situ
Cell Death Detection Kit (Roche Diagnostics, Mannheim, Ger-
many), according to the manufacturer’s instructions. Tissue
cryosections (14mm thickness) on poly-L-lysine-coated slides were
fixed in 4% paraformaldehyde in phosphate-buffered saline (PBS)
for 30 min at room temperature, washed three times with PBS for
10 min each time, dehydrated for 2 min in absolute ethanol and
then treated with permeabilisation solution (1% Triton X-100 in
1% sodium citrate) for 15 min at room temperature. Strand breaks
were labelled with fluoresceinated dUTP and visualised following
reaction with either antifluorescein antibody conjugated with
alkaline phosphatase and Vectors Black alkaline phosphatase
substrate solution (Vector Laboratories, Burlingame, CA, USA) or
antifluorescein antibody conjugated with horseradish peroxidase
(POD) and diaminobenzidine (DAB) substrate (Roche Diagnostics,
Mannheim, Germany). All slides were counter stained using
methyl green. The amount of apoptotic staining in the sections
was quantitated using Adobe Photoshop, Version 4 (Adobe

Systems Inc., San Jose, CA, USA). For each of 5–10 random fields
of tumour sections (2–3 tumours per group), the number of pixels
stained with TUNEL was determined, divided by the total number
of pixels, and expressed as a percentage.

Tissue cryosections were also fixed in cold acetone for 20 min at
41C, blocked with 1.5% normal rabbit serum for 1 h at room
temperature, incubated with avidin–biotin for 15 min, and then
incubated with 1 : 100 dilution of rat anti-mouse CD-31 mono-
clonal antibody (MEC 13.3; BD Pharmingen, USA) overnight at 41C
in a humidified container. Sections were then incubated with
1 : 100 dilution of biotinylated anti-rat IgG antibody and avidin–
biotin complex (Vectastain ABC-AP Kit, Vector Laboratories,
Burlingame, CA, USA). Immunoglobulin complexes were visua-
lised using Vector Red alkaline phosphatase substrate solution,
also from Vector Laboratories.

Hoechst 33342 staining of functional vessels

Hoechst 33342 (8 mg ml�1 in saline) was injected via the tail vein at
0.1 ml per mouse 3 h after DMXAA treatment. Mice were killed
2 min later by cervical dislocation and the tumours were excised
and frozen at �801C. Cryosections (14mm) of the tumour were
examined using a fluorescence microscope with a UV-1A filter
block (excitation 365 nm, barrier filter 400 nm, dichroic mirror
400 nm). Five –10 fields per tumour were scored (two to three
tumours per group), and the number of positively stained vessels
per 1 mm�2 field was calculated.

Statistical analyses

Data were analysed using a paired Student’s t-test and by standard
correlation analysis. A probability value of o0.05 was considered
significant.

Figure 1 Selective induction of tumour vascular endothelial cell apoptosis by DMXAA. Sections from Colon 38 tumours, spleen, liver, heart and brain
from untreated or treated (DMXAA, 25 mg kg�1, 3 h) C57Bl/6 mice were stained for TUNEL with alkaline phosphatase substrate (A– J) or POD/DAB
(K–T). Stained sections shown at � 100 magnification.
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RESULTS

Endothelial cell apoptosis in various tissues following
DMXAA

Sections of Colon 38 tumours, liver, spleen, heart and brain
collected from C57Bl/6 mice without treatment or 3 h after
DMXAA administration (25 mg kg�1) were stained for apoptosis
using TUNEL (Figure 1). Tumour sections from DMXAA-treated
mice showed 12.5- and 12-fold increases in apoptosis staining over
that in tumour sections from untreated mice using alkaline
phosphatase, or POD/DAB, respectively, as the enzyme system for
visualisation of apoptosis staining (Figure 2). No statistically
significant increases in apoptosis staining were observed in other
tissues (Figure 2). Liver sections from treated or untreated mice
showed no staining. Using alkaline phosphatase, false-positive
background staining was observed in the spleen, heart and brain
sections of tumour-bearing and nontumour-bearing mice, and in
negative control sections that had not been incubated with the
immunohistochemistry reagents. Staining of sections of brain,
liver, heart or spleen from treated or untreated mouse was not
observed using the DAB substrate system, which confirmed that
induction of apoptosis following DMXAA treatment was specific to

tumour tissue (Figure 1). Similar ratios of apoptosis induction in
tumour tissues were obtained using either POD/DAB or alkaline
phosphatase (Figure 2), but the latter produced more intense
labelling and was used in subsequent studies with tumour tissues.

To ascertain whether the apoptotic cells were endothelial cells,
adjacent cryosections were stained with antibodies to CD-31 and
the pattern of staining with the anti-CD-31 and apoptosis
compared. Similar staining patterns were observed, providing
strong evidence for DMXAA-induced endothelial apoptosis.

Dose –response relationship and time course of DMXAA-
induced tumour endothelial cell apoptosis and blood flow
inhibition

A significant increase in apoptotic vessels in Colon 38 tumour
sections, analysed 3 h after DMXAA treatment, was seen at doses as
low as 5 mg kg�1 (Table 1, Figure 3A). The frequency of apoptotic
vessels increased with increasing dose, with a particularly sharp
increase from 20 mg kg�1 (six-fold induction as compared to
untreated controls) to the MTD of 25 mg kg�1 (12.5-fold induction;
Table 1). Apoptosis of tumour vascular endothelial cells was
detectable as early as 15 min (2.5-fold increase) and progressively
increased with time following administration of DMXAA at the
MTD (Table 1, Figure 3B).

As a measure of blood flow inhibition following DMXAA
treatment, we used the perfusion marker Hoechst 33342 to stain
functional vessels (Zwi et al, 1989). No inhibition of blood flow was
observed after 3 h with DMXAA doses of 5 and 10 mg kg�1.
Inhibition was 56% at a dose of 15 mg kg�1 and increased
progressively with dose up to the MTD (Table 1, Figure 3A).
Blood flow was significantly reduced (39%) 30 min after DMXAA
treatment at 25 mg kg�1, and reached 76% inhibition after 3 h
(Table 1, Figure 3B).

DMXAA-induced tumour endothelial cell apoptosis and
blood flow shutdown in TNF�/� and TNFR�/� mice

To determine if the antivascular effects of DMXAA were TNF-
dependent, we compared the responses in TNF�/� and TNFR�/�

mice to those in wild-type C57Bl/6 mice. Tumour endothelial cell
apoptosis in TNF�/� and TNFR�/� hosts following DMXAA
(25 mg kg�1) was, respectively, 1.8- and 10.4-fold lower than that in
wild-type mice. However, the knockout mice tolerated higher
doses of DMXAA and, at a dose of 50 mg kg�1, the induced
apoptosis was comparable to that obtained in wild-type mice at
25 mg kg�1 of DMXAA in wild-type mice. Blood flow in tumours
implanted in TNF�/� and TNFR�/� mice was determined from
Hoechst-stained vessels, and was, respectively, 2.5- and 5.3-fold
lower than that in tumours in wild-type mice, 3 h following
DMXAA at 25 mg kg�1. Again, however, at the higher dose of

Table 1 Apoptosis induction and blood flow inhibition in Colon 38 tumours following DMXAA treatment

Treatment
Endothelial cell apoptosis Blood flow inhibition

DMXAA (mg kg�1) Time (h) TUNEL stain (% area) Increase over untreated Hoechst-stained vessels mm�2 Percentage inhibition

0 0 0.270.1 29.971.4
5 3 0.570.1 2.5 (0.003) 28.871.2 4 (0.6)

10 3 0.870.3 4.0 (0.005) 26.271.3 13 (0.9)
15 3 1.070.2 5.0 (o0.001) 13.471.0 56 (o0.001)
20 3 1.270.1 6.0 (o0.001) 10.271.0 66 (o0.001)
25 3 2.570.9 12.5 (0.003) 7.270.7 76 (o0.001)
25 1 1.270.1 6.0 (o0.001) 12.570.6 58 (o0.001)
25 0.5 0.670.2 3.0 (o0.001) 18.471.2 39 (o0.001)
25 0.25 0.570.2 2.5 (0.003) 25.871.5 14 (0.08)

DMXAA¼ 5,6-dimethylxanthenone-4-acetic acid. P-values in brackets represent the degree of statistical difference between treated and untreated controls.

Figure 2 Apoptosis after 3 h in Colon 38 tumours, spleen, liver, heart
and brain from mice treated with 25 mg kg�1 DMXAA. Bars represent
ratios of percentage TUNEL-stained areas in the treated tissue to that in
untreated tissue. Alkaline phosphatase substrate (black bars); POD/DAB
substrate (grey bars).
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50 mg kg�1, which can be tolerated by the knockout mice,
inhibition of blood flow was similar to that obtained at 25 mg kg�1

in wild-type mice (Table 2).

DISCUSSION

These results confirm our previous findings (Ching et al, 2002)
that DMXAA induces endothelial cell apoptosis in Colon 38
tumours. Apoptosis induction was selective to tumour vascular

endothelium and was not seen in liver, heart, brain or spleen
(Figures 1 and 2). We had previously reported apoptosis staining
in splenic tissues, using alkaline phosphatase for the detection of
the bound antibodies (Ching et al, 2002), but the results here show
that the staining observed in the normal organs using the alkaline
phosphatase procedure was not DMXAA-induced and was likely to
be due to high endogenous phosphatase levels that had not been
completely blocked (Figure 2). The basis for the pronounced
selectivity for tumour vasculature is not yet understood. Factors
secreted by tumour-associated immune cells, or by the tumour
cells themselves, may play a role by ‘priming’ the response of
tumour endothelial cells to DMXAA. Tumour-conditioned med-
ium has been reported to play a role in modulating the response of
cultured endothelial cells to flavone acetic acid (Watts and
Woodcock, 1992). Endothelial cells in culture are resistant to
apoptosis induction by DMXAA (Ching et al, 2002), and we have
found that addition of serum from Colon 38-bearing mice did not
render them sensitive (unpublished results).

To determine whether there was a relationship between the
degree of blood flow inhibition and endothelial cell apoptosis
induction, all the data for both wild-type and knockout mice
treated with DMXAA with different doses and at different times
were plotted on the same graph (Figure 4). A highly significant
logarithmic relationship was found (r¼ 0.94; Po0.001), indicating
that a 10% increase in apoptosis leads to a 7% decrease in blood
flow. The degree of significance suggests that tumour blood flow
inhibition is a consequence of endothelial cell apoptosis. Damage

Figure 3 Apoptosis and blood flow measured in Colon 38 tumours
treatment with DMXAA at different doses after 3 h (A), or at different
times after DMXAA at a dose of 25 mg kg�1 (B). Percentage TUNEL-
stained areas (D); Hoechst-stained vessels mm�2 (m).

Table 2 Endothelial cell apoptosis and blood flow inhibition in tumours from C57Bl/6, TNF – /� and TNFR– /� mice following DMXAA treatment

Percentage TUNEL-stained areas Hoechst-stained vessels mm�2

DMXAA C57Bl/6 TNF�/� TNFR�/� C57Bl/6 TNF�/� TNFR�/�

0 0.270.1 0.270.1 0.370.1 29.971.4 32.571.7 35.772.7
25 mg kg�1 2.571.0 1.470.5 0.370.1 5.671.0 13.671.4 31.371.3
50 mg kg�1 — 2.870.8 1.970.6 — 6.070.5 6.070.6

DMXAA¼ 5,6-dimethylxanthenone-4-acetic acid.

Figure 4 Relationship between the logarithm of induced apoptosis and
the logarithm of blood flow inhibition in Colon 38 tumours, plotted for all
the experiments. Wild-type C57Bl/6 (J); TNF�/� (D); TNFR�/� (&).
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to the endothelium and subsequent loss of the structural integrity
of the vessels leading to increase in vascular permeability would
result in a reduction in blood flow (Baguley, 2003).

TNF is induced following DMXAA administration to mice
(Philpott et al, 1995), and the histology of tumours treated with
DMXAA resembles that of TNF-treated tumours, suggesting that
TNF participates in the antivascular action. Support for this
hypothesis is provided by experiments where Colon 38 tumours
were implanted in TNF�/� and TNFR�/� knockout mice, where the
antitumour effects following administration of the same dose of
DMXAA are substantially reduced (Ching et al, 1999; Zhao et al,
2002). In agreement with these findings, apoptosis induction and
tumour blood flow inhibition following treatment with DMXAA
(25 mg kg�1) were pronounced in tumours implanted in wild-type
mice, but small in tumours implanted in TNF�/� and TNFR�/�

knockout mice (Table 2). The lower toxicity of DMXAA in these
knockout mice allows the use of higher drug doses, which restored
both apoptosis induction and tumour blood flow inhibition

responses. The results are consistent with the hypothesis that
DMXAA can exert an antivascular response both directly and
indirectly by induction of TNF, and perhaps of other cytokines.
The relationship in Figure 4 suggests that both direct and indirect
mechanisms act with a similar relationship between apoptosis
induction and tumour blood flow inhibition. These results are of
particular importance to clinical studies, since TNF levels were not
found to be raised in Phase I clinical trials of DMXAA but tumour
blood flow shutdown at doses above 500 mg m�2 was clearly
demonstrable (Rustin et al, 1998; Jameson et al, 2003). Multiple
mediators of antivascular effects may be involved in providing a
selective antitumour effect.
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