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Abstract

Motivation: Computational biologists face many challenges related to data size, and they need to

manage complicated analyses often including multiple stages and multiple tools, all of which must

be deployed to modern infrastructures. To address these challenges and maintain reproducibility

of results, researchers need (i) a reliable way to run processing stages in any computational envir-

onment, (ii) a well-defined way to orchestrate those processing stages and (iii) a data management

layer that tracks data as it moves through the processing pipeline.

Results: Pachyderm is an open-source workflow system and data management framework that ful-

fils these needs by creating a data pipelining and data versioning layer on top of projects from the

container ecosystem, having Kubernetes as the backbone for container orchestration. We adapted

Pachyderm and demonstrated its attractive properties in bioinformatics. A Helm Chart was created

so that researchers can use Pachyderm in multiple scenarios. The Pachyderm File System was

extended to support block storage. A wrapper for initiating Pachyderm on cloud-agnostic virtual

infrastructures was created. The benefits of Pachyderm are illustrated via a large metabolomics

workflow, demonstrating that Pachyderm enables efficient and sustainable data science workflows

while maintaining reproducibility and scalability.

Availability and implementation: Pachyderm is available from https://github.com/pachyderm/

pachyderm. The Pachyderm Helm Chart is available from https://github.com/kubernetes/charts/

tree/master/stable/pachyderm. Pachyderm is available out-of-the-box from the PhenoMeNal VRE

(https://github.com/phnmnl/KubeNow-plugin) and general Kubernetes environments instantiated

via KubeNow. The code of the workflow used for the analysis is available on GitHub (https://github.

com/pharmbio/LC-MS-Pachyderm).

Contact: jon.novella@farmbio.uu.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The relevance of big data in biomedicine is evident. Technological

advances in fields such as massively parallel sequencing (Shendure and

Lieberman Aiden, 2012), mass spectrometry (Nilsson et al., 2010)

and high-throughput screening (Macarron et al., 2011) are examples

of how biology has shifted towards a data intensive field (Marx,

2013). The rapid increase in the number of data points and the size of

the observations in those fields pose many difficulties, but this is defin-

itely not the only obstacle. Apart from the need to process large

amounts of data, computational biologists must manage analyses that
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include multiple stages and tools, while simultaneously maintaining

reproducibility of results. Undoubtedly, a major concern to the scien-

tific method is that results should be fully reproducible by other

researchers. Using multiple distinct processing tools makes it hard for

scientists to replicate results (Barba, 2016; Begley and Ioannidis,

2015). One appealing option is to use workflow systems such as

Snakemake (Köster and Rahmann, 2012), Galaxy (Afgan et al., 2016)

or Nextflow (Di Tommaso et al., 2017). These systems help to coord-

inate complex dependencies between tools, aiding researchers with

their analytical duties.

A well-known challenge faced by scientists is that scientific

workflows constructed in one environment are not easily portable to

other environments. Previously, virtual machines (VMs) were intro-

duced as a feasible approach to achieving system-agnostic deploy-

ments. However, this approach has numerous disadvantages; given

the large size and poor ability to reuse software components inside

of VMs. The microservices-based architecture offers a compelling al-

ternative with the possibility to divide complex applications into a

collection of smaller, more focused services that communicate with

technology-agnostic protocols (Thönes, 2015). Software container-

ization provides an ideal solution with frameworks such as Docker

(https://www.docker.com) to develop microservices-based architec-

tures (Silver, 2017). Containers isolate an application’s view of the

underlying operating environment including all the required pack-

ages and libraries. In contrast to VMs, containers can be launched in

a relatively short time period, by avoiding the installation of redun-

dant dependencies on host machines, and the need to boot the guest

operating systems. Their lightweight nature makes them very flex-

ible and particularly well-suited for computations in cloud environ-

ments because far more computing units (containers) can be

deployed on demand. Application containers are gaining importance

within science, as they provide better reproducibility and standar-

dization of computer-based analyses (Grüning et al., 2018; Silver,

2017). Thanks to containerization, scientists can package pipelines

in an isolated and self-contained manner, to be distributed and run

across a wide variety of computing platforms. Examples of projects

in which the microservice architecture is a cornerstone include the

PhenoMeNal project (Khoonsari et al., 2017) and the EXTraS pro-

ject (D’Agostino et al., 2017).

An important component for containers is the need for a frame-

work to orchestrate them on multiple compute nodes. Kubernetes is

an open-source project coordinated by Google for automating de-

ployment, scaling and management of containerized applications

(Rensin, 2015). This technology is able to coordinate a cluster of

interconnected computers to work as a single unit, by automating

the distribution and scheduling of containers across the cluster.

Pachyderm (http://www.pachyderm.io/) is a workflow and data

management tool built on top of Kubernetes. This framework is cap-

able of running a piece of analysis in parallel over a set of containers

in a cluster, promising good scalability. It also addresses interoper-

ability and reproducibility through the containerization of software

tools and a fully versioned file system. There is a wide range of exist-

ing workflow tools like Bpipe (Sadedin et al., 2012) and Reflow

(https://github.com/grailbio/reflow) that allows users to manage

data pipelines, but most are tied to specific languages (e.g. Python)

and/or are not designed with native support for containers. There

are also existing tools like the Dat Project (https://datproject.org/) or

Git Large File Storage (https://git-lfs.github.com/) that provide data

management or versioning, but these tools are not natively inte-

grated with any kind of pipelining or processing tools. iRODS

(Rajasekar et al., 2007) can in effect be used to implement both a

file access layer and a form of pipelining solution through its

powerful rule language. Though, its rule language is not developed

specifically for the needs of reproducible-data processing, which

makes this solution more complex than using a dedicated pipelining

framework. Pachyderm is unique in that it manages pipelines and

the associated data in a unified and reproducible manner, with pipe-

lines treated as a first class citizen. Certainly, it is one of the few

workflow tools, together with Argo (https://applatix.com/open-

source/argo/), built as a layer on top of Kubernetes, such that it is

completely portable and language/data agnostic. Despite being rela-

tively new, Pachyderm has been used in a number of different set-

tings, including bioinformatics use cases such as germline variant

calling and joint genotyping (https://github.com/pachyderm/pachy

derm/tree/master/doc/examples/gatk), as well as in sensor analytics

(https://www.microsoft.com/developerblog/2017/04/12/reprodu

cible-data-science-analysis-experimental-data-pachyderm-azure).

The main focus of this project is to demonstrate the efficacy of

Pachyderm in the context of bioinformatics data processing. In par-

ticular, we will present how Pachyderm enables scalable, reproducible

and portable bioinformatics workflows, using a metabolomics work-

flow as an example. Moreover, we will show how Pachyderm can be

deployed on any Kubernetes-based infrastructure by means of a Helm

Chart we created, and how it is possible to extend the Pachyderm File

System (PFS) to work with traditional block storage.

2 System and methods

2.1 Kubernetes
Kubernetes is a tool that efficiently orchestrates containerized appli-

cations in a cluster of computers, without tying containers specifical-

ly to individual machines. Kubernetes provides different

abstractions for defining workloads such as pods, jobs, services or

replication controllers. Amongst these abstractions, pods are the es-

sential units of computing that can be created and managed in

Kubernetes. A pod can be defined as a group of containers and vol-

umes that are bundled and scheduled together because they share

resources like a file system or a network address. In order to simplify

complex operations with Kubernetes resources, Helm (https://helm.

sh/) is available as a package manager for versioning, releases,

deployments, deletions and updates of containerized applications.

2.2 Pachyderm workflow tool
Pachyderm is a platform for managing data pipelines and the associ-

ated input/output data in a manner that results in all data pipelines

being reproducible and scalable. To enable its functionality,

Pachyderm leverages projects from the container ecosystem includ-

ing Docker, Kubernetes and etcd (https://coreos.com/etcd). These

projects allow Pachyderm to be language and framework agnostic

because the units of data processing are defined by software

containers.

To use a software tool within Pachyderm, researchers simply

need to write the code associated with a pipeline processing stage in

a preferred programming language and make sure that it can read

and write files from and to a local file system. They then need to,

via a JSON pipeline specification, declaratively supply Pachyderm

with a name for the processing stage, a Docker image in which the

code will run, a command to execute in the running container, and

one or more data input(s). Subsequently, Pachyderm will ensure

that the corresponding containers are run on an underlying

Kubernetes cluster, and it will inject the input data that needs to be

processed into the running containers. In cases where a processing

stage is specified to run in parallel, Pachyderm will share the input

data across running containers and collect the corresponding outputs.
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The main element of Pachyderm is pachd, which is the

Pachyderm daemon, or server, that manages all of the pipelining

and data versioning features of Pachyderm. This daemon runs in one

or more pods in Kubernetes and communicates with users and/or

other components of the system via GRPC (https://grpc.io/).

Figure 1a gives an overview of the different components of pachd,

including a pipeline system, a file system and a block store

component.

2.3 Pachyderm File System
The PFS component of pachd utilizes a copy-on-write paradigm

which is based on Git-like semantics. It manages (i) the versioned

data repositories, (ii) aids in shimming data into containers for proc-

essing and (iii) stores newly committed input or output data into the

backing object store. When one or more files and/or directories are

committed into a Pachyderm data repository (PDR), the PFS content

addresses each input file to create a hash. The files are stored in the

backing object store via this hash, and the file system represents this

hash in etcd, where the repositories, jobs and provenance of the data

are tracked.

All input/output data managed by Pachyderm is organized into

versioned collections of data called PDRs. This concept of versioned

data repositories combined with the pipelining system gives rise to

Pachyderm’s unique concept of data provenance. Data provenance,

also referred to as data lineage, refers to the metadata associated

with the origin, evolution and movement of the data over time

(Simmhan et al., 2005). In the PFS, any particular state of data can

be identified by commits. Pachyderm can give users all the data re-

pository names, commit IDs and versioned pipeline specifications

corresponding to specific states of data. Thus, any run of any pipe-

line producing any result is completely reproducible and explain-

able, at least in terms of the corresponding data transformations and

intermediate states of data.

When the pipelining system indicates that data needs to be proc-

essed, the file system component, along with a binary that is injected

into the user container, retrieves the relevant data from the object

store and shims it into the user container under a local directory

‘/pfs/<name of the input repository>’. The file system also collects

any results written to ‘/pfs/out’ by the user container and automatic-

ally versions these into a corresponding output data repository.

Regarding storage options, the PFS can be backed in any of the

generic object stores provided by Google Cloud Platform (https://

cloud.google.com/), Amazon Web Services (https://aws.amazon.

com/), Microsoft Azure (https://azure.microsoft.com) and Minio

(https://minio.io/).

2.4 Pachyderm Pipeline System
In Pachyderm, data processing is performed by pipeline workers,

which can be thought of generally as a user’s Docker containers run-

ning their code. However, to be more specific, the workers are

Kubernetes pods. The pods include Docker containers based on the

user-specified Docker images along with Pachyderm components,

where the Pachyderm components support the triggering and data

management logic discussed below.

The pods are created when the corresponding pipeline is created

and are, by default, left running in the cluster waiting for new data to

be available for processing. As new ‘commits’ of data are made on the

repositories that are specified as input to pipelines, Pachyderm stores

(a) (b)

Fig. 1. (a) The Pachyderm daemon. pachd is the Pachyderm daemon managing the pipelining and data versioning features of Pachyderm. The main components

of pachd are (i) a file system component, (ii) a block store component and (iii) a pipelining component. The file system component handles all requests related to

putting data into and getting data out of Pachyderm Data Repositories (PDRs). To this end, the file system component cooperates with the block store component

to content address new data, put new objects in the backing object store, pull objects out of the backing object store, etc. The pipelining system component cre-

ates and manages all of the pipeline workers, which execute to process data in Pachyderm pipelines. The pipelining system component cooperates with the file

system component to make sure that the correct subsets/versions of data (versioned in PDRs) are provided to the correct pipeline workers, such that data is proc-

essed in the sequence and manner specified by users. To coordinate and track all of these actions, pachd stores and queries metadata in etcd, a distributed key/

value store that is also deployed in a pod on Kubernetes, and it communicates with the Kubernetes API Server and the backing object-store service. Further,

Pachyderm optimizes uploads/downloads of data via an internal caching system. (b) A typical infrastructure and services setup with Pachyderm. A standard

Kubernetes cluster contains two major entities represented in two different polygonal figures. Cloud VMs/premise nodes are depicted as hexagons, whereas

Kubernetes pods are displayed as rounded rectangles. Optional nodes/pods are depicted with dashed borders. The master node coordinates the rest of the

nodes, runs the Kubernetes API and can use a reverse proxy such as Træfik (https://traefik.io/). In the service nodes, all Pachyderm related pods are scheduled:

the Pachyderm daemon, Pachyderm pipeline workers and etcd. Also, Minio services can be deployed in service nodes, responsible for upload/download of data

to/from the backing storage. The storage dedicated node (optional) is in charge of providing application containers with a shared file system (e.g. GlusterFS),

using block storage volumes
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that data and triggers the corresponding processing stage performed

by the pipeline workers. In many cases, only the newly added/modi-

fied data is supplied to the workers, such that the processing occurs in-

crementally. This means that instead of processing all results every

time, Pachyderm is able to reuse previous results and compute only

what is necessary, making it resource efficient. In Figure 2, an example

of how the PFS and Pachyderm Pipeline System (PPS) utilize the two

most characteristic features of Pachyderm can be observed: data prov-

enance and incremental processing.

Once a pipeline worker completes the processing of new data

commits, the pipeline worker gathers any data written by the con-

tainers to ‘/pfs/out’ and versions that data in a PDR corresponding

to that particular workflow stage. Thereafter, another stage can spe-

cify that output as its input. In this way, it is possible to declaratively

define directed acyclic graphs of processing, which are driven by

data repositories and the commits of data corresponding to those

data repositories.

Pachyderm can perform parallel computations by partitioning

the data into various subsets called ‘datums’ which are the minimal

data units of computation. The contents of these datums are user-

defined glob patterns. For example, a glob pattern of ‘/’ would tell

Pachyderm that it always has to process all of the input repository

together as a single datum, whereas a glob pattern of ‘/*’ would tell

Pachyderm that it could process any files or directories in the root of

the repository in isolation (as separate datums).

PPS then works together with PFS to spread out the datums

across the pipeline workers. The number of pipeline workers that

can complete this work in parallel is user-defined and can be con-

stant or a coefficient of the cluster size. Each of the pipeline workers

downloads and processes one datum at a time in isolation, and then

pachd gathers all of the results corresponding to each datum, com-

bines them together, and versions this combination as the output of

the pipeline. The scheduling of pipeline workers is determined by

the load on the various nodes and the resource requests (i.e. for

memory, CPUs, GPUs, etc.) that are made for each pipeline. This

allows Pachyderm to optimally utilize the underlying resources.

In summary, the operations involved in running a multi-stage

Pachyderm workflow are:

1. Create input PDRs for the workflow

2. Create a first workflow stage that processes those input PDRs

3. Create one or more other workflow stage(s) that processes the

output of the first stage and/or other downstream stage(s)

4. Commit data into the input PDRs.

Once the above sequence of steps is completed, Pachyderm will

automatically trigger the necessary ‘jobs’ to process the input data,

which will include a job to process the data in the input PDRs along

with any dependent downstream jobs. Each of these jobs will run to

either success or failure. In the case of a success, the job will make

an output commit of results into the PDR corresponding to the pipe-

line. In the case of a failure, no output commit of data will be made

from the pipeline.

3 Results

In general, bioinformatics researchers have access to cloud environ-

ments that use different interfaces to their resources, varied architec-

tures and implementation technologies. This makes it important for

solutions to be cloud-agnostic, so they can be compliant with diverse

infrastructures [e.g. private Openstack (Sefraoui et al., 2012) envi-

ronments]. Further, it is crucial to provide an easy to follow

procedure to instantiate virtual infrastructures of multiple nodes,

and install and configure frameworks without much expertize.

One attractive way of solving this is to use Virtual Research

Fig. 2. Data provenance and incremental processing in Pachyderm. The upper part of the figure shows the Pachyderm Data Repositories (PDRs) present in the

Pachyderm File System (PFS) after creating a bioinformatics workflow. These repositories contain a tree-like structure in which each node represents a separate

commit. In the lower part of the figure, the different pipeline stages of the workflow are displayed in the Pachyderm Pipeline System (PPS), together with their

corresponding inputs and outputs. When a new data commit (green colour) is added to the input data Repo A, a new pipeline stage is triggered for Tool B in the

PPS, leading in turn to a new commit (blue colour) in Tool B’s output repository. Thereby, the provenance of the blue commit made on Repo B would be: (i) the

green commit from Repo A and (ii) Tool B’s pipeline specification. Note that the commit structure looks similar for the two data repositories because of the nature

of a linear data pipeline. In the figure, the repos created by Tool C and Tool D do not have the corresponding commits as the data processing has not yet reached

this level in the pipeline. As new commits are added into the PFS, the PPS triggers the corresponding pipeline stages with the new datums (minimal computing

units) from the commit. This phenomenon can be referred to as incremental processing, as only new computing units are processed. These new datums are then

computed, creating further commits on downstream repositories and providing a mechanism to track the provenance of the computations
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Environments (VREs) to aid the deployment and configuration of

complete virtual infrastructures with the associated software for

data analysis. Here, we present a convenient solution so that scien-

tists can incorporate Pachyderm into their infrastructure, regardless

of their cloud-provider and storage backend. Furthermore, we dem-

onstrate by means of a metabolomics case study how Pachyderm

can enable scalable and sustainable workflows.

3.1 Extending the PFS for block storage
The PFS is not POSIX-compliant, as it relies on an object storage

backend. The PFS can be backed by Amazon S3 compliant object

stores, Blob Storage in Azure or GCS in Google Cloud.

Unfortunately, these object storage options are not always available

on all infrastructures. As an example, the infrastructure used for the

case study in the manuscript only supports block storage, which is

managed by a shared file system (GlusterFS). In order to overcome

these limitations, we extended the PFS to work with block storage.

This was achieved by enabling Minio to act as an object-store inter-

face with our storage backend. Thanks to Minio, it is possible to

add a highly available, load-balanced S3 object-store compatibility

to the storage tier of block storage based infrastructures.

3.2 Pachyderm helm chart
In order to deploy Pachyderm in multiple settings, we developed a

Helm Chart that makes the workflow tool entirely cloud-agnostic,

and most interestingly, makes it easier to deploy it backed by mul-

tiple storage options. Thanks to this chart, users can easily install

Pachyderm on Kubernetes-based infrastructures from any cloud-

provider, such as Openstack. Besides, it provides scientists with a

flexible and straightforward mechanism to configure various set-

tings of Pachyderm, such as the resource requests and the storage

backend used by the PFS.

Currently, the Helm Chart supports five general deployment

scenarios, which include: (i) local deployment on Minikube, (ii) on-

premize deployment, (iii) Google Cloud, (iv) Amazon Web Services

and (v) Microsoft Azure. As an example, an Openstack user should

opt for an on-premize installation, which is compatible with any

Cloud infrastructure. This type of deployment makes Pachyderm

completely cloud-agnostic, as the only requirement is that it necessi-

tates a S3 endpoint as storage backend, like Minio. The chart has

been pushed to and is now maintained on the official Kubernetes

Charts repository (https://github.com/kubernetes/charts/tree/master/

stable/pachyderm). In addition, Pachyderm is available out-of-the-

box from the PhenoMeNal VRE (https://github.com/phnmnl/

KubeNow-plugin) and general Kubernetes environments instanti-

ated via KubeNow (Capuccini et al., 2018). The latter makes it

straightforward to launch a complete virtual infrastructure with

Kubernetes and Pachyderm installed on the major cloud-providers.

3.3 A metabolomics case study
The study of metabolomics concerns the comprehensive profiling of

low-weight molecules, known as metabolites, comprising the metab-

olomes of e.g. biological specimens. As metabolites are the inter-

mediate and end products in all biological pathways, changes

caused by various pathophysiological processes will immediately im-

pact the metabolome, thereby making it an attractive target for bio-

marker discovery (Dettmer et al., 2007). Liquid chromatography

coupled to mass spectrometry (LC-MS) has gained momentum in

the field as it provides large amount of information about the speci-

mens in a relatively short time. In fact, a modern mass spectrometer

is able to produce 35 K spectra per hour (Weisser et al., 2013),

emphasising the need to adopt automated and scalable approaches

in order to effectively process the generated data.

For this case study, a dataset (containing 138 LC-MS runs) was

used that included 37 cerebrospinal fluid (CSF) samples that were

measured in duplicates. Twenty-seven of the samples originated

from patients diagnosed with multiple sclerosis (MS) of which 13

depicted a relapse-remitting phenotype and the remaining 14 a pro-

gressively degenerative phenotype (secondary progressive MS,

SPMS). The dataset also contained measured CSF metabolomes of

10 non-MS and non-inflammatory controls. The dataset is available

in the MetaboLights database (Haug et al., 2013) (MetaboLights

ID: MTBLS558, http://www.ebi.ac.uk/metabolights/MTBLS558).

The objective of creating a metabolomics workflow in

Pachyderm was to demonstrate a real-world scenario in which

patients’ data are processed in a scalable, interoperable and reprodu-

cible manner. We implemented a computational workflow to pro-

cess LC-MS data, illustrated in Figure 3, and evaluated how well it

can scale on a Kubernetes infrastructure. The workflow has been

described thoroughly elsewhere by Khoonsari et al. (2017). Briefly,

the open-source mzML files were first centroided and calibrated

using OpenMS (Röst et al., 2016). To this end, the signals resulted

by each metabolite were clustered to so called mass traces that were

used for quantification. This clustering was performed using

OpenMS (FeatureFinderMetabo) and XCMS (findPeaks) (Smith

et al., 2006). The mass traces were corrected for retention time drift

and were matched across the samples using group and retcor func-

tions in XCMS. The mass traces were filtered based on presence/ab-

sence in the blank samples as well as correlation to dilution series.

The resulting mass traces were grouped and annotated with adduct

information using CAMERA (Kuhl et al., 2012). For identification,

the MS2 data was read and mapped to adduct information to calcu-

late neutral mass of the precursor ions. This information was then

used in CSI: FingerID (Duhrkop et al., 2015) to identify metabolites

using database searching. Finally, multivariate statistical analysis

was performed on the identified metabolites using partial least

squares discriminant analysis (Thevenot et al., 2015).

3.3.1 Infrastructure setup

We set up a Kubernetes cluster on the Amazon Web Services cloud

using KubeNow. The cluster was composed of a master node, sev-

eral service nodes and a number of storage nodes. All of the nodes

had the same flavour (t2.2xlarge) with 8 vCPUs and 32 GB of

RAM. The number of storage nodes and service nodes varied, as we

scaled the infrastructure to evaluate its performance with different

numbers of work executors.

3.3.2 Services setup

The Minio object-store service (release 2018-01-02T23-07-00Z)

was deployed in shared mode using the official Kubernetes Minio

Helm Chart (https://github.com/kubernetes/charts/tree/master/sta

ble/minio). The number of Minio replicas used equals to half the

number of workers used for the analyses. Similarly, Pachyderm (ver-

sion 1.7.0rc2) was deployed using our developed (and now the offi-

cial) Pachyderm Helm Chart. An on-premise deployment mode was

performed, using one replica, 1 CPU and 3 GB of RAM requests for

pachd and etcd, and 5 GB of PFS cache. A more detailed description

of a typical services and infrastructure setup is depicted in Figure 1b.

3.3.3 Performance

There are several metrics for measuring parallel scaling perform-

ance. Two of these methods are speedup and scaling efficiency
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(Sahni et al., 2009). Both are important measurements in Cloud

Computing, since resources are commonly pay-per-use. The speedup

gives an estimate on how much faster computations are performed

using a larger number of workers, whereas the scaling efficiency tells

how efficient computations are when increasing the number of parallel

processing elements. We studied the speedup and scaling efficiency of

the three most CPU-intensive and parallelizable jobs in the LC-MS

workflow (OpenMS’s FeatureFinderMetabo, XCMS’s findPeaks and

CSI: FingerID) calling attention to the number of processing units used

during different runs. FeatureFinderMetabo and findPeaks were

applied on each sample (n ¼ 138), while CSI: FingerID was applied on

each MS2 spectrum extracted from the eight MS2 samples (n¼ 5000).

The speedup [S(N)] can be specified as T1=TN, where T1 is the

serial running time, and TN is the multiple worker parallel running

time, being N the number of processing elements (e.g. number of

PPS workers). In order to obtain T1, the median of the serial process-

ing times of the runs of each tool was calculated. It is worth noting

that measured serial processing times do not include upload/down-

load times, whereas parallel processing times do. This gives a better

representation of the time that tools take on a single-core environ-

ment with data locally available. Also, parallel processing times in-

clude the container instantiation time, but not the time needed to

pull the required container image, as container images are usually

previously pulled. The scaling efficiency can be defined as the ratio

of speedup to the number of processing elements.

For each tool studied, we benchmarked its performance against

the speedup and scaling efficiency using different numbers of work-

ers and different cluster settings. Table 1 presents an overview of the

cluster setup used for our performance analysis.

The results obtained after evaluating the speedup and scaling ef-

ficiency of the three different tools are presented in Figure 4, see also

Supplementary Table S1. The first benchmark was executed using

OpenMS’s FeatureFinderMetabo tool, which took �37.3 min to run

when using 80 PPS workers. The serial running time of this tool

summed up to �30.8 h, resulting in a speedup of �50 and a scaling

efficiency of 62%. Using the same cluster setup, we found a speedup

of �55 and a scaling efficiency of 69% when evaluating XCMS’s

findPeaks tool. In this case, the serial running time was �10.5 h,

while a parallel running time of �11.5 min was obtained. The last

benchmark was carried out using CSI: FingerID annotation tool. It

took �10.1 min to run it when using 80 PPS workers. The serial run-

ning time of this tool was �10.9 h, leading to a speedup of �63 and

a scaling efficiency of 79%. As shown in Figure 4, the scaling effi-

ciency decreases with a larger number of workers.

3.4 Availability
Pachyderm is open source and available on GitHub (https://github.

com/pachyderm/pachyderm). We created a Helm Chart that is avail-

able on the official Kubernetes repository (https://github.com/kuber

netes/charts/tree/master/stable/pachyderm). Pachyderm is available

out-of-the-box from the PhenoMeNal VRE (https://github.com/

phnmnl/KubeNow-plugin) and general Kubernetes environments

instantiated via KubeNow. The code of the metabolomics workflow

used for the analysis is available on GitHub (https://github.com/

pharmbio/LC-MS-Pachyderm).

4 Discussion

The goal of this study was to demonstrate Pachyderm as a

bioinformatics workflow system based on software containers.

Fig. 3. LC-MS workflow definition. The workflow consists of five main components including quantification, matching and filtering, annotation, identification and

statistics. The raw MS1 data in open-source format (e.g. mzML) is accepted as input. In the quantification component, the raw data is first centroided, calibrated

and the signals from each metabolite are clustered into mass traces. In the matching and filtering component, the retention time drift is corrected and the mass

traces are matched across the samples. The non-biologically relevant signals are filtered based on presence/absence in blank samples as well as correlation to di-

lution series. In the annotation component, the mass traces are annotated with adduct and isotope information. This information is used in the identification com-

ponent to calculate the neutral mass of the precursor ions. The identification is then performed and the resulting scores are converted to posterior error

probability values. The data are then limited to the mass traces annotated with an identification hit and subjected to multivariate data analysis. Note that the pipe-

line stages chosen for the performance benchmarks are illustrated with dashed borders

Table 1. Cluster setup used in the benchmarks

Service nodes Storage nodes Minio replicas Workers

5 3 10 20

8 4 20 40

11 6 30 60

14 7 40 80
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The containerization of software tools provides a wide range of

advantages for bioinformatics analyses. Among these benefits, the

most important ones are arguably the ability to version and to en-

capsulate scientific software together with all necessary dependen-

cies within a lightweight portable environment, as required for

sound reproducible research. In general it seems clear that the adop-

tion of application containers is gaining momentum in the scientific

community. Examples of the adoption of this technology include the

BioContainers framework (da Veiga Leprevost et al., 2017) and a

number of other projects (Khoonsari et al., 2017; Muchmore and

Alarcón-Riquelme, 2016; Schulz et al., 2016).

As suggested by Burns and Oppenheimer (2016), containers are

particularly well-suited to being the fundamental ‘object’ in distrib-

uted systems. Thanks to leveraging multi-node container patterns

for distributed algorithms like the scatter/gather pattern, Pachyderm

promises what other frameworks such as Apache Spark do (Zaharia

et al., 2010), but replacing MapReduce-style code (Dean and

Ghemawat, 2008) or explicit parallelism implementations with leg-

acy code and tools. Indeed, containers have been successfully

employed in existing workflow systems such as Snakemake and

Nextflow for life science applications. Pachyderm offers additional

functionality by combining a data pipelining framework (PPS) based

on software containers and a version control system for data (PFS).

The PFS is a copy-on-write distributed file system based on Git-

semantics that introduces a notion of history for data collections.

This association with the pipelining system translates into many

benefits for scientists who want to analyse large amounts of data, as

it allows them to keep track of the provenance of the data, revert

data changes and explain data transformations over time.

Unlike other workflow tools that implement specific extensions

for executing jobs on multiple environments (e.g. SLURM,

Kubernetes, AWS Batch), Pachyderm focuses on leveraging

Kubernetes for a cloud-native clustering and containerization or-

chestration. This use of Kubernetes under-the-hood allows

Pachyderm to pass on many of the benefits of Kubernetes to large

scale data processing, which have resulted in Kubernetes’ wide

spread adoption. These benefits include: (i) optimization of cluster

resource utilization, (ii) portability between different cloud and on-

premise environments, (iii) self-healing of clusters after node/job

failures and (iv) a declarative, unified way of managing applications.

Regarding the way workflows are actually specified, Pachyderm

pipeline stages are defined in JSON/YAML format that is common

within the Kubernetes community, while other workflow tools such

as Nextflow implement their own domain specific language.

Di Tommaso et al. (2015) showed that Docker containers have a

negligible impact on the performance of a number of bioinformatics

pipelines. This study confirms that Pachyderm can scale well despite

using application containers. In fact, a scaling efficiency of 79% and

a speedup of �63 were achieved when using 80 workers in one of

the benchmarks. The experiments show that the scaling efficiency

decreases as the number of workers is increased. This drop is more

significant in the first two benchmarks. An explanation for this can

be attributed to a great disparity of running times between the

employed input samples. Scientific applications have often changing

workload distributions in real life scenarios. These imbalanced

workloads among parallel processing units may well result in

underutilized computing resources while others are heavily loaded,

leading to low overall performance (Govindan and Franklin, 1996).

Despite its numerous advantages, Pachyderm, and in general

cloud enabled solutions, have some drawbacks when compared to

traditional approaches for biological computations. For instance,

despite the fact that our Helm Chart makes it easy to install,

Pachyderm is limited to run on Kubernetes, which is not precisely

straightforward to set up. Moreover, containerized big data tools

such as Pachyderm encounter issues such as (i) limited access to ex-

ternal storage and data locality, (ii) non-optimal container network-

ing and security and (iii) performance overhead when compared to

bare-metal settings (Dua et al., 2014; Zhao et al., 2018).

Additionally, Pachyderm focuses on data parallelism. This attribute

means that, although Pachyderm can process streaming data sources

(e.g. from Apache Kafka), it does not offer job parallelism to miti-

gate the buildup of backpressure in streaming analyses.

Indeed, setting up virtual infrastructures as required for

Pachyderm can be quite challenging. In order to show how

Pachyderm can be a promising tool for large biological analysis, we

created a Helm Chart which simplifies on-demand installations in

many types of scenarios, including all popular cloud-providers, on-

premise and local settings. Moreover, we attempted to demonstrate

its suitability by integrating it within the PhenoMeNal VRE and

implementing a relatively complex metabolomics workflow and

studying its scalability. A major challenge faced when integrating

this tool within the VRE was the storage backend, as the

PhenoMeNal VRE uses block storage for its services. In contrast,

the PFS necessitates a cloud-ready object store to interact with the

workflow system.

Overall, Pachyderm offers an accessible approach for enabling

distributed bioinformatics workflows by using application contain-

ers. Likewise, its versioned data management system can be a help-

ful tool for scientists to keep track of the history of computations

and data provenance. All these characteristics, along with being lan-

guage and cloud-agnostic, make it a valuable and powerful tool for

creating scalable and reproducible bioinformatics workflows.

Funding

This research was supported by The European Commission’s Horizon 2020

programme funded under grant agreement number 654241 (PhenoMeNal),

and the Swedish Foundation for Strategic Research, The Swedish Research
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Fig. 4. Performance metrics. Each of the figures displays the speedup (right axis, grey line) and scaling efficiency (left axis, black line) obtained when utilizing vari-

ous numbers of workers with three different tools of the metabolomics workflow
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Grüning,B. et al. (2018) Practical computational reproducibility in the life sci-

ences. Cell Syst., 6, 631–635.

Haug,K. et al. (2013) MetaboLights—an open-access general-purpose reposi-

tory for metabolomics studies and associated meta-data. Nucleic Acids Res.,

41, D781–D786.

Khoonsari,P.E. et al. (2017) Interoperable and scalable metabolomics data

analysis with microservices. bioRxiv, 213603.
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