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Abstract

The assessment of diversity and population structure and construction of a core collection is

beneficial for the efficient use and management of germplasm. A unique collection of com-

mon oat landraces, cultivated in the temperate climate of central Europe until the end of the

twentieth century, is preserved in the Polish gene bank. It consists of 91 accessions that

have never been used in breeding programs. In order to optimise the use of this genetic

resource, we aimed to: (1) determine genetic and agro-morphological diversity, (2) identify

internal genetic variation of the tested accessions, (3) form a core collection and (4) recog-

nise the accessions useful for breeding programs or re-release for cultivation. The collection

was screened using ISSR markers (1520 loci) and eight agro-morphological traits. Uniquely,

we performed molecular studies based on 24 individuals of every accession instead of bulk

samples. Therefore, assessment of the degree of diversity within each population and the

identification of overlapping gene pools were possible. The observed internal diversity (Nei

unbiased coefficient) was in the range of 0.17–0.31. Based on combined genetic and agro-

morphological data, we established the core collection composed of 21 landraces. Due to

valuable compositions of important traits, some accessions were also identified as useful for

breeding programs. The population structure and principal coordinate analysis revealed two

major clusters. Based on the previous results, the accessions classified within the smaller

one were identified as obsolete varieties instead of landraces. Our results show that the oat

landraces are, in general, resistant to local races of diseases, well adapted to local condi-

tions and, in some cases, yielding at the level of modern varieties. Therefore, in situ conser-

vation of the landraces in the near future may be satisfactory for both farmers and

researchers in terms of the genetic resources preservation.

Introduction

The domestication of plants can be considered as one of the greatest achievements of mankind.

It is associated with the long-term and targeted selection which greatly reduced the gene pool
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size of the domesticated species. It is estimated that the crop species retained only about 20%

of the original variability of their wild ancestors [1–3]. Moreover, modern crop varieties are

almost or completely homogeneous and closely related to each other, which further narrows

the exploited gene pool [4]. Modern breeding relying on the subsequent crossing of descen-

dants of several initial germplasms has led to the loss of numerous alleles which, in turn, lim-

ited the potential of phenotype and genotype pools that could be useful for further breeding.

Monocultures of homogeneous varieties are considered to be the main reason for breaking

down the plant resistance by pathogens and, consequently, for outbreaks of epidemics such as

the Southern Corn Leaf Blight caused by race T of the fungus Bipolaris maydis in the 1970’s in

the United States [5]. The lack of new germplasm for breeding has increased the interest in

wild crop relatives (CWR) as new sources of genes for further crop improvement. However,

the use of alien germplasm often involves a large amount of work due to the need to eliminate

the useless or even detrimental genetic background or to overcome reproductive isolation bar-

riers [6]. Landraces represent an easier to use source of lost traits/alleles than wild species.

They are the connecting link between modern varieties or breeding stocks and wild ancestors.

The domestication was a long-term process and resulted in the development of landraces

adapted to local farmers’ needs and environmental conditions. According to the definition,

landraces are heterogeneous populations that were not obtained by deliberate crop improve-

ment, but were formed by mutations and migrations under selection pressure of biotic and

abiotic stresses and by the needs and behaviour of generations of farmers [7]. Thousands of

landraces are stored in gene banks worldwide; however, the majority of them are inadequately

described, which impedes or even prevents their effective use in breeding programs. The

breeders deliberately refrain from the use of landraces due to the high costs and time-lapse of

extensive search [8]. Intensive pre-breeding approaches are essential for promoting the trans-

fer of specific genes or traits from unimproved landraces to advanced breeding lines [9].

Despite the development of the next-generation sequencing, the DNA fingerprinting is still

the preferred way of plant genetic resources (PGR) genetic characterization [10–13]. Molecular

biology provides various methods based on the DNA polymorphism which are not affected by

the environment; they require only a small amounts of biological material at any growth stage

that can be easily transported from the collection site to a laboratory and stored for a long time

[14]. There is a potentially unlimited number of molecular markers which cover almost the

entire genome [15]. In genetic diversity studies, many different types of molecular markers

have been used, including RFLP (Restriction Fragments Length Polymorphism), RAPD (Ran-

dom Amplified Polymorphic DNA), AFLP (Amplified Fragment Length Polymorphism),

ISSR (Inter-Simple Sequence Repeats), SSR (Simple Sequence Repeats), CAPS (Cleaved

Amplified Polymorphic Sequences), SNP (Single Nucleotide Polymorphism), etc. [10,16–18].

ISSR is cheap and effective genotyping technique that have been used for determining genetic

diversity [19,20]. ISSRs detect variations of DNA fragments located between two adjacent,

identical and opposite orientated microsatellites [21]. The prior knowledge of DNA sequences

is not required to design PCR primers. ISSRs are dominant markers i.e. they do not distinguish

between homo- and heterozygotes at a given locus [22]. Although during the last two decades,

molecular analysis for genetic diversity estimation has become more common and more cost

effective, the amount of this type of data used for accession description has not increased as

fast as it was anticipated in 1996 [23].

The overall aims of this work were (i) to determine ISSR based genetic diversity of the oat

landraces stored in the Polish gene bank, (ii) to evaluate variation of agro-morphological traits,

(iii) to identify internal genetic variation of each tested accession, (iv) to develop a core set rep-

resenting the maximum diversity of Polish oat landraces and (v) to recognise accessions poten-

tially useful for breeding programs or re-release for cultivation.
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Materials and Methods

Plant material

The study involved 91 indigenous accessions of common oat (Table 1) preserved by the

National Centre for Plant Genetic Resources in Radzików, i.e. the Polish gene bank. In this set,

the whole collection of Polish oat landraces was included, as well as three heterogeneous acces-

sions which were identified earlier as obsolete varieties i.e. PL 50076 (1), PL 50079 (2) and PL

50381 (5) [24]. Each of the tested accessions was represented by 24 individuals which were ana-

lysed separately.

Agro-morphological traits

Agro-morphological data were obtained from the EGISET i.e. the database of NCPGR [25].

Evaluation was conducted on the basis of field experiments during three subsequent seasons,

using standardised scales and descriptors. The trial was carried out on an experimental field of

the Plant Breeding and Acclimatization Institute at Radzików, Poland in 1981–2012. Each

accession was represented by 1000 grains which were sown on the 2.5 m2 plots. The characters

were scored at an appropriate growth stage of the oat plants following the International Con-

vention for the Protection of New Varieties of Plants [26]. We analysed the following eight

traits: the number of days to heading, the number of days to maturity, the shoot height, the

lodging score at mature stage, the susceptibility to diseases (crown rust, powdery mildew), the

grain yield and the thousand seed weight. The number of days to heading was counted from

the sowing date to 50% of panicles fully emerged. The number of days to maturity was counted

from the sowing date to harvest ripeness. The shoot height was determined by the average of

three plants measured from ground to the tip of panicle (excluding awns). The lodging score

was determined in mature stage according to a scale where: 1 means all plants lodged and 9 no

lodging at all. The susceptibility to diseases was also determined according to a scale where: 1

means affected and 9 means resistant (based on percentage of affected plants). Both diseases

were evaluated separately. The grain yield was assessed as the weight of grain per plot. The

thousand seed weight was estimated based on the average weight of three samples of 100 fully

filled grains.

ISSR genotyping

The DNA of 2,184 individual plantlets was extracted from tissue of young leaves using the

Genomic Mini AX Plant kit (A&A Biotechnology). The DNA concentration was determined

spectrophotometrically (NanoDrop Sectrophotometer ND-1000) and the DNA samples were

diluted to 25 ng μl−1 for PCR amplification.

The previously described set of eight ISSR primers [27] was applied to the studies on diver-

sity of Polish oat landraces. The PCR was carried out according to the protocol described by

Boczkowska et al. [28]. The multiplexed amplified PCR products were separated on the capil-

lary sequencer ABI 3130 XL Genetic Analyzer in a 36-cm long capillary array filled with POP7

polymer. Gene Scan 1200 LIZ (Applied Biosystem) was used as a size standard. The genotypic

data are available on the EGISET database.

Scoring and data analysis

The agro-morphological data were standardised and a proximity matrix by the Gower coeffi-

cient [29] was developed. Subsequently, we performed the Ward’s independent, agglomerative

hierarchical clustering procedure and plotted the resulting dendrogram. The principal compo-

nents analysis (PCA) was applied to the initially standardised data and the 2-D scatter plots
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Table 1. Accession list containing some basic information.

No. Accession no. Latitude Longitude uHe ISSR data Evaluation data Core collection

Mean SE

1 PL 50076 na na 0.231 0.007 + +

2 PL 50079 4924--N 02021--E 0.171 0.009 + + +

3 PL 50338 4931--N 02209--E 0.24 0.008 + +

4 PL 50345 5018--N 02145--E 0.241 0.009 + +

5 PL 50381 5018--N 02145--E 0.251 0.008 + + +

6 PL 50411 5027--N 02317--E 0.195 0.006 + +

7 PL 50432 4924--N 02018--E 0.205 0.007 + + +

8 PL 50438 5040--N 02310--E 0.237 0.007 + +

9 PL 50503 5044--N 02315--E 0.225 0.009 + + +

10 PL 50512 4930--N 02014--E 0.22 0.007 + +

11 PL 50520 5216--N 02219--E 0.196 0.008 + +

12 PL 50521 4933--N 02059--E 0.256 0.008 + +

13 PL 50524 4932--N 02206--E 0.238 0.007 + +

14 PL 50528 4929--N 02216--E 0.244 0.007 + +

15 PL 50529 5338--N 02309--E 0.213 0.007 + + +

16 PL 50530 5044--N 02315--E 0.211 0.007 + +

17 PL 50531 5301--N 02321--E 0.217 0.007 + +

18 PL 50553 4930--N 02205--E 0.235 0.007 + +

19 PL 50554 4932--N 02102--E 0.24 0.007 + +

20 PL 50556 4930--N 02014--E 0.3 0.005 + +

21 PL 50561 5216--N 02219--E 0.288 0.006 + +

22 PL 50587 5115--N 02234--E 0.255 0.006 + +

23 PL 50593 4930--N 02014--E 0.249 0.007 + +

24 PL 50613 5039--N 02322--E 0.234 0.009 + + +

25 PL 50616 4935--N 02028--E 0.212 0.007 + +

26 PL 50622 4936--N 02225--E 0.231 0.008 + +

27 PL 50627 5215--N 02153--E 0.234 0.007 + +

28 PL 50673 5033--N 02336--E 0.219 0.007 + +

29 PL 50694 4927--N 02220--E 0.229 0.007 + +

30 PL 50698 5049--N 02219--E 0.227 0.007 + +

31 PL 50705 4924--N 02018--E 0.202 0.007 + +

32 PL 50706 4924--N 02018--E 0.194 0.007 + +

33 PL 50709 4948--N 02154--E 0.254 0.007 + +

34 PL 50712 5022--N 02150--E 0.196 0.007 + +

35 PL 50718 5102--N 02300--E 0.189 0.007 + +

36 PL 50725 4923--N 02008--E 0.268 0.006 + +

37 PL 50754 4930--N 02030--E 0.222 0.007 + +

38 PL 50758 5420--N 02256--E 0.237 0.007 + +

39 PL 50760 5039--N 02316--E 0.206 0.008 + +

40 PL 50902 4922--N 02011--E 0.223 0.007 + +

41 PL 50904 4922--N 02011--E 0.231 0.007 + +

42 PL 50925 4930--N 02024--E 0.218 0.007 + + +

43 PL 50945 4922--N 02011--E 0.218 0.007 + +

44 PL 51439 na na 0.313 0.008 + + +

45 PL 51440 na na 0.249 0.006 + + +

46 PL 51441 na na 0.269 0.006 + +

(Continued )
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Table 1. (Continued)

No. Accession no. Latitude Longitude uHe ISSR data Evaluation data Core collection

Mean SE

47 PL 51442 na na 0.299 0.009 + +

48 PL 51443 na na 0.241 0.009 + +

49 PL 51519 4922--N 02011--E 0.231 0.007 + +

50 PL 51521 5150--N 02229--E 0.277 0.007 + +

51 PL 51522 5107--N 02320--E 0.252 0.007 + +

52 PL 51599 5052--N 02304--E 0.225 0.007 + +

53 PL 51600 5010--N 02236--E 0.211 0.008 + +

54 PL 51603 50----N 02240--E 0.25 0.007 + +

55 PL 51604 4941--N 02229--E 0.231 0.007 + + +

56 PL 51605 4941--N 02231--E 0.231 0.007 + +

57 PL 51606 5224--N 01947--E 0.2 0.007 + +

58 PL 51607 5000--N 02235--E 0.182 0.007 + +

59 PL 51609 5048--N 02258--E 0.242 0.008 + +

60 PL 51610 5003--N 02234--E 0.222 0.007 + +

61 PL 51611 5001--N 02238--E 0.254 0.007 + +

62 PL 51612 5032--N 02336--E 0.228 0.007 + +

63 PL 51614 5037--N 02259--E 0.243 0.007 + +

64 PL 51615 5051--N 02326--E 0.201 0.007 + + +

65 PL 51616 4921--N 02012--E 0.272 0.006 + +

66 PL 51617 4922--N 02011--E 0.215 0.007 + +

67 PL 51618 4922--N 02001--E 0.265 0.006 + + +

68 PL 51619 4922--N 02011--E 0.221 0.007 + +

69 PL 51632 na na 0.208 0.006 + + +

70 PL 51634 na na 0.199 0.008 + na +

71 PL 51687 na na 0.236 0.007 + +

72 PL 52189 na na 0.232 0.007 + na

73 PL 52191 4921--N 02012--E 0.263 0.006 + +

74 PL 52193 na na 0.236 0.007 + + +

75 PL 52194 na na 0.264 0.01 + + +

76 PL 52195 na na 0.269 0.008 + +

77 PL 52255 5158--N 02224--E 0.199 0.008 + + +

78 PL 52265 4945--N 01916--E 0.272 0.007 + +

79 PL 52267 na na 0.203 0.007 + na

80 PL 52268 5318--N 02200--E 0.229 0.008 + +

81 PL 52306 5048--N 02314--E 0.255 0.007 + +

82 PL 52338 5026--N 02026--E 0.192 0.007 + +

83 PL 52343 5254--N 02252--E 0.232 0.008 + +

84 PL 52344 4930--N 01945--E 0.21 0.008 + + +

85 PL 52351 5301--N 02250--E 0.287 0.006 + + +

86 PL 52429 5314--N 02135--E 0.166 0.008 + na

87 PL 52430 na na 0.211 0.007 + na +

88 PL 52431 na na 0.277 0.007 + na

89 PL 52432 na na 0.3 0.008 + na

90 PL 52433 na na 0.262 0.006 + +

91 PL 52434 na na 0.225 0.009 + + +

[uHe—the unbiased Nei coefficient for intra-accession genetic diversity; na–not available]

doi:10.1371/journal.pone.0167855.t001
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were generated. The phenotypic frequency data of the eight characteristics were analysed by

the Shannon-Weaver diversity index, H, defined as:

H ¼ �
Xk

i

ðpilnpiÞ

where k is the number of phenotypic classes for a character and pi is the proportion of the total

number of entries in the ith class [30]. For this, the overall phenotype range was divided into 12

phenotype classes of similar size.

In addition, we calculated the Pearson correlation coefficients between all agro-morpholog-

ical traits (p< 0.05).

Initially, the GeneMapper software (Applied Biosystem) was used to analyse the capillary

electrophoresis raw data. A binary matrix of the ISSR results was developed in the MS Excel

2010. Only clear and apparently unambiguous peaks were scored. The informativeness of a

marker was determined by the Polymorphic Information Content (PIC) [31].

The pair-wise genetic dissimilarities between individuals were calculated by the Dice algo-

rithm [32], whereas the Nei’s formula was applied to evaluate the inter-population differences

[33]. The resultant distance matrices were used to construct dendrograms via the Ward

method. The principal coordinate analysis (PCoA) was based on estimators of standardised

covariance of genetic distances. The intra-accession genetic diversity was determined by the

Nei unbiased coefficient (uHe). The complete data set was also subjected to the analysis of

molecular variance (AMOVA) to assess molecular variation among and within the oat landra-

ces [34].

The population structure was also estimated using a Bayesian assignment test as imple-

mented in the program STRUCTURE v. 2.3.4 [35]. An admixture model with correlated allele

frequencies was employed. The k (number of populations) values were set from 1 to 15, with

ten independent runs for each k (10,000 burn-ins and 100,000 iterations). The Structure Har-

vester [36] was used to determine the true number of populations. The software CLUMPP 1.1

[37] was used to find optimal alignments of independent runs, and the output was used for

cluster visualisation.

Based on the passport data, a geographic distance matrix was calculated using the Geo-

graphic Distance Matrix Generator [38]. A matrix of absolute values of differences in collec-

tion site altitudes was also calculated.

The Mantel test [39] with 10,000 permutations was conducted to compare proximity matri-

ces of the ISSRs and agro-morphological data and the geographic distance. The Generalized

Procrustes Analysis (GPA) was used to reduce the scale effects and to obtain a consensus con-

figuration of the analyses. All the above mentioned analyses were performed using the MS

Excel 2010, GenAlex 6.5 [33] and XLSTAT Ecology (Addinsoft, Inc., Brooklyn, NY, USA)

softwares.

On the basis of the agro-morphological and molecular marker data, a core set was extracted

from the whole tested accessions using the advanced M strategy implemented through a modi-

fied heuristic algorithm using the PowerCore [40]. The homogeneity was evaluated using the

mean difference (MD%), coincidence rate of range (CR%), variance difference (VD%) and

variable rate of the coefficient of variance (VR%) [40,41].

The mean Difference (MD %) was estimated using the equation

MD ð%Þ ¼
1

m

Xm

j¼1

Me � Mc
Mc

� 100
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where Me is the mean of the entire collection, Mc is the mean of the core collection and m is

the number of traits.

The coincidence rate (CR %) was estimated as:

CRð%Þ ¼
1

m

Xm

j¼1

Rc
Re
� 100

where Re is the range of the entire collection, Rc is the range of the core collection and m is the

number of traits.

The variance Difference (VD %) was estimated as:

VD ð%Þ ¼
1

m

Xm

j¼1

Ve � Vc
Vc

� 100

where Ve is the variance of the entire collection, Vc is the variance of the core collection and m
is the number of traits.

The variable rate of the coefficient of variation (VR %) was estimated as:

VRð%Þ ¼
1

m

Xm

j¼1

CVc

CVe
� 100

where CVe is the coefficient of variation of the entire collection, CVc is the coefficient of varia-

tion of the core collection and m is the number of traits.

The coverage of all agro-morphological traits in the entire collection was estimated in the

core as:

Coverage ð%Þ ¼
1

m

Xm

j¼1

Dc
De
� 100

where Dc is the number of classes occurring in the core subset, De is the number of classes

occurring in the entire set and m is the number of traits [40].

Results

Agro-morphological diversity

The agro-morphological data of the Polish common oat landrace collection, assessed in the

field trials, was obtained from the EGISET [25] database. The results were available for the

majority of the accessions (84 accessions). Scores for the following traits are summarised in

Table 2: plant height, heading date, days to maturity, lodging, resistance to powdery mildew

and crown rust, thousand seed weight and yield. A wide range of phenotype scores were found

for the tested traits, as indicated by generally high values of the H index (Table 2). In general,

the tested accessions showed a high resistance to crown rust and powdery mildew, only few

were affected by the pathogens in a moderate degree. The grain yield was the trait that showed

the highest differentiation among the tested landraces.

The similarity measured by the Gower coefficient was in the range of 0.52–0.98. The cluster

analysis of 84 accessions identified three distinct clusters composed of 30, 26 and 28 accessions

(Fig 1). Within three main clusters the lower levels subdivision was detected. The first cluster

included the high yielding landraces, whereas the third one comprised the early accessions

with a low thousand seed weights. The landraces placed in the second cluster generally had

moderate values of the traits.
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In the principal components analysis (PCA), the first three principal components (with

eigenvalues > 1) explained 63.56% of the variation. The first axis, explaining 32.3% of the vari-

ation, was linked to the variables yield, thousand seed weight (correlation coefficient, r> 0.8)

and heading date (r = -0.7). The second axis (17.1% of variation) was moderately correlated

with lodging, crown rust resistance and days to maturity (r>|0.5|) (Fig 2). The third axis,

explaining 14.2%, was positively correlated with number of days to maturity (r> 0.7). It was

difficult to clearly identify separate groups on the bi-plot; only single accessions performed

some separateness. Five accessions, PL 50530 (16), PL 50593 (23), PL 50613 (24), PL 51440 (45)

and PL 51604 (55), located outside of the group in the first and second quadrant, were highly

resistant both to crown rust and powdery mildew. Three distinct accessions from the third and

fourth quadrant PL 50079 (2), PL 552344 (84) and PL 51615 (64) had high thousand seed weight

values.

Some pairs of the agro-morphological traits were correlated in the tested genotypes

(Table 3). The thousand seed weight was significantly correlated with the yield, heading date,

plant height and crown rust resistance. The grain yield was also significantly correlated with

the heading date, plant height and lodging. In contrast, a weak correlation was noted between

the plant height and the lodging, whereas a strong positive correlation was found between

yield and thousand seed weight. The high degree of correlation of the thousand seed weight

and the yield with other traits was supported by the PCA analysis where both traits were the

primary sources of variation in the first PC axis.

Table 2. Agro-morphological trait values.

trait units Mean sd min max H accessions near min accessions near max

heading date days 74.8 4.5 60 82 1.94 PL 51439 (44) PL 51612 (62)

PL 51443 (48) PL 50529 (15)

PL 51442 (47) PL 50531 (17)

days to maturity days 116 1.6 111 119.5 1.78 PL 52268 (80) PL 51442 (47)

PL 51687 (71) PL 51440 (45)

PL 51443 (48) PL 52351 (85)

plant height cm 126.3 8.5 100.7 146.9 2.05 PL 51632 (69) PL 50531 (17)

PL 52195 (76) PL 50529 (15)

PL 50530 (16) PL 51522 (51)

lodging scale 1–9 5 1.3 1 8 1.82 PL 50530 (16) PL 51443 (48)

PL 50593 (23) PL 51439 (44)

PL 50613 (24) PL 51522 (51)

powdery mildew scale 1–9 ( 7.9 0.6 6 9 0.79 PL 51439 (44) PL 51609 (59)

PL 51441 (46) PL 51632 (69)

PL 51442 (47) PL 51687 (71)

crown rust scale 1–9 ( 7.3 0.7 5 8 1.01 PL 52255 (77) PL 52433 (90)

PL 51632 (69) PL 51609 (59)

PL 52193 (74) PL 51687 (71)

yield g 1462 308.5 821.9 2058.9 2.08 PL 52351 (85) PL 52344 (84)

PL 52191 (73) PL 50076 (1)

PL 52193 (74) PL 51600 (53)

thousand seed weight g 28.4 3.1 22.9 35.11 1.99 PL 50381 (5) PL 51615 (64)

PL 51522 (51) PL 52195 (76)

PL 50521 (12) PL 50698 (30)

[H—Shannon-Weaver diversity index]

doi:10.1371/journal.pone.0167855.t002
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Fig 1. Dendrogram obtained from agro-morphological traits of 84 oat landraces using Ward’s

algorithm with three major clusters marked by dashed line.

doi:10.1371/journal.pone.0167855.g001
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Genetic diversity

In total, we analysed 1,520 polymorphic loci. Among them, 199 had frequencies lower than

0.05 and were classified as rare. No private alleles were detected. More detailed marker

Fig 2. Principal components analysis results based on agro-morphological traits. Bi-plots of the first two principal components F1 and

F2. a) PCA including bi-plots based on agro-morphological traits; b) PCA plot with accessions coded by high or low yield; c) PCA plot with

accessions coded by high or low thousand seed weight.

doi:10.1371/journal.pone.0167855.g002

Table 3. Values of Pearson’s correlation coefficient among the agro-morphological traits.

heading date days to maturity plant height lodging powdery mildew crown rust yield

days to maturity 0.30 x

plant height 0.23 ns x

lodging n ns 0.29 x

powdery mildew ns ns ns ns x

crown rust ns ns ns ns 0.23 x

yield -0.46 ns -0.44 -0.31 ns ns x

thousand seed weight -0.53 ns -0.37 ns ns -0.25 0.66

[p < 0.05; ns—not significant]

doi:10.1371/journal.pone.0167855.t003
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statistics are shown in the Table 4. The polymorphic information content (PIC) varied among

the primers from 0.24 (UBC884) to 0.5 (UBC841). A total of 461 fragments (30%) were charac-

terized by high PIC values, i.e. above 0.4, and thus were highly polymorphic. As much as 59%

of the fragments amplified by UBC841 had PIC> 0.4. The Nei unbiased genetic diversity

(uHe) within landraces ranged from 0.17 PL 52429 (86) to 0.31 PL 51439 (44) (Table 1).

AMOVA determined that the majority of the observed genetic variability was due to among-

accessions variation (59%, p = 0.001). The variation within the accessions accounted for 41%

of the total variation. The pair-wise Nei genetic distances ranged from 0.02 to 0.57. The Ward

clustering algorithm based on the Nei distance reflected four main clusters (Fig 3) composed

of 8, 37, 21 and 25 accessions. Notably, the fourth cluster contained mainly the landraces of

unknown origin, while accessions from the South and the South-East Poland regions consti-

tuted the core of the second cluster. Based on the Nei genetic distance calculated between all

the individual plants, the principal coordinate analysis was performed. The scatter-plot of the

first two coordinates is shown in the Fig 4a, and two major groups were clearly identified. The

first, smaller group was located in the first and fourth quadrant and consisted of eight acces-

sions PL 50076 (1), PL 50079 (2), PL 50338 (3), PL 50345 (4), PL 50381 (5), PL 50503 (9), PL 50613

(24) and PL 50622 (26). Three accessions classified earlier as the obsolete varieties i.e. PL 50076

(1), PL 50079 (2) and PL 50381 (5) were located in this group. It allows to suppose, that remain-

ing five accessions might be also erroneously classified as a landrace instead of being obsolete

varieties. The second group was located in the second and third quadrant of the coordinate

system and consisted of the remaining 83 landraces. However, six landraces of this group

showed some distinctiveness i.e. PL 51632 (69), PL 51440 (45), PL 51634 (70), PL 52431 (88), PL

51439 (44) and PL 50521 (12). The detailed plot clearly shows that the gene pools of individual

accessions in both groups overlap (Fig 4b). AMOVA performed for two identified groups

showed that the between-groups variance component was 15% and therefore much lower than

the within- and among-landraces components (36% and 49%, respectively).

Population structure

The STRUCTURE software was run for k = 1–15, based on the distribution of 1,520 different

ISSR loci among 2,184 individuals of 91 oat accessions The results of the Bayesian STRUC-

TURE analysis identifying genetic groupings are illustrated in the Fig 5. The Structure Har-

vester [36] plotted the Δ against the k numbers of the sub-groups (Fig 6). The maximum ΔK

occurred at k = 2 and in the further order, although it was much lower for k = 3 and k = 5.

When considering k = 2, the collection was split into two sub-groups (group1, group 2) con-

taining 192 and 1 551 individuals, respectively, while 441 were admixed. The individual was

Table 4. ISSR Primers statistics.

Primer Sequence PIC Mean no. loci/landrace Rare fragments

UBC 807 (AG)8T 0.49 106.0124 3

UBC 825 (AC)8T 0.31 37.05815 29

UBC 834 (AG)8YT 0.47 70.46429 0

UBC 841 (GA)8YC 0.50 94.5174 5

UBC 856 (AC)8YA 0.28 31.74222 51

UBC 857 (AC)8YG 0.32 37.81136 9

UBC 884 HBH(AG)7 0.24 26.35943 62

UBC 885 BHB(GA)7 0.43 60.63004 40

[PIC—polymorphic information content]

doi:10.1371/journal.pone.0167855.t004
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Fig 3. Dendrogram obtained from ISSR data of 91 oat landraces using Ward’s algorithm.

doi:10.1371/journal.pone.0167855.g003
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Fig 4. The principal coordinate analysis results based on ISSR data. Bi-plots of the first two principal coordinates F1

and F2. a) based on pair-wise Nei genetic distances among accessions, b) based on Nei genetic distance calculated

between all individual plants.

doi:10.1371/journal.pone.0167855.g004
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Fig 5. Inference of the population structure of Avena sativa landrace collection based on ISSRs using

a mode-based Bayesian clustering carried out using the Structure software [35]. The plots were

generated based on the Q-matrix consensus permuted across ten replications for k = 2, 3 and 5, using the

CLUMPP software [37]. The H’ value indicates the similarity coefficient between ten runs of each k. Each

vertical thin bar represents an individual within an accession that is marked by a black border and number.

Each number represents a single accession and is consistent with the numbers in Table 1. The assignment of

each individual to different gene pools is shown for k = 2, 3 and 5.

doi:10.1371/journal.pone.0167855.g005
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defined as admixed if had less than 80% contribution from one group. The majority of the

admixed individuals originated from 17 accessions. Notably, eight accessions of the first group

were not admixed at all, irrespective of the predefined k. The much lower probability level of

allocation into three or five groups indicated the existence of an internal structure within the

initial second group. In addition, a clear differentiation of individuals within the accessions

was noticeable when k = 5. Moreover, a significant admixture at this level indicated overlap-

ping in the genetic pool of the oat landraces.

Comparison and combination of molecular and agro-morphological data

The agro-morphological characterisation was available only for 84 landraces; therefore, the

correlation between these traits and ISSR marker system was analysed with the accessions sup-

plied with both sets of data only. The same procedure was used for geographic data. No signifi-

cant linear relationships were detected between any of the tested pairs of proximity matrices

(Table 5).

A combination of the ISSR and agro-morphological data was analysed using the generalized

procrustes analysis (GPA). The consensus proportion for this data was 0.665, but the quantile

(78.00) was below the confidence interval (95%).

Fig 6. Results of the optimal subpopulation model investigation by plottingΔK of the data over ten

runs, as implemented in Structure Harvester [36].

doi:10.1371/journal.pone.0167855.g006

Table 5. Results of the Mantel test.

ISSR Agro-morph. traits

Agro-morph. traits Ns x

Geographic distance Ns 0.047

[p < 0.05; ns—not significant]

doi:10.1371/journal.pone.0167855.t005
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The manual analysis of the molecular and the agro-morphological data allowed identify-

ing five accessions with a high potential for breeding. The criteria were applied as follows: a

high resistance to the pathogens combined with a high yielding and genetic distinctiveness.

The selected accessions were: PL 50076 (1), PL 50503 (9), PL 50673 (28), PL 51632 (69) and PL

51439 (44), and it should be noted that one of them had short straw.

Core collection

The PowerCore selected 21 out of 91 oat landraces, thus reducing the number of accessions by

76.9% for the entire set (Table 1). The mean difference (MD%) exhibits the difference in aver-

ages of accessions between the core subset and the entire collection. The low MD% value

(5.73%) shows that the mean of the core collection is similar to the mean of the entire

collection.

The variance difference (VD%) indicates the difference in the coefficient of variation values

existing in the core collection and in the entire collection. The VD% value (30.09%) showed

that the variance of the core collection is slightly different from the variance for the entire

collection.

The variable rate of the coefficient of variance (VR%), enabling a comparison between the

coefficient of variation values existing in the core subset and the entire collection, determines

also the level of representation of the starting collection in the core subset. The core had a VR

% values of 121.33% over the entire set, indicating a good representation.

The coincidence rate of range (CR%) indicates whether the distribution ranges of each vari-

able in the core set are well represented when compared to the entire set. The resulting CR%

value (99.05%) indicated homogenous distribution ranges of agro-morphological traits. The

value of calculated coverage coefficient for the resulting core was 100%. This indicates full cov-

erage of the agro-morphological diversity present in the starting collection.

Discussion

Genetic diversity

The genetic diversity and the population structure of Polish oat germplasm has been analysed

in the past using molecular markers [24,27,28,42,43]. Despite that, little is known about the

amount and distribution of the genetic diversity and the population structure within the Polish

oat landrace collection, as all above mentioned studies included only fragments of the collec-

tion. However, knowledge on the genetic structure within the entire set of landraces is crucial

for the applications in breeding and science. In this study, the genetic diversity among and

within accessions of 91 oat landraces from Poland was analysed for the first time.

Analysis of the genetic diversity parameters showed a higher level of variability among the

indigenous oat landraces than previously reported for 67 oat landraces [27]. Notably, two

separate groups of the accessions were identified. A similar situation was observed in our

previous study in which, beside landraces, also some varieties were analysed [24]. It is note-

worthy that in both of oat diversity studies the same set of ISSR markers was used. In the pre-

vious study [24], three landraces were identified as old Polish varieties that had been

erroneously classified. These three accessions were also used in this study, allowing us to

identify additional five erroneously catalogued accessions which formed the distinct group.

Removal of these eight accessions obviously lowered the general diversity of landraces

which, surprisingly, was only slightly higher than the diversity of the 19 landraces that were

included in the previous study [24]. This indicates that the Polish common oat landraces

gene pool is much narrower than expected; therefore, it is reasonable to create a core collec-

tion consisting of 21 accessions reflecting the variability of the entire set, that could be used
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as the active collection. Based on these results, an advantage of landraces over contemporary

varieties in terms of gene pool broadness is indisputable. A lack of modern oat varieties

diversity has been previously reported [11,44,45]. In the tested accessions we did not found

any links between genetic and morphological variation. A similar result was obtained in the

study of Winkler et al. [46].

The determination of the internal diversity level of each indigenous landrace was one of the

goals set for this study. This type of data is currently not available in the literature because the

internal variation was investigated only a few times, although landraces are regarded as hetero-

geneous [47]. Apart from our previous analysis [24], it appears that the internal variation of

oat accessions has been investigated only once. Eight Swedish landraces demonstrated a high

degree of internal variation based on SSR data [48]. In our study, the level of the internal diver-

sity of oat landraces is much higher than in the previously tested oat population varieties [24].

The ISSR markers showed the various levels of within-accessions variability. A thorough analy-

sis of the internal diversity reported the absence of significant linkage with the location of col-

lecting sites or the collecting years. In the past the diversity of the oat germplasm collection

was investigated several times [16,44,49]. Those studies based on bulk samples, so the internal

diversity of oat accessions was not evaluated. In the most recent study performed on 1 000 oat

accession from NSGC, DNA from only one plantlet per accession was analysed by iSelect 6K

beaded chip array [46]. The authors identified as much as 324 lines as duplicates with one or

many other lines. Based on the result of our study we could speculate that the duplicates are a

direct derivative of the gene pool overlapping. We could also presume that a single plant repre-

sents the gene pool worse than bulk sample.

Currently, we cannot determine precisely enough whether the variation level is specific to

the accession or it is a derivative of the size of the collected seeds sample as well the way in

which it represented the initial diversity. Without any prior information about the initial vari-

ability, we are not also able to prove that the reproduction and regeneration standards of the

gene bank were sufficient to maintain the collected diversity. However, we consider that the

obtained results can be a valuable reference point for future studies. A DNA biobank estab-

lished during this study, in the future, will allow researchers a direct comparison of variation

level even if they will use different analytical methods.

Agro-morphological diversity

The goal of our study was also to describe the variability patterns of important agro-morpho-

logical traits in the landrace collection in order to improve breeding selection of cross parents.

The studies gave also the opportunity to distinguish some germplasm sources for breaking dif-

ficult correlations among the characters. Based on data obtained from the gene bank database

EGISET [25], the diversity of the accessions was estimated. The whole set of data was com-

pleted only for 92% of the collection.

The yield is an extremely complex characteristic, and its components are strongly influ-

enced by a high number of environmental factors. Moreover, its inheritance is neither simple

nor favourable for breeding practice. The importance of genetic dominance and non-additive

interactions of epistatic genes for yield heritability is significantly greater than the effect of

additive genes [50,51]. In more recent oat varieties, the participation of additive direct variance

for yield inheritance has increased [52,53]. Generally, landraces are relatively stable-yielding in

successive seasons even in less favourable conditions, which is assumed as related to their high

internal genotypic diversity. Among the surveyed accessions, we found both very low yielding

ones as well as those with yields comparable to modern varieties. However, it should be con-

sidered that relatively high initial internal variation and a low to moderate heritability may
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impede the use of oat landraces in breeding for yield increase, and a long pre-breeding period

with low selection pressure may be required.

The plant height is also a very complex character determined by interaction of numerous

exo- and endogenous factors. Earlier studies have confirmed the polygenic nature of this trait

[54]. No typical dwarfs were present in the studied landrace collection; however, differentiation

was remarkable. Some landraces with shorter straw (approximately 100 cm) i.e. PL 51632 (69),

PL 52195 (76) and PL 50530 (16) may be useful in the improvement of harvest index and resis-

tance to lodging, in spite of the widespread opinion that landraces considered as cross compo-

nents are generally too tall.

The analysed accessions were characterised by diverse resistance to lodging; moreover, this

characteristic demonstrated variability between years during the field trial. This is related to

the complexity of the feature that, similar to plant height, is affected by a high number of

endogenous and exogenous factors. Lodging is significantly influenced by environmental con-

ditions such as presence and strength of wind, humidity of the soil surface, fertilisation and the

sowing rate. These factors interact with the genetically based characteristics such as plant

height, size and properties of tissue mechanical of the lower internodes, straw flexibility, resis-

tance to culm base diseases (Fusarium avenaceum, F. culmorum oraz Bipolaris sorokiniana)

and development of adventitious roots. Genetic studies of lodging are difficult and rarely per-

formed because of their complexity [55]. The studied landraces are expected to have a level of

genetic individuality, shaped as a compensation of tall stature, which was not necessarily

linked with increased susceptibility to lodging as in the accessions. PL 51618 (67), PL 52268 (80)

and PL 51443 (48).

The length of the vegetation period was among the analysed traits. It was measured as the

heading date and days to maturity, both influenced by the seasonal changes of precipitation,

temperature and the connected date of sowing. The differences in the heading date were larger

than in the days to maturity, which is in agreement with similar studies [55]. The longer photo-

period promotes the earlier flowering, and this response tends to be greater in varieties from

higher latitudes [56]. Reducing the length of the vegetation period with simultaneous increase

of yield is one of the main breeding goals. Due to a relatively high heritability of the heading

date, selection in early generations should be effective. A precise determination of the number

of days to maturity is more difficult than determination of the heading date, but with only a lit-

tle lesser degree of heritability [57,58]. Among the investigated landraces, the accessions PL

52434 (91), PL 51632 (69) and PL 521955 (76) have shown interesting combination of earliness

and yield.

Crown rust, caused by Puccinia coronata Cda. f.sp. avenae Erikss., is one of the most dan-

gerous and the most widely disseminated oats fungal diseases, with the yield losses as high as

40% [55]. The total (vertical) resistance to a pathogen race is a dominant trait determined usu-

ally by one or a few dominant genes with high heritability [59,60]. Puccinia coronata has the

ability to adapt quickly to resistant lines or varieties of oat; therefore, constant search for a new

source of resistance is necessary to effectively combat this disease. The investigated set of acces-

sions was characterised by the sufficient resistance to crown rust; however, it was moderately

infected. Resistance of heterogeneous landrace populations may be similar to that described in

the oat multiline cultivars, in which interaction of polymorphic genes from different individu-

als caused significantly higher level of resistance than expected basing on the expression in

genetically homogenous stocks [61]. Nevertheless, the landraces are still expected to be a good

reservoir of resistance mechanisms other than in modern varieties.

Powdery mildew caused by Blumeria graminis (DC.) E.O. Speer f.sp. avenae Em. Marchal is

a serious foliar disease of oats. It is widespread in the north-western Europe and in the south-

eastern parts of the US [62,63] and reaches the epidemic levels mostly late in the season in wet
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summers [64]. The grain yield losses may reach up to 39% in years with high disease pressure

[65,66]. Based on literature data, resistance to powdery mildew does not seem to be widespread

in A. sativa [67]. Similarly, to crown rust, the analysed accessions showed low infection levels,

but this some doubt, that might have been caused partly by weather conditions unfavourable

to the pathogen and low disease pressure, not by plant resistance.

The thousand seed weight (or thousand kernels weight—TKW) is a relatively stable factor

for oat variety characterisation; however, it may be significantly decreased by biotic or abiotic

stress at the end of the vegetation period. However, this trait is considered by breeders as

much less important compared to percentage of husk or kernel size uniformity, which were

not included in this study.

Core collection

The NCPGR preserves about 80 000 accessions of different species. All of them are available as

an active collection. Regeneration of such amount of accessions is difficult and expensive,

therefore it is reasonable to create core collections reflecting the variability of the preserved

genus or species for common use as an active collection. The core collection of common oat

landraces is the first one in NCPGR. It represents the genetic and morphological diversity of

the entire landrace collection. Besides the gene bank benefits, the smaller set of well described

accessions may act as incentive for breeders to incorporate obsolete germplasm into the breed-

ing programs.

Oat landraces have a considerable potential for use in improving disease and abiotic stress

tolerance. Additionally, compared to the use of crop wild relatives, there are no obstacles to

transfer the valuable characteristics from landraces to new varieties. However, it needs to be

remembered about the high level of internal variability that may complicate the process of

breeding. The oat landraces provide a wide spectrum of the starting material for breeding pro-

grams, as they make it possible to choose the traits which are best suited to local conditions.

They are adapted to local and show resistance to local diseases, with an increased ability to

compete with indigenous weeds. Despite the large height diversification of the oat plants

observed in this study, they tended to be high, which constitutes an indispensable characteris-

tic for weed suppression. Therefore, it has to be concluded that oat landraces should also be

grown and preserved in situ. This, however, requires both scientific expertise and traditional

knowledge of farmers who should grow and manage oat landraces in places where the popula-

tion originated.

Our results show the high genetic diversity of Polish common oat landraces. However, the

broadness of the gene pool turned out to be lower than previously expected, but was still sig-

nificantly higher than that of contemporary varieties. Compilation of molecular and agro-

morphological data allowed to select a set of landraces which may be a valuable “new “recom-

mended source of diversity for breeding programs. Moreover, based on the presented results,

we can conclude that many of the landraces which are preserved in the Polish gene bank may

be directed to the in situ conservation, which may be satisfactory for both farmers and

scientists.
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