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Abstract: The entry of ricin toxin into macrophages and certain other cell types in the 

spleen and liver results in toxin-induced inflammation, tissue damage and organ failure. It 

has been proposed that uptake of ricin into macrophages is facilitated by the mannose 

receptor (MR; CD206), a C-type lectin known to recognize the oligosaccharide side chains 

on ricin’s A (RTA) and B (RTB) subunits. In this study, we confirmed that the MR does 

indeed promote ricin binding, uptake and killing of monocytes in vitro. To assess the role 

of MR in the pathogenesis of ricin in vivo, MR knockout (MR
−/−

) mice were challenged 

with the equivalent of 2.5× or 5× LD50 of ricin by intraperitoneal injection. We found that 

MR
−/−

 mice were significantly more susceptible to toxin-induced death than their  

age-matched, wild-type control counterparts. These data are consistent with a role for the 

MR in scavenging and degradation of ricin, not facilitating its uptake and toxicity in vivo.  
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1. Introduction 

Ricin toxin, a natural product of the castor bean plant (Ricinus communis), is one of the most potent 

toxins known. Ricin is capable of killing virtually all mammalian cell types, and can be lethal to 

humans following injection, inhalation or ingestion. The study of ricin has led to the discovery of 

fundamental processes in areas of protein science, cell biology and immunology, and has had 

important applications for immunotherapeutics [1–3]. At the same time, ricin has sordid history as a 

biological weapon. During World War II, ricin was weaponized under the code name “Compound W” 

by the US military, although the toxin was never used in combat [4,5]. The KGB employed a  

ricin-laced metal pellet in the London assassination of the Bulgarian dissident Georgi Markov in 1978, 

and the toxin remains one of the more common “white powders” encountered by law enforcement [6,7]. 

For these reasons, the Centers for Disease Control have classified ricin as a Category B Select Agent, 

and the National Institutes of Health and (NIAID) considers the development of countermeasures 

against ricin a research priority [8]. 

Ricin is a member of the so-called A-B family of toxins. The toxin consists of a 267 amino acid A 

subunit (RTA) and 262 amino acid B subunit (RTB) that are joined via a single disulfide bond. RTA is 

a ribosome inactivating protein (RIP) whose exclusive substrate is a universally conserved adenosine 

moiety within the so-called sarin/ricin loop (SRL) of eukaryotic ribosomal RNA [9]. RTA is so potent 

that a single molecule is sufficient to kill a cell [10]. Ricin’s B subunit (RTB) is a lectin specific for  

β-1,3-linked galactose and N-acetylgalactosamine (Gal/GalNac) residues on both glycolipids and 

glycoproteins [11]. Both RTA and RTB are post-translationally modified via N-linked mannose side 

chains. RTA has at least one modification at position Asn10 (GlcNAc2Man4), while RTB has two 

modifications at positions Asn95 (GlcNAc2Man6) and Asn135 (GlcNAc2Man7) [12,13]. 

The pathogenesis of ricin toxin has been studied in small animal models, especially rodents [14]. 

Following intravenous administration, ricin is cleared from the circulation and accumulates primarily 

within the liver and spleen, although residual amounts of the toxin are also found in the lungs, kidneys 

and intestines [15–20]. Within the spleen and liver, macrophages (MΦ) cells are the first (and most 

severely) affected by the toxin. As early as four hours post challenge, Kupffer cells exhibit 

ultrastructural changes consistent with the initiation of apoptosis [15]. In parallel, toxin-mediated 

tissue damage is accompanied by a severe inflammatory response, which has been postulated to 

originate from MΦs [16,21]. Consistent with this model is the fact that MΦs exposed to ricin in vitro 

results in the activation of stress-activated protein kinases and secretion of an array of pro-inflammatory 

cytokines and chemokines [22–25]. 

Macrophages are proposed to internalize ricin by two distinct pathways [26,27]. The first pathway 

involves RTB-mediated attachment to galactosyl residues on surface localized glycoproteins and 

glycolipids. Once bound to the cell surface via RTB, ricin is endocytosed and trafficked retrograde to 

the endoplasmic reticulum (ER), where RTA dissociates from RTB and is retro-translocated across the 

ER membrane into the cytosol [3,28]. This pathway is relatively inefficient in that only a fraction 

(<5%) of the total amount of RTA internalized by this route gains access to the TGN; the vast majority 

of ricin is recycled to the cell surface or degraded [29]. On the other hand, the pathway is largely 

insaturable, as it is estimated that there are more than 1 × 10
6–7

 RTB bindings sites on the surface of a 

typical cell [30]. The second, and biochemically distinct, uptake pathway involves the mannose 
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receptor (MR) [26,27,31]. The MR, also known as CD206, is a 180 kDa transmembrane C-type lectin 

that binds oligosaccharides terminating in mannose, fucose or N-acetylglucosamine [32,33]. Simmons 

and colleagues first demonstrated that ricin uptake into rat peritoneal macrophages was reduced by 

either addition of exogenous lactose or mannan, and that maximal inhibition occurred when both 

lactose and mannan were present [27]. At the time, the only described mannose binding protein on 

peritoneal macrophages was the MR; a number of other mannose-specific lectins have since been 

identified [34]. 

Despite the potential importance of the MR in ricin pathogenesis, the contribution of the MR to 

ricin intoxication in vivo has never been directly examined. Studies aimed at addressing this issue have 

relied on indirect means of blocking MR activity, such as co-injection of high concentrations of 

mannan with ricin in an attempt to saturate endogenous MR activity [31]. While these studies strongly 

support a role for the MR in ricin uptake in vivo, they are confounded by the possibility that 

insufficient mannan was present to fully saturate the MR, or that other C-type lectins (e.g., DC-SIGN) 

in addition to the MR may be involved in ricin recognition and uptake. Defining the exact role of  

the MR in ricin pathogenesis would be most easily addressed through the use knockout mice 

specifically deficient in the MR. In fact, the laboratory of Dr. Michel Nussenzweig recently  

produced and characterized MR knock out (MR
−/−

) mice [35]. The MR
−/−

 mice were demonstrably 

impaired in their ability to clear serum glycoproteins, a phenotype that is consistent a role for the MR 

in promoting the recognition, degradation and excretion of endogenously- and exogenously-derived 

mannosylated-ligands. 

Thus, the overarching goal of this study was to take advantage of the availability of MR
−/−

 mice to 

directly determine the role of the MR in mediating the pathogenesis of ricin in vivo. If the MR 

functions in facilitating ricin uptake into MΦs or other cell types, then we would expect that MR
−/−

 

mice will be more resistant to ricin challenge than their wild type counterparts. On the other hand, if 

the MR promotes the clearance and/or degradation of ricin from circulation, as it does for other serum 

glycoproteins, then MR
−/−

 mice would be expected to be more sensitive to ricin challenge. In this 

study, we first confirm that the MR does indeed promote the binding and uptake of ricin into MΦs  

in vitro. We then perform ricin challenge studies with wild type and MR
−/−

 mice and demonstrate that 

the MR
−/−

 mice are in fact more sensitive to ricin than wild type control animals. These and other 

results strongly suggest that the MR is ultimately involved in innate immunity to ricin, probably 

through the capacity of the receptor to accelerate ricin clearance and degradation.  

2. Materials and Methods 

2.1. Chemicals, Reagents and Antibodies 

Ricin and ricin conjugated to fluorescein isothiocyanate (FITC) were purchased from Vector 

Laboratories (Burlingame, CA). Ricin was dialyzed against PBS at 4 °C in 10,000 MW cutoff  

Slide-A-Lyzer dialysis cassettes (Pierce, Rockford, IL), prior to use in cytotoxicity and animal studies. 

Fluorophore- and biotin-conjugated monoclonal antibodies (mAbs) directed against the human (clone 

15–2) and mouse (clone MR5D3) mannose receptors were purchased from BioLegend (San Diego, 
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CA). Yeast mannan was obtained from Sigma-Aldrich (St. Louis, MO). Cell culture media were 

prepared by the Wadsworth Center Media Services facility.  

2.2. Cytotoxicity and Apoptosis Assays 

THP-1 cells are a monocytic leukemic cell line [36] that we obtained from the American Type 

Culture Collection (ATCC, Manassas, VA). The cells were passaged in complete RPMI containing 

10% fetal bovine serum and were maintained in a humidified incubator (37 °C, 5% CO2). For 

cytotoxicity assays, the cells were adjusted to 5 × 10
4
 cells per mL, seeded (100 L/well) onto white 

96 well plates (Corning Life Sciences, Lowell, MA). Twenty-four hours later, the cells were treated 

with ricin (50 ng/mL) for 2 h at 37 °C. The cells were then washed to remove unbound toxin and 

incubated for an additional 40 h. Cell viability was assessed using CellTiter-GLO reagent (Promega, 

Madison, WI) according to the manufacturer’s instructions, except the reagent was diluted 1:5 in PBS 

before use. Luminescence was measured with a SpectraMax L luminometer interfaced with SoftMax 

Pro software (version 5.2; Molecular Devices, Sunnyvale, CA). All treatments were performed in 

triplicate and 100% viability was defined as the average value obtained from wells treated with 

medium only.  

Annexin-V staining was used as a surrogate marker of cells undergoing apoptosis [37]. THP-1 cells 

(1 × 10
6
 cells per mL) were seeded into 12 well cell culture plates (Corning). The cells were then 

incubated at 37 °C with ricin (1 μg/mL), ricin-mAb mixtures or ricin-polysaccharide mixtures for  

4.5 hours. After incubation, the cells were collected by centrifugation and then re-suspended in  

1X binding buffer (100 μL) containing 5 L of Annexin V-FITC and 5 μL PI, as recommended by the 

manufacturer (BD Biosciences). Samples were assayed for apoptosis and necrosis using a FACS 

Calibur (BD Biosciences). Results were reported as % cells positive for Annexin V-FITC or PI.  

A minimum of 20,000 cells were analyzed per sample. 

2.3. Toxin Binding Assays 

To examine ricin binding to cell surfaces, THP-1 monocyte cells were washed and then 

resuspended in 4 °C HBSS at a concentration of 1 × 10
6
 mL. The cells were then chilled on ice for  

20 min and then incubated with FITC-labeled ricin (1 μg/mL) in the presence of specific mAbs or 

sugars for 20 min. The cells were then washed with HBSS to remove unbound ricin-FITC, fixed in 1% 

paraformaldehyde for 10 min, and resuspended in PBS with 2% goat serum (Invitrogen) containing  

1 mM NaN3. The cells were subjected to flow cytometry using a FACSCalibur (BD Biosciences).  

A minimum of 20,000 cells were analyzed per sample.  

2.4. Animals and Ricin Challenge Studies 

MR
−/−

 breeder pairs were kindly provided by the laboratory of Dr. Michel Nussenzweig 

(Rockefeller University, New York, NY) [35]. Animals were housed under conventional, specific 

pathogen-free conditions and were treated in compliance with the Wadsworth Center’s Institutional 

Animal Care and Use Committee (IACUC) guidelines. For challenge studies, ricin was diluted into 

DPBS and administered by intraperitoneal injection to groups of MR
−/−

 mice (8–12 weeks of age) and 
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gender- and age-matched C57/B6 control mice. Survival was monitored over a 3-day period. 

Hypoglycemia was used as a surrogate marker of intoxication. Blood glucose levels were measured 

using an Aviva ACCU-CHECK handheld blood glucose meter (Roche, Indianapolis, IN). Mice were 

euthanized when their blood glucose levels fell below 25 mg/dL. For statistical purposes, readings at or 

below the meter’s limit of detection of ~12 mg/dL were set to that value.  

To estimate the half-life of ricin in serum, groups of age- and gender-matched wild type and MR
−/−

 

mice injected intravenously with biotinylated ricin (100 μg/mouse). Blood was collected from the 

animals 30 min and 60 min later by intra-orbital bleed. Ricin levels in serum were determined by 

ELISA in which NUNC Maxisorb F96 microtiter plates (Thermo Fisher Scientific, Waltham, MA) 

were coated overnight with the RTB-specific mAb 24B11 (1 μg/mL) [38] to capture ricin, treated with 

sera from biotin-ricin challenged mice, and then horseradish peroxidase (HRP)-labeled avidin (Sigma 

Aldrich Co., St. Louis, MO). The plates were developed using the colorimetric detection substrate 

3,3′,5,5′-tetramethylbenzidine (TMB; Kirkegaard & Perry Labs, Gaithersburg, MD) and were analyzed 

with a SpectroMax 250 spectrophotometer.  

To further investigate leukocyte apoptosis in the spleens of ricin challenged mice, groups of MR
−/− 

mice and gender- and age-matched C57/B6 control mice were challenged with ricin (1 μg) by IP 

injection. Eighteen hours later, the animals were euthanized and spleenocytes were physically 

dissociated in DMEM +10% FBS. After centrifugation (400 × g) for 5 min, the cells were then 

incubated in 0.17 M ammonium chloride (pH 7.4) for 10 min to lyse red blood cells. After incubation, 

the cells were collected by centrifugation and then suspended in 1× binding buffer (100 μL) containing 

5 μL of Annexin V-FITC and 5 μL PI, as recommended by the manufacturer (BD Biosciences). 

Samples were assayed for apoptosis and necrosis using a FACS Calibur (BD Biosciences).  

Levels of the pro-inflammatory cytokine and chemokines γ-interferon, interleukin (IL)-1, IL-6,  

IL-12p70, monocyte chemotactic protein 1 (MCP-1), and tumor necrosis factor (TNF)-α levels in 

splenic homogenates were determined using a BD CBA Mouse Inflammation kit (BD Biosciences). 

The cytokine/chemokine concentrations were calculated from standard curves generated from purified 

cytokines/chemokines provided by the manufacturer.  

2.5. Statistical Analysis and Software 

Statistical analysis was carried out with GraphPad Prism 5 (GraphPad Software, San Diego, CA). 

For survival studies, statistical significance between groups was determined using the Log-Rank 

(Mantel-Cox) test. Differences in blood glucose levels and cytokine levels were determined by  

two-way analysis of variance (ANOVA). 

3. Results 

3.1. MR Contributes to Ricin-Induced Killing of Monocytes in Vitro 

THP-1 cells are a human acute monocytic leukemia cell line used widely as a model for  

monocyte-derived macrophages [36]. These cells are known to express a number of C-type lectins, 

including the MR [39–41], even in their undifferentiated state. Furthermore, these cells are highly 

sensitive to the effects of ricin (Figure 1).  
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Figure 1. Sensitivity of THP-1 cells to ricin toxin. THP-1 cells (5 × 10
4
 cells per mL) were 

treated with indicated concentrations of ricin for 2 h at 37 °C. The cells were then washed 

to remove unbound toxin and incubated for an additional 40 h. Cell viability was assessed 

using as described in Materials and Methods. 

 

We therefore used these cells as a model system to verify previous reports demonstrating a role for 

the MR in ricin uptake and toxicity [27]. To assess the role of the MR in promoting ricin attachment to 

cells, THP-1 cells were exposed to FITC-ricin (1 μg/mL) at 4 °C for 20 min, washed, fixed, and then 

subjected to flow cytometry. These studies were conducted at 4 °C to permit binding to cells, but not 

endocytosis [42]. FITC-ricin bound cells with a MFI of ~80 (Figure 2A). Toxin binding to cell 

surfaces was reduced by ~25% upon the addition of mannan (10 mg/mL) and more than 50% by 

treatment of the cells with a MR-specific blocking mAb. Activation of the THP-1 cells with IL-4 

resulted in increased surface expression of the MR and a concomitant increase in ricin binding that was 

also partially inhibited by mannan and the MR-specific blocking mAb (data not shown). These results 

confirm a role for the MR in toxin attachment to cell surfaces. 

To define the role of the MR in ricin toxicity, cells were exposed to ricin (1 μg/mL) for 5 h and then 

assessed for apoptosis by staining the cells with annexin-V. Following ricin treatment, approximately 

60% of the cells stained positive for annexin V, indicating that apoptosis had been initiated in a 

majority of the cells population (Figure 2B). The addition of anti-MR mAb (20 μg/mL) or excess 

mannan (10 mg/mL) partially protected the cells from the effects of ricin, consistent with a role for the 

MR in ricin uptake. The degree of protection conferred by the anti-MR mAb and mannan was only 

slightly less than that conferred by the well-characterized neutralizing mAb R70 [38,43]. Interestingly, 

the addition of galactose virtually eliminated ricin-induced cell killing, underscoring the contribution 

of RTB-mediated uptake via terminal galactose residues in ricin entry into host cells.  

The combination of galactose and mannan was not more effective than galactose alone in preventing 

toxin-induced killing, which has implications for the role of MR in ricin uptake (see below).  
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Figure 2. Contribution of the Mannose Receptor (MR) in ricin binding and uptake by 

THP-1 cells. (A) Role of MR in ricin attachment. THP-1 cells (1 × 10
6
 cells/mL) were 

chilled on ice for 20 minutes to arrest endocytosis. Cells were then treated with  

FITC-labeled ricin (1 μg/mL) in the presence of mannan (10 mg/mL) or the blocking anti-

MR mAb 15–1 for 20 min before being subjected to flow cytometric analysis. Geo Mean 

refers to the geometric mean fluorescence emission at 519 nm when cells were exposed to 

an excitation signal 488 nm; and (B) Role of the MR in ricin cytotoxicity. THP-1 cells (1 × 

10
6
 cells per mL) were incubated with ricin (1 μg/mL), ricin-mAb mixtures, or ricin-sugar 

(mannan or galactose) mixtures 4.5 h. After which the cells were assayed for Annexin-V 

expression (gray bars) as an indicator of apoptosis and PI staining (black bars) as an 

indicator of necrosis. The Y-axis refers to % cells that were positive for Annexin V-FITC 

or PI. A minimum of 20,000 cells were analyzed per sample. 

 

3.2. Sensitivity of MR
−/−

 Mice to Ricin Intoxiction 

Having confirmed a role for the MR in the binding to and uptake by a monocyte cell line in vitro, 

we next wished to examine the contribution of the MR to in vivo. We obtained MR
−/−

 breeder pairs 

from the laboratory of Dr. Michel Nussenzweig at the Rockefeller University [35]. Groups of age-, 

weight and sex-matched C57BL/6 and MR
−/−

 mice were challenged with 1.0 μg or 0.5 μg of ricin, 

which in wild type mice is the equivalent of 5× LD50 or 2.5× LD50, respectively. Mice were then 

monitored for morbidity and mortality for three days. Hypoglycemia was used as a quantitative 

surrogate marker of ricin intoxication [44]. 

Wild-type mice challenged with 1 μg of ricin (equivalent to 5× LD50) succumbed to intoxication 

within 48 h, with a median survival of 34 h (Figure 3A). In contrast, all the MR
−/−

 mice challenged 

with the same amount of toxin expired within 24 h, with a median survival of 19 h (Figure 3A). The 

enhanced susceptibility of the MR
−/−

 mice to ricin intoxication was also apparent in the groups of mice 

challenged with 0.5 μg: wild-type mice had a median survival of 66 h, whereas the MR
−/−

 mice had a 

median survival of only 36 h (Figure 3B). The kinetics of hypoglycemia mirrored the time to death 

curves for both groups of animals. (Figures 3C,D) In both the high and low ricin challenge groups, the 

MR
−/−

 mice demonstrated a more rapid reduction in blood glucose levels as compared to their wild 

type counterparts. These data reveal that the MR
−/−

 mice are approximately two-times more sensitive 

to ricin than wild type mice.  
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Figure 3. Survival of MR
−/−

 mice following ricin challenge. Groups of MR
−/−

 or age- and 

sex-matched wild type controls were challenged with 1.0 μg (panels A, B) or 0.5 μg 

(panels C, D) ricin. Groups of animals were monitored for survival (A, C) and 

hypoglycemia (B, D). Panels A, C: At both challenge doses, the MR
−/−

 mice succumbed to 

ricin intoxication at a rate significantly greater than their wild type counterparts (p < 0.01 

by the Log-Rank test). Panels B and D: each symbol represents an individual mouse. For 

mice challenged with 1.0 μg ricin (panel A), blood glucose levels in the MR
−/−

 mice were 

significantly lower that their wild type counterparts at 19 h (p < 0.001) and 24 h  

(p < 0.001) post challenge, as determined by two-way ANOVA. For mice challenged with 

0.5 g ricin (panel B), blood glucose levels in the MR
−/−

 mice tended to be lower than wild 

type controls, although this difference was not statistically significant.  

 

To examine whether the serum half-life of ricin was affected by the absence of the MR, groups of 

wild type or knock-out mice were administered ricin intravenously. Toxin levels in serum were 

determined by ELISA 30 and 60 min later. By this method, there was no detectable difference in the 

clearance of ricin from circulation between the wild-type and MR
−/−

 mice (data not shown). 

Furthermore, the levels of ricin-induced apoptosis in the spleens wild-type and MR
−/−

 mice were 

identical (Figure 4), indicating that equal amounts of toxin likely gained access to this (and other) 

visceral organs.  
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Figure 4. Toxin-induced apoptosis in the spleens of MR
−/−

 and wild type mice. 

Splenocytes from wild type and MR
−/−

 control and ricin-challenged mice (18 h post 

challenge) were subjected to Annexin V-FITC (gray bars) and PI staining (black bars) as 

indicators of apoptosis and necrosis, respectively. There was no significant difference in 

apoptosis numbers between the wild type and mannose receptor-deficient animals.  

 

Interestingly, however, IL-6 levels in the spleens of ricin-challenged MR
−/−

 mice were 2–6 fold 

higher than was observed in the ricin-challenged wild type controls (Figure 5). Other cytokines, 

notably MCP-1, TNF-α, IL-1 and IFN-γ were altered but not significantly different between the groups 

of animals (Figure 5C, data not shown). These data demonstrate that the absence of the MR does not 

affect toxin-induced cell death in the spleen, but does influence pro-inflammatory cytokine/chemokne 

responses in the serum.  

Figure 5. Cytokine and chemokine levels in splenic homogenates of MR
−/−

 and wild type 

mice following ricin challenge. Splenic homogenates from groups of wild type and MR
−/−

 

control and ricin-challenged mice (18 h post challenge) were subjected mouse 

inflammatory cytokine/chemokine cytometric bead array. Shown are values from IL-6 (A), 

MCP-1 (B), and TNF-α (C). The differences in IL-6 levels in ricin-challenged MR
−/−

 mice 

were significantly greater than those in ricin-challenged control animals (p < 0.05, as 

determined by ANOVA). 

 

Finally, we also examined pro-inflammatory cytokine/chemokine responses in the intestinal mucosa 

in MR
−/−

 mice following an intragastric ricin challenge. We previously reported that MCP-1 (but not 

TNF-α, IL-1, IL-6 or IFN-γ) is a hallmark of ricin-induced damage to the intestinal mucosa [45]. 
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Groups of wild-type and MR
−/−

 mice were challenged intragastrically with 5 mg/kg of ricin. 

Approximately 24 h later, the animals were euthanized and intestinal homogenates were assayed by 

CBA analysis for cytokine/chemokine levels. MCP-1 levels were elevated in ricin-challenged mice, as 

compared to sham challenged controls (data not shown). There was no difference, however, in  

MCP-1 levels at baseline or following toxin challenge between wildtype and MR
−/−

 mice. 

4. Conclusions and Discussion 

In this study, we took advantage of the availability of MR
−/−

 mice to examine the role of  

MR-mediated uptake in the pathogenesis of ricin toxin in vivo. We found that MR
−/−

 mice were 

approximately two-fold more sensitive to ricin-induced killing than their wild-type counterparts. MR
−/−

 

mice challenged with the equivalent of 2.5× or 5× LD50 of ricin demonstrated a more rapid reduction 

in blood glucose levels and an accelerated time to death, as compared to control animals. While these 

data are surprising in light of the fact that the MR actually promotes ricin-induced apoptosis of 

monocytes/macrophages in vitro, they are entirely consistent with the MR’s established role as a 

scavenging receptor and an important component of the innate immune system [32,33,35]. Thus, we 

propose that MR-mediated uptake of ricin by macrophages (and other cell types) in vivo results in the 

clearance and degradation of the toxin, and does not lead to an increase in toxin-induced cell death or 

an increased inflammatory response. In the absence of the MR, ricin internalization likely occurs 

entirely through the RTB-mediated uptake pathway. 

As a member of the C-type lectin family of pattern recognition receptors (PRRs), the MR has been 

shown to bind (and in some cases mediate phagocytosis of) a variety of bacterial and fungal pathogens, 

including Mycobacterium tuberculosis [46], Streptococcus pneumoniae [47], Francisella tularensis [48], 

Pneumocystis carinii [49], Candida albicans [50], and Cryptococcus neoformans [51]. It has been 

postulated that microbial pathogens exploit the MR as a means to gain entry into host cells. With the 

exception of F. tularensis [48], however, this postulate has not been substantiated. For example, mice 

lacking the MR are more sensitive (not more resistant) to Cryptococcus neoformans infection than 

wild type animals, as reflected by faster time to death and higher fungal burdens following pulmonary 

challenge [51]. Thus, it is generally accepted that the primary function of the MR is in antigen capture 

and degradation. Indeed, the MR may be integral in linking the innate and adaptive immune responses, 

as evidenced by the fact that MR-mediated uptake of certain exogenous glycoproteins by dendritic 

cells results in cross-presentation to CD8
+
 T cells [52]. While our data clearly support a role for the 

MR in the clearance of ricin from circulation, it remains to be determined whether the MR also 

contributes to mounting an immune response to the toxin.  

It is interesting to note that, in our hands, ricin attachment and uptake into monocytes/macrophages 

occurs primarily via the RTB-mediated pathway. For example, treatment of THP-1 cells with mannan 

or a MR blocking antibody reduced ricin binding to cell surfaces by 20–50%. In contrast, binding was 

reduced by more than 80% with the addition of lactose. The addition of mannan did not reduce toxin 

binding beyond that observed with lactose alone. Based on these observations, we postulate that ricin 

uptake via the MR may occur in a two-step fashion. Specifically, we propose that ricin may first 

adhere to cell surfaces via RTB’s affinity for Gal/GalNac. Once bound to the cell surface, ricin may 

associate with the MR via mannose side chains on RTA and/or RTB. This model would explain our 
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observation that monoclonal antibodies that block RTB’s galactose recognition activity (but do not 

affect accessibility of the mannose side chains) completely neutralize ricin in vitro [38], block 

attachment of ricin to primary macrophages ex vivo, and protect mice against a lethal ricin challenge 

(A. Yermakova and N. Mantis, in press).  

In conclusion, we have demonstrated that MR
−/−

 mice are significantly more susceptible to  

ricin-induced intoxication than age-matched, wild-type counterparts. These data are consistent with the 

MR contributing to ricin recognition in vivo, but indicate that the ricin’s fate following uptake via the 

MR is one of degradation and not intoxication. Thus, the fate of ricin following MR uptake may differ 

in vitro (or ex vivo) versus in vivo. Why this is the case is not immediately apparent, but may be due in 

part to influences by local environments in vivo that are not recapitulated in vitro. It should be stressed, 

however, that the actual fate of ricin in the MR
−/−

 mice following intraperitoneal injection was not 

determined in this study. Thus, while we propose that the susceptibility of the MR
−/−

 mice to ricin is 

due to the failure of macrophages to efficiently clear the toxin from circulation, there are other possible 

explanations. For example, we cannot exclude the possibility that soluble MR or other serum proteins 

contribute to the scavenging ricin in circulation and/or interstitial fluids (e.g., in the peritoneal  

cavity) [53]. Nor can we ignore the observation that MR
−/−

 mice have elevated serum levels of at least 

three proteins associated with inflammation and wound healing [35] that could possibility interfere 

directly or indirectly with ricin toxicity. Future studies will be aimed at defining the exact role for MR 

in the clearance of ricin in vivo and determining how this activity might be exploited in developing 

countermeasures against this toxin.  
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