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Abstract
This study explores the coevolutionary dynamics of host-pathogen interaction based on
a susceptible-infected populationmodel with density-dependent mortality.We assume
that both the host’s resistance and the pathogen’s virulence will adaptively evolve, but
there are inevitable costs in terms of host birth rate and disease-related mortality rate.
Particularly, it is assumed that both the host resistance and pathogen virulence can
affect the transmission rate. By using the approach of adaptive dynamics and numeri-
cal simulation, we find that the finally coevolutionary outcome depends on the strength
of host-pathogen asymmetric interaction, the curvature of trade-off functions, and the
intensity of density-dependent natural mortality. To be specific, firstly, we find that if
the strengths of host-pathogen asymmetric interaction and disease-related mortality
are relatively weak, or the density-dependent natural mortality is relatively strong,
then the host resistance and pathogen virulence will evolve to a continuously stable
strategy.However, if the strength of host-pathogen asymmetric interaction and disease-
related mortality becomes stronger, then the host resistance and pathogen virulence
will evolve periodically. Secondly, we find that if the intensities of both the birth rate
trade-off function and the density-dependent natural mortality are relatively weak, but
the strength of host-pathogen asymmetric interaction becomes relatively strong, then
the evolution of host resistance will have a relatively strongly accelerating benefit,
the evolutionary branching of host resistance will first arise. However, if the strength
of host-pathogen asymmetric interaction is relatively weak, but the intensity of the
trade-off function of disease-related mortality becomes relatively strong, then the evo-
lution of pathogen virulence will have a relatively strongly decelerating cost, and the
evolutionary branching of pathogen virulence will first arise. Thirdly, after the evo-
lutionary branching of host resistance and pathogen virulence, we further study the
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coevolutionary dynamics of two-hosts-one-pathogen interaction and one-host-two-
pathogens interaction. We find that if the evolutionary branching of host resistance
arises firstly, then the finally evolutionary outcome contains a dimorphic host and a
monomorphic pathogen population. If the evolutionary branching of pathogen viru-
lence arises firstly, then the finally evolutionary outcome may contain a monomorphic
host and a dimorphic pathogen population.

Keywords Coevolution · Host-pathogen interaction · Evolutionary branching ·
Evolutionary cycling · Adaptive dynamics

Mathematics Subject Classification Primary: 92D15 · 92D25; Secondary: 92D30 ·
92-10

1 Introduction

The interaction between host and pathogen often has large effect on individual fitness
and can significantly alter the evolutionary trajectory of a specie (Tibayrenc 2011).
However, we lack an understanding of the evolutionary process that generates and
maintains the trait diversity. Besides, the long-term behavior of host-pathogen inter-
action is likely to depend on the interplay of both species evolutionary traits, that is,
the coevolutionary dynamics (Best et al. 2009). Therefore, the coevolutionary dynam-
ics need to be considered more generally, which has important implication for our
understanding the coevolutionary mechanism of host-pathogen interaction.

The importance of host-pathogen interaction has led to large theoretical studies
that explored the evolution of a single phenotypic trait, pathogen virulence (May and
Anderson 1983; Geritz et al. 1998; Tompkins et al. 2002; Day and Proulx 2004; Alizon
et al. 2009; Boldin and Diekmann 2008; Duffy and Sivars-Becker 2007; Bowers et al.
2005) or host resistance (Anderson andMay 1982;Antonovics and Thrall 1994; Bonds
2006; Boots et al. 2009; Boots and Bowers 1999, 2004; Boots and Haraguchi 1999;
Best et al. 2015, 2009; Svennungsen and Kisdi 2009; Gascuel et al. 2013; Kraaijeveld
et al. 2012;Mealor andBoots 2006). These studies have established a broad framework
for theoretical study and application. Modern theoretical studies on the evolution of
pathogen, in which virulence is assumed to be a trade-off against transmission, the so-
called ‘virulence-transmission trade-off’, the trade-off theory assumes that a pathogen
cannot simultaneously increase transmission and prolong infection, so pathogens are
attempting to maximize R0 subject to these costs (May and Anderson 1983; Best
et al. 2009). Based on the theory of adaptive dynamics, Alizon et al. (2009) found
that in the susceptible-infected (SI) model with density-dependent infection, as long
as the trade-off function between transmission rate and pathogen virulence is locally
convex, then the evolutionary branchingmay appear in the locally convex region of the
trade-off function. Similar studies have found that in order to obtain the evolutionary
branching, the second derivative of the trade-off function near the singular strategy
must be less than zero (Boldin and Diekmann 2008; Day and Proulx 2004; Duffy and
Sivars-Becker 2007). After branching, the two pathogens with different virulence may
coexist. Particularly, when the death rate of host population is density-dependent, but
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the birth rate is not density-dependent, then the two pathogens with different virulence
may coexist (Bowers et al. 2005; Day and Proulx 2004; Geritz et al. 1998; Pugliese
2002), but it is found that the coexistence of two pathogens with different virulence
on the population timescale does not guarantee the evolutionary stable coexistence on
the long-term evolutionary timescale, one of the branches may evolve to extinction.

Moreover, we have noted that in order to avoid infection by pathogen, the host often
needs to change the resistance ability, but this usually requires a cost, the host with
higher resistance pays a cost on other life-history traits, such as fertility. This is also
supported by theoretical argument and empirical evidence (Anderson and May 1982;
Antonovics and Thrall 1994; Bonds 2006; Boots et al. 2009; Boots and Bowers 1999,
2004; Boots and Haraguchi 1999; Best et al. 2015, 2009; Svennungsen and Kisdi
2009; Gascuel et al. 2013; Kraaijeveld et al. 2012; Mealor and Boots 2006). Over the
last few decades, much work has been dedicated to understanding the evolutionary
mechanism of host resistance, and many different modeling approaches have been
developed, such as quantitative genetic method, locus-based method, and adaptive
dynamics approach (Best et al. 2015, 2009; Bonds 2006; Boots et al. 2009; Boots and
Bowers 1999, 2004; Boots and Haraguchi 1999; Kisdi and Geritz 2016; Landi et al.
2013).

In particular, the approach of adaptive dynamics allows us to examine the evolu-
tionary factors that result in different types of host resistance. Based on the approach
of adaptive dynamics (Dieckmann and Law 1996; Geritz et al. 1998;Metz et al. 1992),
Antonovics and Thrall (1994) and Bowers et al. (1994) studied the SI model of two-
strains, they found a key result of the coexistence of a highly susceptible strain and a
highly resistant strain. Boots and Haraguchi (1999) proposed a multi-strain model to
study the evolution of host resistance, and they hypothesized that different host strains
have different susceptibility to infection strains and that strains with stronger resis-
tance have a lower intrinsic growth rate. The adaptive dynamics approach and pairwise
invasibility plot analysis showed that the evolutionary outcome depends on the trade-
off function between resistance and the cost. When resistance has a deceleration cost,
they found that the evolutionary branch of host resistance may occur.

However, in nature, the interaction between the host and pathogen is usually a
coevolutionary process Best et al. (2009), and both the pathogen virulence and host
resistance may adaptively evolve. Understanding the coevolutionary mechanism of
host-pathogen interaction is one of the key challenges for evolutionary biology. Math-
ematical models have therefore played an important role in shaping our understanding
of host-pathogen coevolution. Recently, many theoretical models are constructed to
study the coevolutionary theory of host-pathogen interaction, and find that the pop-
ulation dynamics and the genetic basis of infection have a significant impact on the
outcome of host-pathogen coevolution (Buckingham and Ashby 2022). Baalen (1998)
and Restif and Koella (2003) investigated the so-called coevolutionary stable state, for
which once attained cannot be invaded by other strains. Best et al. (2009) and Ashby
et al. (2019) introduced the ecological feedback into the host-pathogen coevolution
model to evaluate the impact of ecological evolution itself. Boots et al. (2014) showed
that when there is a cost in host resistance and pathogen transmission, epidemio-
logical feedback may produce diversity, but this situation is limited to dimorphism
in a wide range of realistic infection scenarios. However, mathematical models that
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examine the coevolutionary dynamics of quantitative traits in host and pathogen are
relatively fewer, especially based on the susceptible-infected population model and
the theory of adaptive dynamics (Boots et al. 2009; Best et al. 2010, 2011; Lopez
Pascua et al. 2014; Boots et al. 2014; McLeod and Day 2015; Hesse et al. 2015; Best
2018; Alizon 2021). Based on the susceptible-infected population dynamics, Best
et al. (2009) showed that highly virulent parasites may evolve due to the coevolution-
ary process. Best et al. (2010) examined the evolution of host defense to the sterilizing
effects of parasites. Best et al. (2011) and Hesse et al. (2015) considered the effect
of spatial structure on evolution. Lopez Pascua et al. (2014) explored how the envi-
ronment influences coevolutionary dynamics. McLeod and Day (2015) considered
the implication of avoidance plasticity for host-pathogen coevolution. Alizon (2021)
discussed the treatment symptomatic infection and the coevolution of virulence and
drug resistance. Best (2018) assessed the impact of predation on the coevolution of
costly host resistance and pathogen transmission. Boots et al. (2014) examined how
specificity and epidemiology drive the coevolution of static trait diversity in host and
parasite. Furthermore, density-dependent mortality has been identified as a key factor
in evolutionary dynamics (Andreasen and Pugliese 1995; Zu et al. 2020). Andreasen
and Pugliese (1995) discussed that two pathogens can coexist if hosts are subject to
density-dependent mortality. Zu et al. (2020) assumed that both susceptible hosts and
infected hosts are affected by density-dependent mortality, but only the resistance-
related trait of susceptible host can adaptively evolve. They studied the evolutionary
mechanism of host resistance to pathogen infection, and found that without density-
dependent mortality, the evolutionary branching in the host resistance may not occur.
However, in the previous studies, they did not consider the coevolutionary dynamics
of host-pathogen interaction when a density-dependent mortality affects all hosts. In
addition, after the evolutionary branching of pathogen virulence or host resistance,
many previous studies did not continue to explore whether the evolutionary diversity
of pathogen virulence or host resistance can be maintained or not for a long time.

In this paper, based on the theory of adaptive dynamics (Dieckmann and Law
1996; Geritz et al. 1998; Metz et al. 1992; Kisdi 2020; Hoyle et al. 2008; Geritz et al.
2007; Diekmann et al. 2005), we study the coevolutionary dynamics of host resistance
and pathogen virulence. Based on an susceptible-infected population dynamics with
density-dependent mortality, we will rigorously analyze the evolutionary invasion
process of host resistance and pathogen virulence. In particular, strict mathematical
proofs and numerical simulations are provided for each step of evolutionary invasion
analysis. To sum up, the purpose of this study is aim to examine the following four
questions of host-pathogen coevolution. Firstly, under what conditions will host and
pathogen evolve to a continuously stable strategy? Secondly, under what conditions
will the phenotypic traits of host and pathogen evolve periodically? Thirdly, under
what conditions will the phenotypic traits of host or pathogen give rise to evolutionary
branching? Fourthly, after evolutionary branching, can the host and pathogen with
different phenotypic traits coexist stably for a long time?

The rest of the paper is organized as follows. In the next section, we first develop a
susceptible-infected population model with density-dependent mortality. Then we use
the approach of adaptive dynamics to analyze the evolutionary invasion process of host
resistance and pathogen virulence and propose a coevolutionary dynamic model of
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host-pathogen interaction. In Sect. 3, the convergence stability, evolutionary stability
and cyclical evolution are studied. After exploring the evolutionary branching of host
resistance and pathogen virulence, the coevolutionary dynamics of two hosts and one
pathogen and the coevolutionary dynamics of two pathogens and one host are given.
In addition to the mathematical proof, the numerical simulation results are also given
in Sect. 3 to illustrate the feasibility of our main results. A brief discussion is given at
the end of this paper.

2 Evolutionary invasion analysis

In this section, we use the approach of adaptive dynamics to analyze the evolution-
ary invasion process of host and pathogen and establish a coevolutionary dynamic
model of host-pathogen interaction. We first develop a susceptible-infected popula-
tionmodel. Then based on this population dynamics, wewill derive the invasion fitness
for the mutant host and mutant pathogen that we use to investigate the coevolutionary
dynamics and put forward to the proposition that successful invasion will lead to trait
substitution. Finally, a coevolutionary dynamic model of host-pathogen interaction is
constructed.

2.1 Susceptible-infected population dynamics

We assume that there is only one monomorphic host and one monomorphic pathogen
in the initial community. Then we consider a pathogen (or a microparasite) that can
cause a direct transmission with no latent period and the incidence of host infection
is bilinear. In addition, when the host population density becomes larger, all hosts
will be subject to intraspecific competition, the host mortality will increase with host
density (Andreasen and Pugliese 1995), so we assume that both the susceptible host
and infected host are subject to density-dependent mortality m(N ), which is given by
a linear function of the total population density N = S + I , i.e.,

m(N ) = m0 + m1N ,

where m0 is the host natural death rate, m1 is a constant representing the strength of
density-dependence. In otherwords, the host population grows according to the logistic
model. We also assume that infected individuals neither reproduce nor recover, which
is a reasonable assumption for most invertebrate hosts with pathogen. In this way
we focus on one possible route to disease resistance, that is, avoidance of infection
by reducing the susceptibility to the disease. Therefore, the population dynamics of
host-pathogen interaction is given by

⎧
⎪⎨

⎪⎩

dS

dt
= bS − βSI − m(N )S,

d I

dt
= βSI − α I − m(N )I ,

(1)

where
N = S + I ,m(N ) = m0 + m1N ,
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and S and I denote the population density of susceptible host and infected host,
respectively.α is the host death rate due to the pathogen infection (i.e., the virulence), b
is the birth rate of susceptible host, and β is the transmission rate. All of the parameters
in the model (1) are positive.

In the real world, the interaction between hosts and pathogens is commonly a coevo-
lutionary process, the long-term behavior of host-pathogen interaction is likely to
depend on the interplay of both species’ evolutionary characteristics (Best et al. 2009;
Boots et al. 2009), so we assume that both the host’s resistance and the pathogen’s
virulence can adaptively evolve. Host resistance and pathogen virulence are repre-
sented by a single phenotypic trait x1 and x2, respectively. Specifically, on the one
hand, the ubiquity of infectious pathogens in nature and the damage that they cause
to their hosts has led to the evolution of a diverse range of host defence mechanisms,
from simple mechanical barriers through to complex immune systems (Boots et al.
2009), so an increase in host resistance will lead to a decrease in transmission efficacy.
On the other hand, although virulence is not an adaptation of the pathogen per se, it
is generally believed to be an inevitable by-product of a pathogen’s need to propa-
gate and transmit to new hosts, so an increase in virulence will parallel an increase
in transmission efficacy (Anderson and May 1982). Hence, we assume that the trans-
mission rate β is an asymmetric function of trait (x1 − x2), namely, the transmission
rate β(x1 − x2) decreases with the increase of the trait (x1 − x2). To be specific, when
the host resistance trait x1 is much greater than the pathogen virulence trait x2, the
transmission rate β(x1 − x2) becomes very small. Conversely, when the pathogen vir-
ulence trait x2 is far greater than the host resistance trait x1, then the transmission rate
β(x1 − x2) becomes very large. In addition, trade-offs are fundamental in nature and
reflect the fact that any gain in one life-history trait (e.g., host resistance) incurs a cost
in another (e.g., birth rate). Such trade-off relationship is also well documented (Boots
and Begon 1993; Kraaijeveld et al. 2001; Boots et al. 2009). Boots and Begon (1993)
examined genotypic trade-offs with resistance to a virus in a lepidopteran host by a
micro-evolutionary selection experiment and found that correlated with the increase
in resistance were a lengthening of development time, a reduction in egg viability and
an increase in pupal weight. The biological basis of the resistance cost may be a direct
pleiotropic effect of the alleles for resistance (Lenski 1988; Simms 1992). Hence, we
further assume that a mutation that not only reduces the chance that an individual
becomes infected but also includes a cost such that birth rate is reduced, i.e., the birth
rate b is a monotonically decreasing function (trade-off function) with respect to the
resistance trait x1, that is b′(x1) < 0. Furthermore, the evolution of virulence can
be understood as a balance between the pathogen’s drive to increase infectivity and
its need to maintain a long infectious period. Effective transmission requires a high
pathogen concentration in the host tissuewhile, on the other hand, a high pathogen pro-
duction leads to extensive damage of host cells and consequently to shorter infection
period (Anderson and May 1982). Hence, the increase in pathogen virulence will lead
to an increase of the disease-related death rate, so we assume that the death rate due
to disease α is a monotonically increasing function (trade-off function) with respect
to the virulence trait x2, that is, α′(x2) > 0. To sum up, the population dynamics of
host-pathogen interaction is changed to
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⎧
⎪⎨

⎪⎩

dS

dt
= b(x1)S − β(x1 − x2)SI − m(N )S,

d I

dt
= β(x1 − x2)SI − α(x2)I − m(N )I ,

(2)

where

N = S + I ,m(N ) = m0 + m1N ,
db(x1)

dx1
< 0,

dα(x2)

dx2
> 0,

dβ(x1 − x2)

d(x1 − x2)
< 0.

All of the parameters in the model (2) are positive. This model is most applicable to
invertebrate diseases and plant diseases (Boots and Haraguchi 1999).

Biologically, if the curve of trade-off function b(x1) is concave, it means that as
the resistance trait x1 increases, b(x1) will decrease more and more slowly. In this
case, we say that there is a decelerating cost for the host population. On the contrary,
if the curve of trade-off function b(x1) is convex, which means that as the resistance
trait x1 increases, b(x1) will decrease faster and faster, then we say that there is an
accelerating cost for the host population. In the same way, if the curve of trade-off
function α(x2) is concave, in this case, we say that there is an accelerating cost for
the pathogen population. If the curve of trade-off function α(x2) is convex, then we
say that there is a decelerating cost for the pathogen population. In addition, if the
asymmetric function of transmission rate β(x1 − x2) is concave, since β(x1 − x2) is a
decreasing function of (x1−x2), in this case, we say that there is a decelerating benefit
for the host population, and an accelerating benefit for the pathogen population, and
if the asymmetric function of transmission rate β(x1 − x2) is convex, then we say that
there is an accelerating benefit for the host population and a decelerating benefit for
the pathogen population (Boots et al. 2009; Hoyle et al. 2008; Zu et al. 2015, 2020).

For model (2), the condition for the initial spread of a pathogen arriving into a
susceptible host population is then

β(x1 − x2)(b(x1) − m0) > (b(x1) + α(x2))m1, (3)

that is, the basic reproduction number

R0 = β(x1 − x2)(b(x1) − m0)

(b(x1) + α(x2))m1
> 1.

When the condition (3) is satisfied, setting the right-hand side of the model (2) to zero,
we obtain an endemic equilibrium (S∗(x1, x2), I ∗(x1, x2)), where

⎧
⎪⎪⎨

⎪⎪⎩

S∗(x1, x2) = (b(x1) + α(x2))m1 + (m0 + α(x2))β(x1 − x2)

β2(x1, x2)
,

I ∗(x1, x2) = β(x1 − x2)(b(x1) − m0) − (b(x1) + α(x2))m1

β2(x1, x2)
.

(4)
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By using the approach of Lyapunov function and the LaSalle’s invariance prin-
ciple, we obtain the following result about the globally asymptotical stability of
(S∗(x1, x2), I ∗(x1, x2)).

Proposition 1 If condition (3) holds, then the endemic equilibrium (S∗(x1, x2), I ∗
(x1, x2)) of the model (2) is globally asymptotically stable in R2+ = {S > 0, I > 0}.
Proof For simplicity, we use (S∗, I ∗) instead of (S∗(x1, x2), I ∗(x1, x2)). Consider the
following Lyapunov function

V1 =
(

S − S∗ − S∗ln S

S∗

)

+
(

I − I ∗ − I ∗ln I

I ∗ )

)

.

It is clear that V1 ≥ 0 and the equality holds only for (S, I ) = (S∗, I ∗) inR2+ = {S >

0, I > 0}. Its time derivative along the solution of model (2) becomes

dV1
dt

∣
∣
∣
∣
(1)

= (S − S∗) 1
S

dS

dt
+ (I − I ∗)1

I

d I

dt
= −m1((S − S∗) + (I − I ∗))2.

It can be seen that dV1/dt ≤ 0 inR2+ and dV1/dt = 0 if and only if (S, I ) = (S∗, I ∗).
The globally asymptotical stability of (S∗(x1, x2), I ∗(x1, x2)) follows from Lyapunov
and LaSalle’s invariance principle.

Next, based on the susceptible-infected population dynamics (2) and endemic equi-
librium (S∗(x1, x2), I ∗(x1, x2)), we derive the invasion fitness and the coevolutionary
dynamics of host-pathogen interaction. ��

2.2 Invasion fitness and trait substitution

Based on the method of adaptive dynamics, we obtain the invasion fitness for mutant
susceptible host

f1(y1, x1, x2) = b(y1) − β(y1, x2)I
∗(x1, x2)

− (m0 + m1(S
∗(x1, x2) + I ∗(x1, x2))).

(5)

If f1(y1, x1, x2) > 0, then the population density of mutant host will increase (a
detailed derivation is provided in Appendix A). In this case, we can say that the mutant
host can invade. In addition, by using the approach of Lyapunov function, we find that
the successful invasion of the mutant host will lead to a trait substitution (Cantrell
et al. 2017; Dercole and Rinaldi 2008; Geritz et al. 2002; Geritz 2005; Meszéna et al.
2005) (a detailed proof is provided in Appendix B).

Analogously, the invasion fitness for mutant pathogen is given by

f2(y2, x1, x2) = β(x1, y2)S
∗(x1, x2)− (m0 +m1(S

∗(x1, x2)+ I ∗(x1, x2)))−α(y2).
(6)

If f2(y2, x1, x2) > 0, then the population density of mutant pathogen can invade (a
detailed derivation is provided in Appendix A). By using the approach of Lyapunov
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function, we can see that the successful invasion of a mutant pathogen will result in a
trait substitution (a detailed proof is provided in Appendix B).

2.3 Coevolutionary dynamics of host-pathogen interactions

Through successive invasion and trait substitution, the resistance of susceptible host
and the virulence of pathogen will evolve step by step. The direction of such an
evolutionary change is determined by the sign of selection gradient g1(x1, x2) and
g2(x1, x2), which is given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g1(x1, x2) = ∂ f1(y1, x1, x2)

∂ y1

∣
∣
∣
∣
y1=x1

= b′(x1) − β ′(x1, x2)I ∗(x1, x2),

g2(x1, x2) = ∂ f2(y2, x1, x2)

∂ y2

∣
∣
∣
∣
y2=x2

= −β ′(x1, x2)S∗(x1, x2) − α′(x2).
(7)

where

b′(x1) = db(y1)

dy1

∣
∣
∣
∣
y1=x1

, α′(x2) = dα(y2)

dy2

∣
∣
∣
∣
y2=x2

,

β ′(x1, x2) = ∂β(y1, x2)

∂ y1

∣
∣
∣
∣
y1=x1

= −∂β(x1, y2)

∂ y2

∣
∣
∣
∣
y2=x2

.

When the mutation is small and rare, the coevolutionary dynamics of traits x1 and x2
is given by

⎧
⎪⎨

⎪⎩

dx1
dτ

= n1(x1, x2)g1(x1, x2),

dx2
dτ

= n2(x1, x2)g2(x1, x2).
(8)

where time τ spans the evolutionary timescale, g1(x1, x2) and g1(x1, x2) are the selec-
tion gradients described as in (7), respectively, n1(x1, x2) and n2(x1, x2) represent the
evolution speed of traits x1 and x2, respectively, which is given by

⎧
⎪⎨

⎪⎩

n1(x1, x2) = 1

2
μ1σ

2
1 S

∗(x1, x2),

n2(x1, x2) = 1

2
μ2σ

2
2 I

∗(x1, x2).
(9)

where μ1 and μ2 are the probability that a birth event in the host and pathogen is a
mutant, respectively. σ 2

1 and σ 2
2 are the variance of phenotypic effect of the mutant

host and mutant pathogen, respectively. Model (8) is an approximate equation of the
coevolutionary process, which describes how the expected value of phenotypic traits
(x1, x2) will change.

123



15 Page 10 of 34 Y. Yang et al.

3 Coevolutionary outcomes

3.1 Continuously stable strategy

When there is a pair of traits (x∗
1 , x

∗
2 ) to satisfy the following condition

{
g1(x

∗
1 , x

∗
2 ) = b′(x∗

1 ) − β ′(x∗
1 , x

∗
2 )I

∗(x∗
1 , x

∗
2 ) = 0,

g2(x
∗
1 , x

∗
2 ) = −β ′(x∗

1 , x
∗
2 )S

∗(x∗
1 , x

∗
2 ) − α′(x∗

2 ) = 0.
(10)

We call (x∗
1 , x

∗
2 ) for an evolutionary singular strategy (Geritz et al. 1998; Kisdi 1999).

Whether the coevolutionary process of host-pathogen interaction stops at the singular
strategy (x∗

1 , x
∗
2 ) is determined by its convergence stability and evolutionary stability.

3.1.1 Convergence stability

We use the linear approximation method to estimate the convergence stability of the
evolutionary singular strategy inmodel (8). The Jacobianmatrix at the singular strategy
(x∗

1 , x
∗
2 ) is given by

J3 =
⎛

⎜
⎝

n1(x∗
1 , x∗

2 )
∂g1(x1, x2)

∂x1
n1(x∗

1 , x∗
2 )

∂g1(x1, x2)

∂x2

n2(x∗
1 , x∗

2 )
∂g2(x1, x2)

∂x1
n2(x∗

1 , x∗
2 )

∂g2(x1, x2)

∂x2

⎞

⎟
⎠

∣
∣
∣
∣x1=x∗

1
x2=x∗

2

=
(
n1(x∗

1 , x∗
2 )(b′′(x∗

1 ) − β ′′(x∗
1 , x∗

2 )I ∗(x∗
1 , x∗

2 )) n1(x∗
1 , x∗

2 )β ′′(x∗
1 , x∗

2 )I ∗(x∗
1 , x∗

2 )

−n2(x∗
1 , x∗

2 )β ′′(x∗
1 , x∗

2 )S∗(x∗
1 , x∗

2 )) n2(x∗
1 , x∗

2 )(β ′′(x∗
1 , x∗

2 )S∗(x∗
1 , x∗

2 ) − α′′(x∗
2 )

)

.

If the determinant of this Jacobian matrix is positive (det(J3) > 0), and the trace
is negative (tr(J3) < 0), then the evolutionary singular strategy (x∗

1 , x
∗
2 ) is locally

convergence stable (Zu et al. 2014).

3.1.2 Evolutionary stability

The evolutionary singular strategy (x∗
1 , x∗

2 ) is evolutionarily stablemeans that it cannot
be invaded by any nearby strategy, and it can be estimated by calculating the second
derivative of the invasion fitness function of host and pathogen with respect to the
mutant trait. By direct calculation, we obtain if the following condition is satisfied

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂2 f1(y1, x1, x2)

∂ y21

∣
∣
∣
∣ x2=x∗

2
y1=x1=x∗

1

= b′′(x∗
1 ) − β ′′(x∗

1 , x
∗
2 )I

∗(x∗
1 , x

∗
2 ) < 0,

∂2 f2(y2, x1, x2)

∂ y21

∣
∣
∣
∣ x1=x∗

1
y2=x2=x∗

2

= β ′′(x∗
1 , x

∗
2 )S

∗(x∗
1 , x

∗
2 ) − α′′(x2) < 0.

(11)

123



Coevolutionary dynamics of host-pathogen... Page 11 of 34 15

where

b′′(x∗
1 ) = d2b(y1)

dy21

∣
∣
∣
∣
y1=x∗

1

, α′′(x∗
2 ) = d2α(y2)

dy22

∣
∣
∣
∣
y2=x∗

2

,

β ′′(x1, x2) = ∂2β(y1, x2)

∂ y21

∣
∣
∣
∣y1=x1
x2=x∗

2

= ∂2β(x1, y2)

∂ y22

∣
∣
∣
∣y2=x2
x1=x∗

1

.

Then the evolutionary singular strategy (x∗
1 , x

∗
2 ) is evolutionarily stable (Geritz et al.

1998; Zu et al. 2016).
If the evolutionary singular strategy (x∗

1 , x
∗
2 ) is both convergence stable and evolu-

tionarily stable, then the evolutionary singular strategy (x∗
1 , x∗

2 ) is a continuously stable
strategy (CSS). Based on the above analysis, we obtain the following conclusion.

Theorem 1 Assuming condition (3) holds, for the evolutionary singular strategy
(x∗

1 , x
∗
2 ) of model (8), if det(J3) > 0, tr(J3) < 0, and condition (11) is satisfied,

then the evolutionary singular strategy (x∗
1 , x

∗
2 ) is a continuously stable strategy.

From the Jacobian matrix J3 and condition (11), we can see that whether the sin-
gular strategy (x∗

1 , x
∗
2 ) is a CSS depends on the curvature of the trade-off function at

(x∗
1 , x

∗
2 ) and the relative strength of the asymmetric interaction. At the same time, the

population density at the endemic equilibrium of the susceptible host and the infected
host also plays a key role. For the continuously stable strategy (x∗

1 , x
∗
2 ), the host and

pathogen can stably coexist on a long-term evolutionary timescale. So a continuously
stable strategy (x∗

1 , x
∗
2 ) represents the final outcome of the coevolutionary process.

In this case, the finally evolutionary outcome contains a monomorphic host and a
monomorphic pathogen.

In order to give an example of numerical simulation to illustrate the result of The-
orem 1, we take the following asymmetric transmission rate function

β(x1 − x2) = β0

1 + β1exp(β2(x1 − x2))
, (12)

Which is a monotonically decreasing function with respect to (x1 − x2), where β0 is
the maximum transmission rate of pathogen, β2 measures the strength of asymmetric
interaction, the larger the β2, the stronger the asymmetric interaction, and β1 adjusts
the concavity and convexity. Particularly, when β1 = 1, x1− x2 = 0 is a turning point.
When β2 > 1, if x1 − x2 > 0, then the transmission rate function is concave. That is,
there is a decelerating benefit for the host population and an accelerating benefit for
the pathogen population. If x1− x2 < 0, then the transmission rate function is convex,
that is, there is an accelerating benefit for the host population and a decelerating benefit
for the pathogen population (see Fig. 1a). In general, this function can be suitable for
a variety of asymmetric interaction (Kisdi 1999; Zu et al. 2016).

In addition, based on the basic assumption, the birth rate b of the susceptible host
population is a monotonically decreasing function with respect to the resistance trait
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a

b c

Fig. 1 Curves of transmission rate function and two trade-off functions. aAsymmetric curve of transmission
rate function β(x1 − x2) as given by (12), where β0 = 0.03, β1 = 1.0, β2 = 1.0; 3.0; 4.0; 10. b The curve
of birth rate function b(x1) as given by (13), where b0 = 0.5, b1 = 2.0, b2 = 1.5. c The curve of
disease-related mortality function α(x2) as given by (14), where a0 = 0.005, a1 = 0.8, a2 = 30

x1, so we consider the birth rate function b(x1) in the form of

b(x1) = b0 + b1(1 − xb21 ). (13)

When b2 > 1, the trade-off curve b(x1) is globally convex, which means that the host
population has an accelerating cost (see Fig. 1b). Similarly, the function form of the
disease-related mortality α(x2) is given by

α(x2) = a0 + a1
1 + a2exp(−a3x2)

. (14)

It can be seen from Fig. 1c that the mortality function due to disease is a sigmoid curve
with saturation, which is more in line with the actual biological significance, and the
convexity is determined by the shape parameter a3, the larger the a3, the wider the
convex area of the curve.

In order to illustrate the finally evolutionary outcome of host-pathogen coevolution,
we take β2, a3,m1 as bifurcation parameters in the following numerical simulation,
and fix other parameters: b0 = 0.5, b1 = 2.0, b2 = 1.5, a0 = 0.005, a1 = 0.8, a2 =
30, β0 = 0.003, β1 = 1.0,m0 = 0.01. Below we give a numerical simulation exam-
ple to illustrate the continuously stable strategy of host-pathogen coevolution. When
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a b

c d

e f

Fig. 2 Continuously stable strategy of host-pathogen coevolution. a Trait evolution phase plot. The vector
fields obtained fromModel (8) indicate directions of coevolution of traits x1 and x2. The black curve and red
curve indicate respectively isoclines of traits x1 and x2. The solid curves indicate the evolutionary singular
strategy which is evolutionarily stable, while the dashed curve indicates the evolutionary singular strategy,
which is not evolutionarily stable. The grey region is a feasible phenotypic trait space in which the host-
pathogen coevolution can occur. b Invasion fitness landscape of themutant host. c Invasion fitness landscape
of the mutant pathogen. d Time series curves of phenotypic traits obtained through simulation of Model
(8) with initial values are (x1, x2) = (0.70, 0.72). e Equilibrium population density of the susceptible host
when the traits x1 and x2 evolve. f Equilibrium population density of the infected host when the traits x1
and x2 evolve. Parameter values: a3 = 5.0,m1 = 0.005, β2 = 3.0. Other parameter values are the same
as in Fig. 1

a3 = 5.0,m1 = 0.005, and 0.3 ≤ β2 < 3.8, there is an evolutionary singular strat-
egy E∗

1 = (x∗
1 , x

∗
2 ), which is both convergence stable and evolutionarily stable, so

E∗
1 represents the finally evolutionary outcome of host-pathogen coevolution. In par-

ticular, when β2 = 3.0, from Fig. 2a, it can be seen that E∗
1 = (0.269, 0.514) is
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convergence stable. From Figs. 2b and 2c, it can be seen that the invasion fitness at
E∗
1 = (0.269, 0.514) reaches to a maximum value, so E∗

1 = (0.269, 0.514) is evo-
lutionarily stable. Therefore, E∗

1 = (0.269, 0.514) is a continuously stable strategy.
In this case, the finally evolutionary outcome contains a monomorphic host and a
monomorphic pathogen, which can continuously stably coexist for a long time (see
Fig. 2d). From Figs. 2e and 2f, we can see that the equilibrium population density of
susceptible host and infected host finally reaches to a stable state, and the equilibrium
population density of infected host is higher than that of the susceptible host.

3.2 Evolutionary cycling

Based on themethod of linear approximation, we can see that the convergence stability
of evolutionary singular strategy (x∗

1 , x
∗
2 ) is estimated by the determinant and trace of

Jacobianmatrix J3. If the strength of the trade-off function of disease-relatedmortality
becomes stronger, then the evolutionary singular strategy (x∗

1 , x
∗
2 )may become unsta-

ble. In this case, themodel (8)may admit Hopf bifurcation. That is, the phenotypic trait
of host and pathogen may evolve to a stable limit cycle. So the evolutionary cycling
is a possible outcome of host-pathogen coevolution. Due to the complex nonlinearity,
the result of evolutionary cycling is illustrated by a numerical simulation example.

As an example, when β2 = 4.0,m1 = 0.005, and 7.2 ≤ a3 < 8.1, the evolutionary
singular strategy E1 = (x∗

1 , x
∗
2 ) becomes unstable. In this case, we find that the model

(8) admits Hopf bifurcation, and the trait of the host and pathogen will converge to
a limit cycle. The magnitude of the limit cycle increases with the increase of a3 and
finally disappears when a3 reaches the critical value of 8.1. Therefore, we can see
that the evolutionary cycling may occur under asymmetric interaction between the
host and pathogen. In particular, when a3 = 7.3, that is, the strength of the trade-
off function becomes stronger, from Fig. 3, we can see that the host resistance trait
and the pathogen virulence trait will evolve periodically. In this case, the equilibrium
population density of host and pathogen will also change periodically.

3.3 Evolutionary branching

Evolutionary branching is an evolutionary process during which directional selection
drives a monomorphic population to an evolutionary singular strategy where eco-
logical interactions induce disruptive selection and subsequently splits up into two
coexisting phenotypic clusters (Doebeli and Dieckmann 2000). In one-dimensional
adaptive dynamics, a fitness minimum at an attracting singular strategy is sufficient for
evolutionary branching (Geritz et al. 1998). However, in higher-dimensional adaptive
dynamics, this need not be true anymore. In higher-dimensional adaptive dynamics,
an ‘evolutionarily singular coalition’ that is convergence stable but for which at least
one strategy lacks evolutionary stability and allows for mutual invasibility nearby will
lead to evolutionary branching (Dieckmann and Doebeli 1999; Doebeli and Dieck-
mann 2000; Kisdi 1999). Therefore, we obtain the following result on the evolutionary
branching of the host and pathogen.
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a b

c d

Fig. 3 Evolutionary cycling. aTrait evolution phase plot. The vector fields obtained fromModel (8) indicate
directions of coevolution of traits x1 and x2. The black curve and red curve indicate respectively isoclines of
traits x1 and x2. The solid curves indicate evolutionary singular strategywhich is evolutionarily stable, while
the dashed curve indicates evolutionary singular strategy, which is not evolutionarily stable. The grey region
is a feasible phenotypic trait space in which the host-pathogen coevolution can occur. b Time series curves
of phenotypic traits obtained through simulation ofModel (8) with initial condition (x1, x2) = (0.41, 0.55).
Host and pathogen evolve to a stable limit cycle. c Equilibrium population density of the host when the
trait x1 and x2 evolve. d Equilibrium population density of the pathogen when the trait x1 and x2 evolve.
Parameter values: a3 = 7.3,m1 = 0.005, β2 = 4.0. Other parameter values are the same as in Fig. 1

If the evolutionary singular strategy (x∗
1 , x

∗
2 ) is convergence stable, and the evo-

lutionary singular strategy of pathogen virulence x∗
2 is evolutionarily stable, but the

evolutionary singular strategy of host resistance x∗
1 is not evolutionarily stable and

allows for mutual invasibility nearby, which is given by

∂2 f1(y1, x1, x2)

∂ y21
=

∣
∣
∣
∣ x2=x∗

2
y1=x1=x∗

1

= b′′(x∗
1 ) − β ′′(x∗

1 , x
∗
2 )I

∗(x∗
1 , x

∗
2 ) > 0, (15)

∂2 f1(y1, x1, x2)

∂x21

∣
∣
∣
∣ x2=x∗

2
y1=x1=x∗

1

> −∂2 f1(y1, x1, x2)

∂ y21

∣
∣
∣
∣ x2=x∗

2
y1=x1=x∗

1

, (16)

then the evolutionary branching of the host resistance will occur.
Similarly, we obtain if the evolutionary singular strategy (x∗

1 , x
∗
2 ) is convergence

stable, and the evolutionary singular strategy of host resistance x∗
1 is evolutionarily
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stable, but the evolutionary singular strategy of pathogen virulence x∗
2 is not evolu-

tionarily stable and allows mutual invasibility nearby, which is given by

∂2 f2(y2, x1, x2)

∂ y22
=

∣
∣
∣
∣ x1=x∗

1
y2=x2=x∗

2

= β ′′(x∗
1 , x

∗
2 )S

∗(x∗
1 , x

∗
2 ) − α′′(x∗

2 ) > 0, (17)

∂2 f2(y2, x1, x2)

∂x22

∣
∣
∣
∣ x1=x∗

1
y2=x2=x∗

2

> −∂2 f2(y2, x1, x2)

∂ y22

∣
∣
∣
∣ x1=x∗

1
y2=x2=x∗

2

, (18)

then the evolutionary branching of the pathogen virulence will occur.
To sum up, we obtain the following result about the evolutionary branching.

Theorem 2 Assuming condition (3) holds, for the evolutionary singular strategy
(x∗

1 , x
∗
2 ) of model (8),

(I) if det(J3) > 0, tr(J3) < 0, and conditions (15), (16) and the second condition
of equation (11) are satisfied, then the evolutionary branching of host resistance will
occur;

(II) if det(J3) > 0, tr(J3) < 0, and conditions (17), (18) and the first condition
of Eq. (11) are satisfied, then the evolutionary branching of pathogen virulence will
occur.

Based on the above analysis, we can see that whether the evolutionary branching of
the host or pathogen occurs depends on the shape and relative strength of the transmis-
sion rate function and the strength of the trade-off function. From the condition (15)
and (17), it can be seen that the equilibrium population density of the infected host and
susceptible host also has a certain influence on whether the evolutionary branching
occurs or not. In particular, from condition (15) it can be seen that if the birth rate
function of the susceptible host b(x1) is weakly convex at x∗

1 , but the transmission
rate function β(x1 − x2) is relatively strongly convex at (x∗

1 , x
∗
2 ), that is, the host

has a weakly accelerating cost in term of birth rate, but at the same time has a rela-
tively strongly accelerating benefit in term of transmission rate, then the evolutionary
branching of host resistance may occur. In addition, from condition (17) we can see
that if the disease-related mortality function α(x2) is relatively strongly convex at x∗

2 ,
but the transmission rate function β(x1 − x2) is weakly convex at (x∗

1 , x
∗
2 ), in other

words, the pathogen has a weakly decelerating benefit in term of transmission rate, but
at the same time has a relatively strongly decelerating cost in term of disease-related
mortality, then the evolutionary branching of pathogen virulence may occur.

If the evolutionary branching of host resistance and pathogen virulence occurs, the
host and pathogen will firstly evolve toward an evolutionary singular strategy (x∗

1 , x
∗
2 ),

in the vicinity of the evolutionary singular strategy (x∗
1 , x

∗
2 ) the host and pathogen will

branch into two different types. After the evolutionary branching, we will further
study the coevolutionary dynamics of two hosts and one pathogen or one host and two
pathogens and explore the finally evolutionary outcomes.
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3.4 Coevolutionary dynamics of two hosts and one pathogen

After the evolutionary branching of host resistance first occurs, we assume that there
are two different types of hosts with resistance traits x11 and x12, then the population
dynamics of two-hosts-one-pathogen interaction is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS1
dt

= b(x11)S1 − β(x11, x2)S1 I − m(N )S1,

dS2
dt

= b(x12)S2 − β(x12, x2)S2 I − m(N )S2,

d I

dt
= β(x11, x2)S1 I + β(x12, x2)S2 I − m(N )I − α(x2)I ,

(19)

where N = S1 + S2 + I ,m(N ) = m0 + m1(N ).
Setting the right-hand side of (19) to 0, and let

d1 = m1(b(x12) + α(x2))(β(x11, x2) − β(x12, x2))

−(b(x12) − m0)β(x11, x2)β(x12, x2) + (b(x11) − m0)β
2(x12, x2),

d2 = −m1(b(x11) + α(x2))(β(x11, x2) − β(x12, x2))

−(b(x11) − m0)β(x11, x2)β(x12, x2) + (b(x12) − m0)β
2(x11, x2),

d3 = (β(x11, x2) − β(x12, x2))(b(x11 − b(x12)).

When the following condition is satisfied

d1 > 0, d2 > 0, d3 > 0, (20)

we obtain the endemic equilibrium (S∗
1 (x), S∗

2 (x), I ∗(x)) of model (19), where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S∗
1 (x) = d1

m1(β(x11, x2) − β(x12, x2))2
,

S∗
2 (x) = d2

m1(β(x11, x2) − β(x12, x2))2
,

I ∗(x) = b(x11) − b(x12)

β(x11, x2) − β(x12, x2)
.

(21)

and x = (x11, x12, x2).
By using the method of Lyapunov function, we will show that the endemic equi-

librium is globally asymptotically stable.

Proposition 3 If condition (20) holds, then the endemic equilibrium (S∗
1 (x), S∗

2 (x),
I ∗(x)) of model (19) is globally asymptotically stable in R3+ = {S1 ≥ 0, S2 > 0, I >

0}.
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Proof For simplicity, we use (S∗
1 , S

∗
2 , I

∗) instead of (S∗
1 (x), S∗

2 (x), I ∗(x)). Consider
the following Lyapunov function

V3 =
(

S1 − S∗
1 − S∗

1 ln
S1
S∗
1

)

+
(

S2 − S∗
2 − S∗

2 ln
S2
S∗
2

)

+
(

I − I ∗ − I ∗ln I

I ∗

)

.

It is clear that V3 ≥ 0 and the equality holds only for (S1, S2, I ) = (S∗
1 , S

∗
2 , I

∗) in
R3+ = {S1 > 0, S2 > 0, I > 0}. Its time derivative along the solution of model (19)
becomes

dV3
dt

∣
∣
∣
∣
(17)

= (S1 − S∗
1 )

1

S1

dS1
dt

+ (S2 − S∗
2 )

1

S2

dS2
dt

+ (I − I ∗)1
I

d I

dt

= −m1[(S1 − S∗
1 ) + (S2 − S∗

2 ) + (I − I ∗)]2.

It can be seen that dV3/dt ≤ 0 in R3+ and dV3/dt = 0 if and only if (S1, S2, I ) =
(S∗

1 , S
∗
2 , I

∗). The globally asymptotical stability of (S∗
1 (x), S∗

2 (x), I ∗(x)) follows
from Lyapunov-LaSalle’s invariance principle.

Next, based on model (19) and the endemic equilibrium, we will derive the coevo-
lutionary dynamics of two hosts and one pathogen. Due to the rarity of mutation, we
assume that there is either a mutant host arising from susceptible host S1 or a mutant
host arising from susceptible host S2, but not both at a time. By using the same deriva-
tion as before, when a mutant host with a different trait y1 enters into the resident
community with a low density, the invasion fitness for the mutant host is then given
by

h1(y1, x) = b(y1)−β(y1, x2)I
∗(x)−(m0+m1(S

∗
1 (x)+ S∗

2 (x)+ I ∗(x))), (22)

where b(y1) is the trade-off function of birth rate and (S∗
1 (x), S∗

2 (x), I ∗(x)) are respec-
tively the equilibrium population density of susceptible host S1, susceptible host S2
and infected host I , which are described as in (21).

Analogously, the invasion fitness of mutant pathogen with different trait y2 is given
by

h2(y2, x) = β(x11, y2)S
∗
1 (x) + β(x12, y2)S

∗
2 (x)

−(m0 + m1(S
∗
1 (x) + S∗

2 (x) + I ∗(x))) − α(y2), (23)

Therefore, the evolutionary direction of host resistance and pathogen virulence is
determined by the sign of selection gradients g11(x), g12(x), and g2(x), which are
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given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g11(x) = ∂h1(y1, x)

∂ y1

∣
∣
∣
∣
y1=x11

= b′(x11) − β ′(x11, x2)I ∗(x),

g12(x) = ∂h1(y1, x)

∂ y1

∣
∣
∣
∣
y1=x12

= b′(x12) − β ′(x12, x2)I ∗(x),

g2(x) = ∂h2(y2, x)

∂ y2

∣
∣
∣
∣
y2=x2

= −β ′(x11, x2)S∗
1 (x) − β ′(x12, x2)S∗

2 (x) − α′(x2).

(24)
��

Furthermore, if the mutation is small and rare, then the coevolutionary dynamics
of phenotypic traits x11, x12, x2 is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx11
dτ

= 1

2
μ11σ

2
11S

∗
1 (x)g11(x),

dx12
dτ

= 1

2
μ12σ

2
12S

∗
2 (x)g12(x),

dx2
dτ

= 1

2
μ2σ

2
2 I

∗(x)g2(x),

(25)

where g1i (x)(i = 1, 2) and g2(x) are the selection gradients described in (24),μ1i (i =
1, 2) and μ2 are the probability that a birth event in the host and pathogen is a mutant,
respectively. σ 2

1i (i = 1, 2) and σ 2
2 are the variance of the phenotypic effect of mutant

host and mutant pathogen, respectively. Model (25) is an approximate equation of
coevolutionary process, which tells us how the expected value of traits (x11, x12, x2)
will change.

From (24), we can get the evolutionary singular strategy (x∗
11, x

∗
12, x

∗
2 ). The conver-

gence stability of the evolutionary singular strategy can be studied by using numerical
simulation. The evolutionary stability depends on the following condition

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2h1(y1, x)

∂ y21
=

∣
∣
∣
∣x2=x∗

2 ,x1 j=x∗
1 j

y1=x1i=x∗
1i

= b′′(x∗
1i ) − β ′′(x∗

1i , x
∗
2 )I∗(x) < 0, (i, j = 1, 2, i �= j),

∂2h2(y2, x)

∂ y22
=

∣
∣
∣
∣x11=x∗

11,x12=x∗
12

y2=x2=x∗
2

= β ′′(x∗
11, x

∗
2 )S∗

1 (x) + β ′′(x∗
12, x

∗
2 )S∗

2 (x) − α′′(x∗
2 ) < 0.

(26)
Therefore, based on the above analysis, we obtain the following conclusion.

Theorem 3 Assuming condition (20) holds, for the evolutionary singular strategy
(x∗

11, x
∗
12, x

∗
2 ) of model (25), if it is convergence stable and satisfies the condition

(26), then (x∗
11, x

∗
12, x

∗
2 ) is a continuously stable strategy.

From the condition (25) and (26), it can be seen that whether the singular strategy
(x∗

11, x
∗
12, x

∗
2 ) is continuously stable or not depends on the strength and shape of the
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asymmetric host-pathogen interaction and the curvature of the trade-off function. It
also depends on the equilibrium population density of susceptible host S1, susceptible
host S2 and the infected host I . Combining the previous analysis of the evolutionary
branching of host resistance, we can see that if the host has a weakly accelerating cost
in term of birth rate, but at the same time has a relatively strongly accelerating benefit
in term of transmission rate, then the evolutionary branching of host resistance may
occur. After the evolutionary branching, if condition (26) is satisfied, two hosts and
one pathogen may converge to an evolutionary stable equilibrium. If the evolutionary
singular strategy (x∗

11, x
∗
12, x

∗
2 ) is both convergence stable and evolutionarily stable,

then the singular strategy (x∗
11, x

∗
12, x

∗
2 ) is the finally evolutionary outcome. In this

case, two hosts and one pathogen can coexist stably for a long time. If the evolutionary
singular strategy (x∗

11, x
∗
12, x

∗
2 ) is convergence stable, but one singular strategy of the

two hosts is not evolutionarily stable and allows for mutual invasion, then the host
population will undergo further evolutionary branching. In this case, by using the
same method as above, we can continue to study the final outcome of the further
coevolution of multiple hosts and one pathogen.

Belowwegive a numerical simulation example to illustrate the evolutionary branch-
ing of host resistance. When a3 = 5.0,m1 = 0.005, and β2 ≥ 3.8, that is, the
asymmetric host-pathogen interaction becomes relatively strong, we find that there is
an evolutionary singularity strategy E∗

1 = (x∗
1 , x

∗
2 ), which is convergence stable, but

the host singulary strategy x∗
1 is not evolutionarily stable, so the evolutionary branching

of the host may occur. Particularly, when β2 = 4.0, we can see that the evolutionary
singular strategy E∗

1 = (0.320, 0.567). In this case, the host and pathogen will firstly
evolve towards the singular strategy (0.320, 0.567). Near this evolutionary singular
strategy, the asymmetric host-pathogen interaction becomes stronger, but there is a
relatively strongly accelerating benefit, so the host population will branch into two
different types (see Fig. 4). It can be seen from Fig. 4a that the evolutionary singular
strategy E∗

1 = (0.320, 0.567) is convergence stable. From Figs. 4b and 4c, it can be
seen that the invasion fitness of the mutant host population minimizes at the resistance
trait x∗

1 , so the resistance trait x
∗
1 is not evolutionarily stable, and the mutant host and

the resident host can invade each other, so the host resistance will undergo evolution-
ary branching. After the evolutionary branching of host resistance, we further study
the coevolutionary dynamics of two hosts and one pathogen. From Figs. 4d and 4e,
we find that the three populations finally converge to an evolutionary stable strategy
(x∗

11, x
∗
12, x

∗
2 ) = (0.491, 0.134, 0.567), and they will be able to stably coexist for a

long time. In addition, from Figs. 4f and 4g,we find that the equilibrium population
density of the susceptible host S1 with a higher resistance is relatively larger.

However, if β2 = 4.0, a3 = 5.0, but m1 = 0.008, that is to say, the density-
dependent natural mortality becomes relatively strong, then the host regains the
evolutionary stability, and no evolutionary branching occurs. Instead, there is a con-
tinuously stable strategy E∗

1 = (0.143, 0.509). From Fig. 5a, it can be seen that
E∗
1 = (0.143, 0.509) is convergence stable. From Figs. 5b and 5c, it can be seen

that the invasion fitness at E∗
1 = (0.143, 0.509) reaches the maximum value, so

E∗
1 = (0.143, 0.509) is evolutionarily stable. Therefore, E∗

1 = (0.143, 0.509) is
a continuously stable strategy. The host and the pathogen can stably coexist for a
long time. Comparing Fig. 4 with Fig. 5, we can see that only changing the value of
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a

b c

ed

f g

Fig. 4 Evolutionary branching of host resistance. a Trait evolution phase plot. The vector fields obtained
from model (8) indicate directions of coevolution of traits x1 and x2. The black curve and red curve
indicate respectively isoclines of traits x1 and x2. The solid curve indicates the evolutionary singular
strategy, which is evolutionarily stable, while the dashed curve indicates the evolutionary singular strategy,
which is not evolutionarily stable. The grey region is a feasible phenotypic trait space in which host-
pathogen coevolution can occur. b Pairwise invasibility plot for fixed pathogen strategy x2 = x∗

2 = 0.567.
c Mutual invasibility plot for fixed pathogen strategy x2 = x∗

2 = 0.567. d Invasion fitness landscape
when (x∗

11, x
∗
12, x

∗
2 ) = (0.491, 0.134, 0.567). e Simulated evolutionary tree obtained through simulation

of model (8) with initial condition (x1, x2) = (0.6, 0.8) and model (25). f Equilibrium population density
of susceptible host when the traits x11, x12 and x2 evolve. g Equilibrium population density of infected
host when the traits x11, x12 and x2 evolve. Parameter values: a3 = 5.0,m1 = 0.005, β2 = 4.0. Other
parameter values are the same as in Fig. 1
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a b

c d

e f

Fig. 5 Continuously stable strategy of host and pathogen when density-dependent natural mortality
increases. a Trait evolution phase plot. The vector fields obtained from model (8) indicate directions of
coevolution of traits x1 and x2. The black curve and red curve indicate respectively isoclines of traits x1
and x2. The solid curve indicates the evolutionary singular strategy, which is evolutionarily stable. The
grey region is a feasible phenotypic trait space in which the host-pathogen coevolution can occur. b Inva-
sion fitness landscape of the mutant host. c Invasion fitness landscape of the mutant pathogen. d Time
series curves of phenotypic traits x1 and x2 obtained through simulation of model (8) with initial value
(x1, x2) = (0.41, 0.77). e Equilibrium population density of susceptible host when the traits x1 and x2
evolve. fEquilibrium population density of infected host when the traits x1 and x2 evolve. Parameter values:
a3 = 5.0,m1 = 0.008, β2 = 4.0. Other parameter values are the same as in Fig. 1

m1 results in two completely different evolutionary phenomena. The intensity of the
density-dependent natural mortality greatly influences the coevolutionary outcome
of the host and pathogen. In this case, the finally evolutionary outcome includes a
monomorphic host and a monomorphic pathogen (see Fig. 5).
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3.5 Coevolutionary dynamics of two pathogens and one host

Analogously, after the evolutionary branching of pathogen virulence first occurs, we
assume that there are two different types of pathogens with virulence traits x21 and
x22, then the population dynamics of the two pathogens and one host is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS

dt
= b(x1)S − β(x1, x21)SI1 − β(x1, x22)SI2 − m(N )S,

d I1
dt

= β(x1, x21)SI1 − α(x21)I1 − m(N )I1,

d I2
dt

= β(x1, x22)SI2 − α(x22)I2 − m(N )I2,

(27)

where N = S + I1 + I2,m(N ) = m0 + m1(N ).
Setting the right-hand sides of (27) to 0, and let

e1 = (α(x21) − α(x22))(β(x1, x21) − β(x1, x22)),

e2 = m1(b(x1) + α(x22))(β(x1, x21) − β(x1, x22))

+(m0 + α(x22))β(x1, x21)β(x1, x22) − (m0 + α(x21))β
2(x1, x22),

e3 = m1(b(x1) + α(x21))(β(x1, x22) − β(x1, x21))

+(m0 + α(x21))β(x1, x21)β(x1, x22) − (m0 + α(x22))β
2(x1, x21).

When the following condition is satisfied

e1 > 0, e2 > 0, e3 > 0, (28)

we obtain the endemic equilibrium (S∗(x), I ∗
1 (x), I ∗

2 (x)) of model (27), where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S∗(x) = e1
β(x1, x21) − β(x1, x22)

,

I ∗
1 (x) = e2

m1(β(x1, x21) − β(x1, x22))2
,

I ∗
2 (x) = e3

m1(β(x1, x21) − β(x1, x22))2
,

(29)

and x = (x1, x21, x22).
Similar to the proof of Proposition 3, we can prove that the endemic equilibrium
(S∗(x), I ∗

1 (x), I ∗
2 (x)) is globally asymptotically stable.

When a mutant host with a different trait y1 enters into the resident community
with a low density, the invasion fitness for the mutant host is given by

q1(y1, x) = b(y1) − β(y1, x21)I
∗
1 (x) − β(y1, x22)I

∗
2 (x)

−(m0 + m1(S
∗(x) + I ∗

1 (x) + I ∗
2 (x))), (30)
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Analogously, the invasion fitness for the mutant pathogen with different trait y2 is
given by

q2(y2, x) = β(x1, y2)S
∗(x) − (m0 + m1(S

∗(x) + I ∗
1 (x) + I ∗

2 (x))) − α(y2), (31)

Thus, the coevolutionary dynamics of traits x1, x21, and x22 is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx1
dτ

= 1

2
μ1σ

2
1 S

∗(x)g1(x),

dx21
dτ

= 1

2
μ21σ

2
21 I

∗
1 (x)g21(x),

dx22
dτ

= 1

2
μ22σ

2
22 I

∗
2 (x)g22(x),

(32)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1(x) = ∂q1(y1, x)

∂ y1

∣
∣
∣
∣
y1=x1

= b′(x1) − β ′(x1, x21)I ∗
1 (x) − β ′(x1, x22)I ∗

2 (x),

g21(x) = ∂q2(y2, x)

∂ y2

∣
∣
∣
∣
y2=x21

= −β ′(x1, x21)S∗(x) − α′(x21),

g22(x) = ∂q2(y2, x)

∂ y2

∣
∣
∣
∣
y2=x22

= −β ′(x1, x22)S∗(x) − α′(x22).

(33)
μ1 and μ2i (i = 1, 2) are the probability that a birth event in the host and pathogen
is a mutant, respectively. σ 2

1 and σ 2
2i (i = 1, 2) are the variance of the phenotypic

effect of mutant host and mutant pathogen, respectively. Model (32) is an approximate
equation of coevolutionary process, which describes how the expected value of traits
(x1, x21, x22) will change.

From (33), we can get the evolutionary singular strategy (x∗
1 , x

∗
21, x

∗
22). Because of

the very complex nonlinearity, we use the method of numerical simulation to estimate
the convergence stability of singular strategy. The evolutionary stability depends on
the following condition

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂2 p1(y1, x)

∂ y21
=

∣
∣
∣
∣ y1=x1=x∗

1
x21=x∗

21,x22=x∗
22

= b′′(x∗
1 ) − β ′′(x∗

1 , x∗
21)I

∗
1 (x) − β ′′(x∗

1 , x∗
22)I

∗
2 (x) < 0,

∂2 p2(y2, x)

∂ y22
=

∣
∣
∣
∣ y2=x2i=x∗

2i
x1=x∗

1 ,x2 j=x∗
2 j

= β ′′(x∗
1 , x∗

2i )S
∗(x) − α′′(x∗

2i ) < 0, (i, j = 1, 2, i �= j),

(34)
Based on the above analysis, we obtain the following conclusion.

Theorem 4 Assuming condition (28) holds, for the evolutionary singular strategy
(x∗

1 , x
∗
21, x

∗
22) of model (32), if it is convergence stable and satisfies the condition

(34), then (x∗
1 , x

∗
21, x

∗
22) is a continuously stable strategy.
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From the conditions (32) and (34), we can see that whether the evolutionary singu-
lar strategy (x∗

1 , x
∗
21, x

∗
22) is continuously stable not only depends on the strength and

shape of asymmetric host-pathogen interaction, but also depends on the equilibrium
population density of the susceptible host S and the infected hosts I1 and I2. Particu-
larly, combining with the previous analysis of the evolutionary branching of pathogen
virulence, we can see that if the pathogen has a weakly decelerating benefit in term
of transmission rate, but at the same time has a relatively strongly decelerating cost in
term of disease-related mortality, then the evolutionary branching of pathogen viru-
lencemay occur. After the evolutionary branching occurs, if condition (34) is satisfied,
then the two pathogens and one host may converge to an evolutionary stable strategy.
If the singular strategy (x∗

1 , x
∗
21, x

∗
22) is both convergence stable and evolutionarily sta-

ble, then the singular strategy (x∗
1 , x

∗
21, x

∗
22) is the finally evolutionary outcome. In this

case, the finally evolutionary outcome includes a dimorphic pathogen and amonomor-
phic host. Furthermore, if the singular strategy (x∗

1 , x
∗
21, x

∗
22) is convergence stable,

but one singular strategy of the two pathogens is not evolutionarily stable and allows
for mutual invasion, then the pathogen will further undergo evolutionary branching. In
this case, we can use the same method as above to study the coevolutionary dynamics
of multiple pathogens and one host.

Belowwegive a specific numerical simulation example to illustrate the evolutionary
branching of pathogen virulence. When a3 = 7.0,m1 = 0.004, and 3.3 ≤ β2 ≤ 3.6,
that is, the strength of disease-related mortality becomes relatively strong, we find
that there is an evolutionary singularity strategy E∗

1 = (x∗
1 , x

∗
2 ), which is convergence

stable, but the evolutionary singularity strategy of pathogen x∗
2 is not evolutionarily

stable, so the evolutionary branching of pathogen virulence may occur. Particularly,
when β2 = 3.5, we can see that there is an evolutionary singular strategy E∗

1 =
(0.396, 0.549). It can be seen from Fig. 6a that the evolutionary singular strategy
E∗
1 = (0.396, 0.549) is convergence stable. From Figs. 6b and 6c, it can be seen that

the virulence trait x∗
2 is convergence stable but not evolutionarily stable, and themutant

pathogen and the resident pathogen can invade each other, so the pathogen virulence
will undergo evolutionary branching. In this case, the host and the pathogen will first
evolve towards the singular strategy (0.396, 0.549). Near this evolutionary singular
strategy, the strength of disease-relatedmortality becomes stronger, but the asymmetric
interaction between the host and the pathogen becomes not very strong, that is, there
is a relatively strongly decelerating cost in term of disease-related mortality for the
pathogen population, so the pathogen virulence will branch into two different types
(see Fig. 6). After the evolutionary branching of pathogen virulence, from Figs. 6d
and 6e, we find that the three populations finally converge to an evolutionary stable
strategy (x∗

1 , x
∗
21, x

∗
22) = (0.279, 1.98, 0.35), and they can continuously stably coexist

for a long time. From Figs. 6f and 6g, it can be seen that the equilibrium population
density of the two pathogens and the equilibrium population density of the one host
finally reached to a stable state.

Combined with Figs. 2– 6, we find that the finally coevolutionary outcome of
host-pathogen interaction not only depends on the strength of the asymmetric interac-
tion, but also depends on the strength of density-dependent natural mortality and
the intensity of the two trade-off functions. The finally coevolutionary outcome
of host-pathogen interaction may include continuously stable strategy, evolutionary
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a b

c d

e f

Fig. 6 Evolutionary branching of pathogen virulence. aTrait evolution phase plot. The vector fields obtained
frommodel (8) indicate directions of coevolution of traits x1 and x2. The black curve and red curve indicate
respectively isoclines of traits x1 and x2. The solid curve indicates the evolutionary singular strategy which
is evolutionarily stable, while the dashed curve indicates the evolutionary singular strategy which is not
evolutionarily stable. The grey region is a feasible phenotypic trait space, in which the coevolution of
host and pathogen can occur. b Pairwise invasibility plot for fixed host strategy x1 = x∗

1 = 0.396. c
Mutual invasibility plot for fixed host strategy x1 = x∗

1 = 0.396. d Invasion fitness landscape when
(x∗

1 , x∗
21, x

∗
22) = (0.279, 1.98, 0.35). e Simulated evolutionary tree obtained through simulation of model

(8) with initial condition (x1, x2) = (0.24, 0.77) and model (32). f Equilibrium population density of the
infected host with a pathogenwhen the traits x1 and x21, x22 evolve. gEquilibrium population density of the
susceptible host when the traits x1 and x21, x22 evolve. Parameter values: a3 = 7.0,m1 = 0.004, β2 = 3.5.
Other parameter values are the same as in Fig. 1

cycling, evolutionary branching of host resistance, evolutionary branching of pathogen
virulence, and continuously stable coexistence of two-hosts-one-pathogen and one-
host-two-pathogens.
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4 Discussion

Since that most natural interaction systemwill be coevolutionary, therefore, it is essen-
tial to develop a basic frameworkof coevolutionary dynamics to completely understand
the evolutionary mechanism and outcome. In this paper, we study the coevolution-
ary dynamics of host-pathogen interaction in detail. Specifically, we examine four
questions of host-pathogen coevolution. Firstly, under what conditions will host and
pathogen evolve to a continuously stable strategy? Secondly, under what conditions
will host and pathogen phenotypic traits evolve periodically? Thirdly, under what con-
ditions will host and pathogen phenotypic traits give rise to evolutionary branching?
Fourthly, after evolutionary branching, can the hosts and pathogens with different
phenotypic traits coexist stably for a long time? Based on the theory of adaptive
dynamics and numerical simulation, we find that the evolutionary diversity of host
resistance and pathogen virulence is driven by multiple factors, not only depends on
the shape and strength of the host-pathogen asymmetric interaction, but also depends
on the intensity of the two trade-off functions and the equilibrium population den-
sity of susceptible host and infected host. In general, this research reaches important
conclusions in the following three aspects. Firstly, it can be seen that if the strengths
of host-pathogen asymmetric interaction and disease-related mortality are relatively
weak, then the host resistance and pathogen virulence will evolve to a continuously
stable strategy. However, if the strength of host-pathogen asymmetric interaction and
disease-related mortality becomes stronger, then the host resistance and pathogen vir-
ulence will evolve periodically. Secondly, we find that if the birth rate function of
susceptible host is weakly convex at the evolutionary singular strategy, but the trans-
mission rate function is relatively strongly convex at the evolutionary singular strategy,
that is, the host has a weakly accelerating cost in term of birth rate, but at the same
time has a relatively strongly accelerating benefit in term of transmission rate, then the
evolutionary branching of host resistance may occur firstly. However, if the disease-
related mortality function is relatively strongly convex at the evolutionary singular
strategy, but the transmission rate function is weakly convex at the evolutionary sin-
gular strategy, in other words, the pathogen has a weakly decelerating benefit in term
of transmission rate, but at the same time has a relatively strongly decelerating cost
in term of disease-related mortality, then the evolutionary branching of pathogen vir-
ulence may occur firstly. Thirdly, after the evolutionary branching of host resistance
and pathogen virulence, we further study the coevolutionary dynamics of two-hosts-
one-pathogen interaction and one-host-two-pathogens interaction. We find that if the
evolutionary branching of host resistance arises firstly, then the finally evolutionary
outcomemay contain a dimorphic host and amonomorphic pathogen population. If the
evolutionary branching of pathogen virulence arises firstly, then the finally evolution-
ary outcome may contain a monomorphic host and a dimorphic pathogen population,
which can stably coexist for a long time. These results are essential for ourmore general
understanding of host-pathogen interaction and the coevolutionary mechanism.

Compared with the previous studies (Boots et al. 2009; Best et al. 2010, 2011;
Lopez Pascua et al. 2014; Boots et al. 2014; McLeod and Day 2015; Hesse et al. 2015;
Best 2018; Alizon 2021), the novelty of our work is reflected in the following several
aspects: Firstly, in terms of models, previous studies only considered the density-
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dependent reproduction (Best et al. 2011; Boots et al. 2014), see also (Kada and Lion
2015). Based on a population model with density-dependent reproduction, Best et al.
(2011) studied the impact of different degrees of spatial structure on the evolution of
host resistance, and on the coevolution of host resistance and parasite virulence. They
found that for the host, local reproduction will always select for higher resistance, and
globalized interactions will select for diseases characterized by low host defenses,
high disease transmission and high parasite virulence. Boots et al. (2014) examined
the effect of epidemiological feedbacks and characteristics of interaction between host
and parasite on the coevolution of host-parasite diversity. They showed that epidemio-
logical feedbacks may generate diversity when host resistance and parasite infectivity
have costs. For trait polymorphism, both specificity of infection between host and
parasite, and incompatibility between particular strain and type are required. Kada
and Lion (2015) showed that the result of coevolution depend critically on the specific
ecological and biological ingredients of the system. In contrast with population mod-
els of density-dependent reproduction, our model assumes that the natural mortalities
of both the susceptible host and infected host are density-dependent, which is more
reasonable in the real world. In this case, we can also construct a Lyapunov function
and prove the globally asymptotic stability of the endemic equilibrium and the result
of ‘invasion implies trait substitution’. This proof is necessary for the rigorously evo-
lutionary invasion analysis. Especially, we find that if the density-dependent natural
mortality is relatively weak, then the evolutionary branching of host resistance can
occur. However, if the density-dependent natural mortality becomes relatively strong,
then the host regains the evolutionary stability, and no evolutionary branching occurs.
Secondly, the two trade-off functions and the asymmetric transmission rate function
take a more flexible form, which are more consistent with empirical evidence and suit-
able for a wider range of asymmetric host-pathogen interaction. Thirdly, we obtain
the the ecological and evolutionary conditions for the evolutionary diversity of host
resistance and pathogen virulence, and explore the dynamic evolutionary branching
process by numerical simulation. After evolutionary branching, we further study the
finally evolutionary outcome of host resistance and pathogen virulence. Fourthly, we
perform the numerical bifurcation analysis on coevolutionary dynamics and discuss
the effect of demographic parameter on the evolutionary behavior of host resistance
and pathogen virulence, which is helpful for us to develop the bifurcation theory
of evolutionary dynamics. Especially, the framework and method of this study also
provide a foundation and technique for studying the evolutionary diversity of other
infectious diseases.

However, considering the sensitivity of the interaction between the host and
pathogen, we need to say (1) based on more complex epidemiological models, such
as SIS or SIR models, studying the coevolutionary dynamics of host resistance and
pathogen virulence will have more practical significance. (2) This paper considers that
the host defense mechanism is to avoid infection, but the host defense mechanism is
diverse, including not only avoiding infection but also recovering faster after infection
or surviving longer once infected, so exploring the evolution of host resistance under
different defensemechanismswill be a problem for our further research. (3)When per-
forming numerical simulation on the result of coevolution, the form of each trade-off
function is selected based on theoretical analysis and experience, and actual data fitting
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is not performed. Therefore, in future work, we will further collect actual data (such
as, the mutation and variant data of SARS-CoV-2) and fit the most accurate trade-off
function. (4) The coevolutionary process of the host and pathogen has not been fully
discussed, and the host or the pathogen may have further evolutionary branching. In
addition, we can explore the condition for the evolutionary extinction of one of the
host and pathogen, which is worthy of our further exploration. Further research on
these problems will not only help us further comprehensively understand the mech-
anism of host-pathogen interaction, but also play an important role in clarifying the
evolutionary mechanism of biodiversity formation.
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Appendix A. Invasion fitness of mutant host andmutant pathogen

In order to analyze the dynamic process of coevolution, we assume that the mutation is
small and rare, and the host and pathogen can’t mutate simultaneously. We extend the
resident population dynamics (2) by considering the presence of a mutant susceptible
host Sm , when the mutant susceptible host with different resistance trait y1 enters into
the resident community at a lower density, the resident-mutant population dynamics
is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d I

dt
= β(x1 − x2)SI + β(y1, x2)Sm I − α(x2)I − m(N )I ,

dS

dt
= b(x1)S − β(x1 − x2)SI − m(N )S,

dSm
dt

= b(y1)Sm − β(y1, x2)Sm I − m(N )Sm,

(35)

where Sm denotes the population density of mutant susceptible host at time t , and
N = I + S + Sm,m(N ) = m0 + m1(N ).

Letting Sm = 0, we obtain a boundary equilibrium (I ∗(x1, x2), S∗(x1, x2), 0),
where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

I ∗(x1, x2) = β(x1 − x2)(b(x1) − m0) − (b(x1) + α(x2))m1)

β2(x1, x2)
,

S∗(x1, x2) = (b(x1) + α(x2))m1 + β(x1 − x2)(m0 + α(x2))

β2(x1, x2)
,

S∗
m(x1, x2) = 0.

The stability of the boundary equilibrium (I ∗(x1, x2), S∗(x1, x2), 0) determines
whether the mutant host can successfully invade or not. We use linear approximation
method to analyze the stability of this equilibrium. Formodel (35), the Jacobianmatrix
at the boundary equilibrium (I ∗(x1, x2), S∗(x1, x2), 0) is given by
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J1 =
⎛

⎝
−m1 I

∗ (β(x1 − x2) − m1)I
∗ (β(y1, x2) − m1)I

∗
−(β(x1 − x2) + m1)S

∗ −m1S
∗ −m1S

∗
0 0 b(y1) − β(y1, x2)I

∗ − (m0 + m1(S
∗ + I∗))

⎞

⎠

=
(
Jres J12−→
0 Jmut

)

.

Since the endemic equilibrium (S∗(x1, x2), I ∗(x1, x2)) of model (2) is globally
asymptotically stable, the local stability of the boundary equilibrium (I ∗(x1, x2), S∗
(x1, x2), 0) is determined by the single eigenvalue of Jmut . Therefore, the invasion
fitness for mutant susceptible host is given by

f1(y1, x1, x2) = b(y1) − β(y1, x2)I
∗(x1, x2)

− (m0 + m1(S
∗(x1, x2) + I ∗(x1, x2))).

(36)

If f1(y1, x1, x2) > 0, then the population density of mutant host will increase. In
this case, we can say that the mutant host can invade. In addition, we find that the
successful invasion of the mutant host will lead to a trait substitution (Cantrell et al.
2017; Dercole and Rinaldi 2008; Geritz et al. 2002; Geritz 2005; Meszéna et al. 2005).

Analogously, when a mutant pathogen with different virulence trait y2 enters into
the resident community at a low density, the resident-mutant population dynamics is
given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS

dt
= b(x1)S − β(x1 − x2)SI − β(x1, y2)SIm − m(N )S,

d I

dt
= β(x1 − x2)SI − α(x2)I − m(N )I ,

d Im
dt

= β(x1, y2)SIm − α(y2)Im − m(N )Im,

(37)

where N = S + I + Im,m(N ) = m0 + m1(N ).
For model (37), the Jacobian matrix at the boundary equilibrium (S∗(x1, x2), I ∗

(x1, x2), 0) is given by

J2 =
⎛

⎝
−m1S

∗ −(β(x1 − x2) + m1)S
∗ −(β(x1, y2) + m1)S

∗
(β(x1 − x2) − m1)I

∗ −m1 I
∗ −m1 I

∗
0 0 β(x1, y2)S

∗ − (m0 + m1(S
∗ + I∗)) − α(y2)

⎞

⎠ .

Similar to the above analysis, we obtain the invasion fitness for mutant pathogen

f2(y2, x1, x2) = β(x1, y2)S
∗(x1, x2) − (m0 + m1(S

∗(x1, x2) + I∗(x1, x2))) − α(y2). (38)

Appendix B. Successful invasion implies trait substitution

From (36) and (38), we can see that the trait of the resident host and pathogen popu-
lation and the population density at equilibrium affect the invasion fitness and will be
used as the feedback variable in the coevolutionary process. Whether the successful

123



Coevolutionary dynamics of host-pathogen... Page 31 of 34 15

invasion can lead to trait substitution is an important question, but it is not an obvious
answer. In this section, by using the approach of Lyapunov function, we prove that if
f1(y1, x1, x2) > 0 and the trait x1 is not an evolutionary singular strategy, then the
successful invasion of a mutant host will result in a trait substitution.

Proposition 2 If the mutation in the host resistance is small, the mutant host is rare,
and the trait x1 is far from an evolutionary singular strategy, then the successful
invasion of a mutant host will cause a trait substitution.

Proof Firstly, we prove that when |y1 − x1| is sufficiently small and y1 is not
near the singularity, f1(y1, x1, x2) and f̂1(x1, y1, x2) have opposite sign, that is, if
f1(y1, x1, x2) > 0, then f̂1(x1, y1, x2) < 0. Because the resident population was at
or near the steady state before the mutation, the resident and mutant population were
both close to the steady state after the mutation occurred. We exchange the role of the
resident host and the mutant host, that is, exchanging the trait x1 and y1, and we get a
new invasion fitness function

f̂1(x1, y1, x2) = b(x1)−β(x1− x2)I
∗(y1, x2)− (m0+m1(S

∗(y1, x2)+ I ∗(y1, x2))).

where ⎧
⎪⎪⎨

⎪⎪⎩

I ∗(y1, x2) = β(y1, x2)(b(y1) − m0) − (b(y1) + α(x2))m1)

β2(y1, x2)
,

S∗(y1, x2) = (b(y1) + α(x2))m1 + β(y1, x2)(m0 + α(x2))

β2(y1, x2)
.

Since |y1 − x1| is sufficiently small, we can rewrite the fitness function f1(y1, x1, x2)
by using a Taylor expansion around y1 = x1. Notice that f1(x1, x1, x2) = 0, by direct
calculation, we obtain

f1(y1, x1, x2) = f1(x1, x1, x2) + ∂ f1(y1, x1, x2)

∂ y1

∣
∣
∣
∣
y1=x1

(y1 − x1) + O(|y1 − x1|2)

= [
b′(x1) − β ′(x1, x2)I ∗(x1, x2)

]
(y1 − x1) + O(|y1 − x1|2).

(39)
Similarly, We can rewrite the fitness function f̂1(x1, y1, x2) by using a Taylor expan-
sion around y1 = x1, and using the fact that f̂1(x1, x1, x2) = 0, we obtain

f̂1(x1, y1, x2) = f̂1(x1, x1, x2) + ∂ f̂1(x1, y1, x2)

∂ y1

∣
∣
∣
∣
y1=x1

(y1 − x1) + O(|y1 − x1|2)

= −[
b′(x1) − β ′(x1, x2)I ∗(x1, x2)

]
(y1 − x1) + O(|y1 − x1|2).

(40)
��

Thus, from (39) and (40), it can be seen that when |y1− x1| is sufficiently small and
y1 is not near the evolutionary singular strategy, then f (y1, x1, x2) and f̂ (x1, y1, x2)
are opposite signs, that is, if f (y1, x1, x2) > 0, then f̂ (x1, y1, x2) < 0.

Next, by using the method of Lyapunov function, we show that if |y1 − x1| is
sufficiently small, and y1 is not in a small neighborhood of the singularity, and
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f1(y1, x1, x2) > 0, then the boundary equilibrium (I ∗(y1, x2), 0, S∗
m(y1, x2)) of

resident-mutant population model (35) is globally asymptotically stable in R3+ =
{I > 0, S ≥ 0, Sm > 0}, which means that the successful invasion by a mutant host
implies trait substitution. We use I ∗ and S∗ for simplicity instead of I ∗(y1, x2) and
S∗
m(y1, x2). Consider the following Lyapunov function

V2 =
(

I − I ∗ − I ∗ln I

I ∗

)

+ S +
(

Sm − S∗
m − S∗

m ln
Sm
S∗
m

)

.

We can see that V2 ≥ 0 and the equality holds only for (I , S, Sm) = (I ∗, 0, S∗
m). Its

time derivative of V2 along solution of model (35) becomes

dV2
dt

∣
∣
∣
∣
(4)

= (I − I ∗)1
I

d I

dt
+ dS

dt
+ (Sm − S∗

m)
1

Sm

dSm
dt

= f̂ (x1, y1, x2)S − m1[(I − I ∗) + S + (S − S∗
m)]2,

where

f̂1(x1, y1, x2) = b(x1)−β(x1− x2)I
∗(y1, x2)− (m0+m1(S

∗(y1, x2)+ I ∗(y1, x2))).

By the above analysis, we can see that if |y1 − x1| is sufficiently small, and y1
is not in a small neighborhood of the singularity, and f1(y1, x1, x2) > 0, then
f̂1(x1, y1, x2) < 0. Thus, if f1(y1, x1, x2) > 0, we have dV2/dt ≤ 0 in R3+ and
dV2/dt = 0 if and only if (I , S, Sm) = (I ∗, 0, S∗

m). The globally asymptotical stability
of (I ∗(y1, x2), 0, S∗

m(y1, x2)) follows from Lyapunov-LaSalle’s invariance principle.
Analogously, we can prove that the successful invasion of a mutant pathogen will

result in a trait substitution.
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