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In this work, we propose and investigate an ordinary differential equations model
describing the spread of COVID-19 in Cameroon. The model takes into account the
asymptomatic, unreported symptomatic, quarantine, hospitalized individuals and the
amount of virus in the environment, for evaluating their impact on the transmission of the
disease. After establishing the basic properties of the model, we compute the control
reproduction number Rc and show that the disease dies out whenever Rc � 1 and is
endemic whenever Rc > 1. Furthermore, an optimal control problem is derived and
investigated theoretically by mainly relying on Pontryagin's maximum principle. We
illustrate the theoretical analysis by presenting some graphical results.

© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Many countries around the world are facing a new pandemic disease that destroys their populations daily. This is
Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Once the
virus is in contact with a healthy person, the infection is contracted and the virus, once within the host, moves to the surface
of the lungs, creating an inflammation of the lungs called pneumonia. This causes the blockade of the respiratory system and
alters the immune system. This situation can degenerate and lead to the death of the patient. This phenomenon occurs over a
small period of time estimated approximately to seven days (Gandhi et al., 2020). The COVID-19 symptoms are highly variable
and are associated with severe illnesses such as fever, severe cold, shortness of breath or dyspnoea, chills, cough, lympho-
penia, expectoration, fatigue, headache, acute pneumonia, sputum production, diarrhoea, hemoptysis most often followed by
renal failure (Carlos et al., 2020; CDC 2020; Huang et al., 2020; Ren et al., 2020;WHO, 2020a, 2020b). The virus spreadsmainly
through the environment whenever people are close to each other, or through contaminated surfaces. This occurs when an
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infected person in this environment breathes, coughs, sneezes or speaks and then virus-containing particles exhaled comes
into contact with another person either through themouth, nose or eyes (CDC 2020). The longer the people interact, the more
likely they are to transmit COVID-19. This disease has resulted in prolonged population containment, paralyzing economies in
several countries. The total number of deaths worldwide due to this pandemic has exceeded 1.65 million and the cumulative
number of confirmed cases topped 74.7 million (Wikipedia, 2020a, 2020b). In Africa for example, the number of confirmed
cases amounted to 2,404,414 representing approximately 3.3% global infection and the overall deaths attributable to COVID-
19 was around 56.74 thousand (Galal, 2020a, 2020b). Note that as of May 13, 2020, every country in Africa has recorded a
COVID-19 case. South Africa was the most drastically affected country, with more than 866.1 thousand confirmed COVID-19
cases and 23,451 deaths (Galal, 2020a, 2020b). COVID-19was confirmed to have reached Cameroon on 6March 2020, through
an infected person from France; this French citizen has been quarantined in the Yaounde Central Hospital (Kouagheu, 2020).
The Cameroonian Government has implemented a nationwide series of measures in order to curtail the spread of COVID-19.
The steps and dates of deaths and confirmed COVID-19 cases as well as recovered cases can be seen in (Wikipedia, 2020a,
2020b). Especially, a national state of disaster was declared on April 17, 2020. Schools, training institutions and many other
activities were closed on the same date. As of December 2020, more than 441 deathswere reported and the number of COVID-
19 confirmed cases was approximately 24,560. It is worth noting that many infected people due to COVID-19 in Cameroon
were unreported, since the scheduled door-to-door screening campaign was not totally operated. These statistics make
Cameroon the epicenter of COVID-19 in Central Africa. The causes of the rapid spread of COVID-19 in Cameroon are given in
(Ojong, 2020). This mainly includes: negligence of quarantine, refusal of isolation and lack of financial means to hospitalize all
symptomatic people.

The COVID-19 pandemic that continues to be a threat, resulting in increasing suffering of population, deserves a rigorous
study to eradicate it within the community. Several mathematical models have been proposed and studied in order to un-
derstand the transmission dynamics of this pandemic. In (Ivorra et al., 2020), the authors developed a q-SEIHRDmathematical
model which takes into account the known special characteristics of COVID-19 pandemic such as the existence of unreported
symptomatic infectious individuals and the different sanitary and infectiousness conditions of hospitalized individuals. This
q-SEIHRDmodel was also used to estimate a significant number of beds needed in hospitals. Mohsin and co-workers (Mohsin
et al., 2020) formulated a mathematical model that included asymptomatic, quarantine and isolation compartments, and
showed that the high levels of quarantine and isolation need to be maintained for controlling the disease. They also proposed
an optimal control problem applied to the dynamics described by the obtainedmodel. Based on reported data fromDecember
31, 2019 to January 28, 2020, Wu and co-authors (Wu et al., 2020) used a SEIR model to predict the national and global spread
of COVID-19 in China. In (Yang et al., 2020), the authors proposed a modified SEIR model that investigated the epidemic
development of COVID-19 in China; the authors foretold the timing and magnitude of the epidemic peak as well as the ul-
timate epidemic size. This model has been recommended as a practical example of mathematical modeling techniques to
investigate the spread of the pandemic (Krishna, 2020). In (Tang et al., 2020), the mathematical model developed includes
individual epidemiological status, intervention measures and clinical progression of COVID-19. The authors found that
mediation strategies such as intensive contact tracing followed by quarantine and isolation can effectively curtail the
transmission risk and the control reproduction number. In (Zhang et al., 2020), Zhang and his collaborators thought that the
increase in new cases of COVID-19 is due to crowding factor. They developed a mathematical model by using a nonlinear
incidence rate and taking into account the aforementioned factors. They applied a nonstandard finite difference (NSFD)
scheme and the fourth order Runge-Kutta (RK4) scheme to obtain the graphical results.

The main purpose of the present work is to propose and investigate an ordinary differential equations (ODE) model
describing the spread of COVID-19 in Cameroon, and use it to evaluate the impact of control measures, such as quarantine and
hospitalization strategies, on the spread of the pandemic in this country which occupies a strategic position in Central Africa.

This paper is organized as follows. We formulate the ODE model in Section 2. Section 3 is devoted to the mathematical
analysis of the proposed model. Specifically, we prove the existence, uniqueness, positivity and boundedness of the solution.
In Section 4, we compute the control reproduction number and study the existence and stability properties of equilibria.
Moreover, we analyze the control reproduction number around the quarantine of exposed individuals and the isolation of
hospitalized individuals. In Section 5, we propose and investigate an optimal control problem associated to themodel studied
in Section 3. In section 6, we provide numerical simulations to illustrate the theoretical results obtained. We conclude the
work in section 7.

2. Model formulation

The model considered in this study consists of the total number of individuals in a human population at time t, denoted by
N(t), and sub-divided into eight distinct epidemiological subclasses of individuals, namely susceptible S(t), exposed E(t),
asymptomatic infectious A(t), symptomatic infectious I(t), unreported symptomatic infectious U(t), quarantined Q(t), hos-
pitalized H(t), recovered R(t)), and the concentration of virus in the environment at time t, denoted by V(t).

The dynamics description of each compartment is as follows.
Susceptible individuals, S, are recruited at a rate s, and decreased by natural death at a rate m. Furthermore, as in (Safi and

Gumel, 2010), we assume that the exposed class, E, and quarantined class, Q, do not transmit infection (i.e., exposed and
quarantined individuals have a negligible number of contacts withmembers of the overall population; they play no role in the
transmission process). So, it is assumed that only infected people presenting clinical symptoms can transmit the disease to
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others. Thus, the susceptible population Smay acquire infection, following effective contact with infectious individuals in the
I, A, U, H or V classes at a rate ls, where

ls ¼ bðIþAþUþ h1HÞ þ a0V : (2.1)
In equation (2.1), the parameter b is the average number of effective contacts between susceptible and infected individuals
(symptomatic, asymptomatic, unreported symptomatic and hospitalized individuals), while 0 ¼ h1 < 1 is the modification
parameter which accounts for the assumed reduction in disease transmission by hospitalized individuals in comparison to
non-hospitalized infectious individuals in the I, A and U classes. h1 measures the effectiveness of hospitalization; more
precisely hospitalization is excellent if h1 ¼ 0, leaky if 0 < h1 < 1 and completely ineffective if h1 ¼1. Furthermore, we assume
that the rate of transmissibility of the virus to the susceptible individuals is proportional to the free virus particles in the
environment, and choose the force of infection as a0V. Thus, the rate of change of the susceptible population is expressed by
the following equation:

dS
dt

¼ s� bSðIþAþUþ h1HÞ � a0SV � mS:
The population of exposed individuals, E, is generated by the infection of susceptible individuals at the rate ls. This class is
decreased due to reported clinical symptoms at the rate h, unreported clinical symptoms at the rate b, asymptomatic in-
fectious at a rate k, quarantine at the rate e and natural death at the rate m, so that

dE
dt

¼ bSðIþAþUþh1HÞ þ a0SV � ðmþ kþ eþ bþ hÞE:
The population of asymptomatic infectious individuals, A, is generated at the rate k. It is decreased due to natural recovery
at the rate g, unreported clinical symptoms at the rate q, natural death at the rate m and disease-induced death at the rate d4.
This gives

dA
dt

¼ kE � ðmþ d4 þgþ qÞA:
The population of symptomatic infectious individuals, I, is generated at the rate h. This population is decreased due to
natural recovery at the rate r, hospitalization at the rate d0, natural death at the rate m and disease-induced death at the rate d1.
This is expressed as

dI
dt

¼ hE � ðmþ d1 þ rþd0ÞI:
The population of unreported symptomatic infectious individuals, U, is generated by the exposed individuals at the rate b
and the asymptomatic infectious individuals at the rate q. This class is decreased due to natural recovery at the rate n, natural
death at the rate m and disease-induced death at the rate d3. So we have

dU
dt

¼ bE þ qA� ðmþ d3 þ nÞU:
Exposed individuals are quarantined at the rate e. The population of quarantined individuals is decreased due to natural
recovery at the rate a, hospitalization at the rate d1 and natural death at the rate m. Thus, one has

dQ
dt

¼ eE � ðmþaþ d1ÞQ :
The population of hospitalized individuals, H, is generated by the hospitalization of quarantined individuals at the rate d1,
and symptomatic infectious individuals at the rate d0. This population is decreased due to recovery at the rate r, natural death
at the rate m and disease-induced death at the rate d2. We can assume that d2 < d1, d2 < d3 and d2 < d4. This means that
hospitalized individuals have reduced disease-induced mortality rate in comparison to non-hospitalized infectious in-
dividuals because of care given in hospitals. Thus, the rate of change of the population of hospitalized individuals is expressed
by the following equation:

dH
dt

¼ d0I þ d1Q � ðmþ d2 þ rÞH:
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The population of recovered individuals is generated by the recovery of asymptomatic infectious individuals at the rate g,
symptomatic infectious individuals at the rate r, unreported symptomatic infectious individuals at the rate n, hospitalized
infectious individuals at the rate r and quarantined individuals at the rate a. This population is decreased due to natural death
at the rate m. Therefore, we have the following equation:

dR
dt

¼ rI þ nU þ gAþ aQ þ rH � mR:
Finally, the concentration of virus in the environment, V, is generated by the asymptomatic infectious individuals at the
rate u1, symptomatic infectious individuals at the rate s, unreported symptomatic infectious individuals at the rate u0 and
hospitalized infectious individuals at the rates a1. It is decreased by inactivation at the rate d5. Thus,

dV
dt

¼ sI þ a1H þ u1Aþ u0U � d5V :
The flow diagram of the transmission dynamics of the COVID-19 is given in Fig. 1 below.
From the flow diagram in Fig. 1, we derive and propose the following nonlinear ODE system to describe the transmission

dynamics of COVID-19 in Cameroon:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dS
dt

¼ s� bSðI þ Aþ U þ h1HÞ � a0SV � mS;

dE
dt

¼ bSðI þ Aþ U þ h1HÞ þ a0SV � ðmþ kþ eþ bþ hÞE;

dA
dt

¼ kE � ðmþ d4 þ gþ qÞA;

dI
dt

¼ hE � ðmþ d1 þ rþ d0ÞI;

dU
dt

¼ bE þ qA� ðmþ d3 þ nÞU;

dQ
dt

¼ eE � ðmþ aþ d1ÞQ ;

dH
dt

¼ d0I þ d1Q � ðmþ d2 þ rÞH;

dV
dt

¼ sI þ a1H þ u1Aþ u0U � d5V ;

dR
dt

¼ rI þ nU þ gAþ aQ þ rH � mR;

(2.2)
Fig. 1. Flow diagram of the COVID-19 transmission model in Cameroon.
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with initial conditions:

Sð0Þ>0; Eð0Þ>0; Að0Þ>0; Ið0Þ>0; Uð0Þ>0; Qð0Þ>0; Hð0Þ>0; Vð0Þ>0; Rð0Þ>0: (2.3)
The biological description of the parameters as well as their values and units are summed up in Table 1 below.

3. Basic properties of the full model

In this section, we explore the basic dynamical features of system (2.2). Since the COVID-19 model (2.2) monitors human
populations, it will be epidemiologically meaningful if all its state variables are positive.

Theorem 3.1. The solution (S(t), E(t), A(t), I(t), U(t), Q(t), H(t), V(t), R(t)) of system (2.2) starting from positive initial conditions
(2.3) exists for all t > 0 and is unique. Furthermore,

a) S(t) > 0, E(t) > 0, A(t) > 0, I(t) > 0, U(t) > 0, Q(t) > 0, H(t) > 0, V(t) > 0, and R(t) > 0, for all time t > 0.
b) The biologically-feasible region U, defined by

U ¼
n�

SðtÞ; EðtÞ;AðtÞ; IðtÞ;UðtÞ;QðtÞ;HðtÞ;VðtÞ;RðtÞÞ2R9
þ :

0<NðtÞ � s
m
; 0 � VðtÞ � sðsþ a1 þ u1 þ u0Þ

md5

�
;

(3.1)
is positively invariant for model (2.2).
proof. The proof uses classical arguments from the theory of ODEs (Hale and Verduyn Lunel, 1993; Nkwayep et al., 2020). ,

From Theorem 3.1, it follows that in U the system (2.2) is well-posed mathematically and epidemiologically. Accordingly, it is
sufficient to study the dynamics of the flow generated by system (2.2) in U.
Table 1
Biological description, values and units of the parameters of model (2.2).

Parameter Biological description of the parameters of model (2.2) Value/range Reference

s Constant recruitment rate into the community 3539 individual.day�1 (Population Data)
b Effective contact rate between susceptible and infected individuals [3.62 � 10�7, 2 � 10�6] day�1 Estimated
h1 Modification parameter for reduction of infectiousness for (0, 1] day�1 variable

hospitalized individuals
h Progression rate from exposed to symptomatic infectious class 0.12405 day�1 Tang et al. (2020)
e Quarantine rate of exposed individuals 0.1 day�1 Assumed
d1 Hospitalization rate of quarantined individuals 0.04227 day�1 Assumed
d0 Hospitalization rate of symptomatic infectious individuals 0.20619 day�1 Assumed
r Recovery rate of symptomatic infectious individuals 0.33029 day�1 Tang et al. (2020)
r Recovery rate of hospitalized individuals 0.11624 day�1 Tang et al. (2020)
d1 Disease-induced death rate of symptomatic infectious individuals 0.04227 day�1 Assumed
d2 Disease-induced death rate of hospitalized individuals 0.027855 day�1 Assumed
d3 Disease-induced death rate of unreported symptomatic 0.027855 day�1 Assumed

infectious individuals
d4 Disease-induced death rate of asymptomatic infectious individuals 51 � 10�4 day�1 Estimated
d5 Decay rate of the virus 1/7 day�1 Estimated
m Natural death rate [1/59, 1/57] day�1 WHO (2020a, 2020b)
a0 Transmission rate of the free virus [10�12, 10�7] (day.individual)�1 Estimated
b Progression rate from exposed to unreported symptomatic (1e0.3)/7 day�1 Estimated

infectious class
n Recovery rate of unreported symptomatic infectious individuals 1/7 day�1 Liu et al. (2020)
a Recovery rate of quarantined individuals 0.25 day�1 Estimated
k Progression rate from exposed to asymptomatic infectious class (1e1.8887 � 10�7)/7 day�1 Tang et al. (2020)
u0 Shedding rate of the virus in the environment from unreported 4.65 � 10�3 virus.(day.individual)�1 Estimated

symptomatic infectious individuals
u1 Shedding rate of the virus in the environment from asymptomatic 10�6 virus.(day.individual)�1 Estimated

infectious individuals
q Progression rate from asymptomatic infectious to unreported (1e0.7)/7 day�1 Estimated

symptomatic infectious class
g Recovery rate of asymptomatic infectious individuals 0.13978 day�1 Tang et al. (2020)
s Shedding rate of the virus in the environment from 6.39 � 10�3 virus.(day.individual)�1 Estimated

symptomatic infectious individuals
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3.1. Existence and stability of equilibria

In this section, system (2.2) is analyzed to gain insight into its dynamical features.

3.2. Basic reproduction number and stability of the disease-free equilibrium (DFE)

The DFE of model (2.2) is obtained by setting the right hand sides of the equations to zero; it is given by:

E0 ¼ ðS*; E*;A*; I*;U*;Q*;H*;V*;R*Þ ¼
�
s
m
;0; 0;0; 0;0;0

�
: (4.1)
Now, to explore the local stability of E0, we will use the next generation operator method developed in (Diekmann et al.,
1990; van den Driessche and Watmough, 2002). More precisely, by using the matrix notation of Lemma 1 in (van den
Driessche and Watmough, 2002), it follows that the matrix, F, of the new infection terms, and the non-singular M-matrix,
V1, of the remaining transfer terms associated with model (2.2), are given, respectively, by

F ¼

0
BBBBBBBBBBBBBBBBB@

0
bs
m

bs
m

bs
m

0
bh1s
m

sa0
m

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCA

and V1 ¼

0
BBBBBBBB@

k1 0 0 0 0 0 0
�k k2 0 0 0 0 0
�h 0 k3 0 0 0 0
�b �q 0 k4 0 0 0
�e 0 0 0 k5 0 0
0 0 �d0 0 �d1 k6 0
0 �u1 �s �u0 0 �a1 d5

1
CCCCCCCCA
:

�1
It follows that the control reproduction number (Anderson&May 1982; Hethcote, 2000), denoted byRc ¼ rðFV1 Þ, where
rðFV�1

1 Þ is the spectral radius of the next generation matrix FV�1
1 , is given by

Rc ¼ bks
mk1k2

þ bhs
mk1k3

þ bbs
mk1k4

þ bqks
mk1k2k4

þ bh1hd0s
mk1k3k6

þ bh1ed1s
mk1k5k6

þ kqa0u0s
mk1k2k4d5

þ ka0u1s
mk1k2d5

þ hd0a0a1s
mk1k3k6d5

þ hsa0s
mk1k3d5

þ ba0u0s
mk1k4d5

þ ed1a0a1s
mk1k5k6d5

;

where
k1 ¼ mþ kþ eþ bþ h; k2 ¼ mþ d4 þ gþ q; k3 ¼ mþ d1 þ rþ d0;
k4 ¼ mþ d3 þ n; k5 ¼ mþ aþ d1 and k6 ¼ mþ d2 þ r:

(4.2)
The epidemiological meaning of the quantityRc (reproduction number of the full model with control measures) is that, it
measures the average number of new COVID-19 positive cases generated by a single typical COVID-19-infected individual
(living or dead) introduced into a completely-susceptible human population. This infers that, COVID-19 can be effectively
controlled in the community if the threshold quantityRc is less than unity (i.e.Rc <1). Thus, COVID-19 cannot develop from a
small influx of infected individuals if Rc <1, but COVID-19 will develop if Rc >1. Now, the epidemiological interpretation of
each term of Rc is as follows. First, the mean duration of an infective individual in class E is 1/k1. A fraction k/k1 of infective
individuals moves from class E into class Awith effective contact rate b andmean duration 1/k2, offering a contribution of bks/
mk1k2 toRc. Next, a fraction h/k1 of infective individuals moves from class E into class I, with effective contact rate b andmean
duration 1/k3, offering a contribution of bhs/mk1k3 toRc. A fraction b/k1 moves from class E into class Uwith effective contact
rate b and mean duration 1/k4, giving a contribution of bbs/mk1k4, and after a severity of infection, a fraction qk/k1k2 moves
from class A into class U, giving a contribution of bqks/mk1k2k4 toRc. A fraction e/k1 moves from E to Q and the mean duration
of Q is 1/k5. A fraction hd0/k1k3 moves from E to I then to H with effective contact rate bh1 and mean duration 1/k6, offering a
contribution of bh1hd0s/mk1k3k6 toRc. A fraction ed1/k1k5 moves from E toQ then toHwith effective contact rate bh1 andmean
duration 1/k6, offering a contribution of bh1ed1s/mk1k5k6 to Rc. A fraction kqu0/k1k2k4 moves from E to A then to U and to V
with effective contact rate a0 and mean duration 1/d5, giving a contribution of kqa0u0s/mk1k2k4d5 to Rc. A fraction ku1/k1k2
moves from E to A then to V with effective contact rate a0 and mean duration 1/d5, giving a contribution of ka0u1s/mk1k2d5 to
Rc. A fraction hd0a1/k1k3k6 moves from E to I then to H and to Vwith effective contact rate a0 andmean duration 1/d5, giving a
contribution of hd0a0a1s/mk1k3k6d5 toRc. A fraction hs/k1k3 moves from E to I then to Vwith effective contact rate a0 andmean
duration 1/d5, giving a contribution of hsa0s/mk1k3d5 to Rc. A fraction bu0/k1k4 moves from E to U then to V with effective
contact rate a0 and mean duration 1/d5, giving a contribution of ba0u0s/mk1k4d5 to Rc. Finally, a fraction ed1a1/k1k5k6 moves
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from E to Q then to H and to V with effective contact rate a0 and mean duration 1/d5, giving a contribution of ed1a0a1s/
mk1k5k5d5 to Rc.

Note that the basic reproduction number R0 is defined in the absence of control measures such as quarantine, isolation
and environmental spraying techniques to disinfect exposed surfaces. ThusR0 isRc with e¼ d0¼ a1¼ s¼ u0¼ u1¼0. It then
follows that

R0 ¼ bks
mk01k02

þ bhs
mk01k03

þ bbs
mk01k04

þ bqks
mk01k02k04

;

where
k01 ¼ mþ kþ bþ h; k02 ¼ mþ d4 þ gþ q; k03 ¼ mþ d1 þ r; and k04 ¼ mþ d3 þ n:
The following result is obtained by using similar arguments as in the proof of Theorem 2 in (van den Driessche and
Watmough, 2002).

Lemma 4.1. The DFE, E0, of system (2.2), given by (4.1), is locally asymptotically stable in U whenever Rc <1, and unstable if
Rc >1.

Proof. Linearizing (2.2) at the DFE E0, we obtain the linearized system

dW
dt

¼ JðE0ÞW ;

where W ¼ (S, E, A, I, U, Q, H, V, R) and
JðE0Þ ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

�m 0 �bs
m

�bs
m

�bs
m

0 �bh1s
m

�sa0
m

0

0 �k1
bs
m

bs
m

bs
m

0
bh1s
m

sa0
m

0

0 k �k2 0 0 0 0 0 0

0 h 0 �k3 0 0 0 0 0

0 b q 0 �k4 0 0 0 0

0 e 0 0 0 �k5 0 0 0

0 0 0 d0 0 d1 �k6 0 0

0 0 u1 s u0 0 a1 �d5 0

0 0 g r n a r 0 �m

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

:

Now, to end the proof, it is necessary to prove that all eigenvalues of the Jacobian matrix, JðE0Þ, have negative real parts. So,
writing the Jacobian matrix, JðE0Þ, under the distributed matrix form, we obtain0

BBBBBBBBBBBB@

�m c1 c2 0 0 0 0 0 0
0 c3 c4 0 0 0 0 0 0
0 k �k2 0 0 0 0 0 0
0 h 0 �k3 0 0 0 0 0
0 b q 0 �k4 0 0 0 0
0 e 0 0 0 �k5 0 0 0
0 0 0 d0 0 d1 �k6 0 0
0 0 u1 s u0 0 a1 �d5 0
0 0 g r n a r 0 �m

1
CCCCCCCCCCCCA
;

where
c1 ¼ � sa0a1d1e
mk5k6d5

� bh1d1se
mk5k6

� sa0u0b
mk4d5

� bbs
mk4

� sa0sh
mk3d5

� bhs
mk3

� sa0a1d0h
mk3k6d5

� bh1d0sh
mk3k6

, c2 ¼ � bs
m � sa0u1

md5
� sa0u0q

mk4d5
� bqs

mk4
,

c3 ¼ � 1
k2
þ sa0a1d1e

mk1k2k3k5k6d5
þ bh1d1se

mk1k2k5k6
þ sa0u0b

mk1k2k4d5
þ bbs

mk1k2k4
þ sa0sh

mk1k2k3d5
þ bhs

mk1k2k3
þ sa0a1d0h

mk1k2k3k6d5
þ bh1d0sh

mk1k2k3k6
,

c4 ¼ bs
mk1k2

þ sa0u1
mk1k2d5

þ sa0u0q
mk1k2k4d5

þ bqs
mk1k2k4

.
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Let M be the following three dimensional matrix defined by

M ¼
0
@�m c1 c2

0 c3 c4
0 k �k2

1
A:
Note that, all eigenvalues of the Jacobian matrix, JðE0Þ, have negative real parts whenever det(M) < 0.
The computation of det(M), gives

detðMÞ ¼ mðkc4 þ k2c3Þ;

¼ m

�
bks

mk1k2
þ bhs
mk1k3

þ bbs
mk1k4

þ bqks
mk1k2k4

þ bh1hd0s
mk1k3k6

þ bh1ed1s
mk1k5k6

þ kqa0u0s
mk1k2k4d5

þ ka0u1s
mk1k2d5

þ hd0a0a1s
mk1k3k6d5

þ hsa0s
mk1k3d5

þ ba0u0s
mk1k4d5

þ ed1a0a1s
mk1k5k6d5

� 1
�
;

¼ mðRc � 1Þ:
So ifRc <1, it follows that det(M) < 0. In this case, all eigenvalues of the Jacobian matrix JðE0Þ have negative real parts. Thus, if
Rc <1, the DFE, E0, of system (2.2), given by (4.1), is locally asymptotically stable. IfRc >1, then det(M) > 0. This infers that, there
exists an eigenvalue of the Jacobian matrix JðE0Þ with positive real part. So, if Rc >1, then E0 is unstable. This completes the proof.
,

Remark 4.2. Lemma 4.1 communicates that COVID-19 is eliminated from the population (whenRc <1) if the initial sizes of the
sub-populations of the obtained system are in the basin of attraction of the DFE E0. Inwhat follows, to ensure that COVID-19 is
eliminated from the population regardless of the initial sizes of the sub-populations, we need to prove the global stability of
E0.
3.3. Global stability of the DFE E0

In this section, we investigate the global stability of the DFE, E0, by constructing a suitable Lyapunov functional and using
LaSalle's invariance principle. For this purpose, consider the following function defined for positive real numbers by

gðxÞ ¼ x� 1� ln x: (4.3)
It can be shown that g(x) � 0 for all x > 0, and that minx>0g(x) ¼ g(1) ¼ 0.
We have the following result.

Theorem 4.3. The DFE, E0, of system (2.2), given by (4.1), is globally asymptotically stable in U whenever Rc � 1.
Proof. Let (S(t), E(t), A(t), I(t), U(t), Q(t), H(t), V(t), R(t)) be any positive solution of system (2.2) in U. Recall that S* ¼ s/m. Define

the following Lyapunov function

LðtÞ ¼ d5S
*Rc

bh1

�
S

S*
� 1� ln

S

S*

�
þ d5Rc

bh1
E þ k4bd5S

* þ k4a0u1S
* þ a0qu0S

* þ bqd5S
*

bh1k2k4
A

þk6bd5S
* þ a0a1d0S

* þ a0sk6S
* þ bh1d0d5S

*

bh1k3k6
I þ bd5S

* þ a0u0S
*

bh1k4
U

þbh1d1d5S
* þ a0a1d1S

*

bh1k5k6
Q þ bh1d5S

* þ a0a1S
*

bh1k6
H þ a0S

*

bh1
V :

(4.4)
Then, it is clear that, the function L is nonnegative definite in Uwith respect to E0. Calculating the time derivative of the function
L along the solution of system (2.2), after lengthy computations, we get

dL
dt

¼ sd5Rc

bh1

�
2� S

S*
� S*

S

�
þ S*d5

h1

�
I þ Aþ U þ h1H þ a0

b
V
�
ðRc �1Þ:

dLðtÞ �
dLðtÞ �
Thus, it follows that conditionRc � 1 ensures dt � 0, for all S, E, I, A, U, H, V� 0,with equality dt ¼ 0 if and only if S¼ S*,
E¼ 0, I¼ 0, A¼ 0, U¼ 0, H¼ 0, V¼ 0. Thus, L is a Lyapunov function on U. So, by LaSalle’s invariance Principle [12, Theorem 5.3.1],
it follows that
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limt/∞ðS; E;A; I;U;Q ;H;VÞ ¼
�
s
m
;0; 0;0;0;0;0;0

�
: (4.5)
Let K ¼ ðA; I;U;Q ;HÞ. Then from (4.5), one has lim sup t/∞K ¼ 0. This implies that for a sufficiently small ε > 0 there exist
constants Mi > 0, i¼ 1,…, 5 such that lim sup t/∞K � ε, for all t >Mi, i¼ 1,…, 5. Thus, from the eighth equation of system (2.2), it
follows that, for t > maxi2{1, …,5}Mi,

R∞ ¼ lim supt/∞R � rεþ nεþ gεþ aεþ rε
m

; (4.6)
so that, by letting ε / 0 in (4.6), we get

R∞ ¼ lim supt/∞R � 0: (4.7)
Also from (4.5), one has lim inf t/∞K ¼ 0. Thus, by using a similar argument as above, it can be shown that

R∞ ¼ lim inf t/∞R � 0: (4.8)
It then follows from (4.7) and (4.8) that

R∞ � 0 � R∞:
This infers that

limt/∞RðtÞ ¼ 0: (4.9)
Thus we have from (4.5) and (4.9) that,

limt/∞ðS; E;A; I;U;Q ;H;V ;RÞ ¼
�
s
m
;0; 0;0; 0;0;0;0;0

�

9
n�
.Moreover, U is an invariant and attracting set of Rþ. It follows that the largest compact invariant subset in S; E;A; I;U;Q ;H;
V ;RÞ2U : dL

dt ¼ 0
o
is the singleton fE0g. So, by LaSalle’s invariance Principle [12, Theorem 5.3.1], it follows that every solution of

system (2.2), with initial conditions in R9
þ, approaches the DFE, E0, as t / ∞ whenever Rc � 1. This completes the proof. ,

Remark 4.4. We note that the following Lyapunov function could also be used to prove Theorem 4.3

~MðtÞ ¼ d5S
*

bh1

�
S

S*
� 1� ln

S

S*

�
þ d5
bh1

E þ k4bd5S
* þ k4a0u1S

* þ a0qu0S
* þ bqd5S

*

bh1k2k4
A

þk6bd5S
* þ a0a1d0S

* þ a0sk6S
* þ bh1d0d5S

*

bh1k3k6
I þ bd5S

* þ a0u0S
*

bh1k4
U

þbh1d1d5S
* þ a0a1d1S

*

bh1k5k6
Q þ bh1d5S

* þ a0a1S
*

bh1k6
H þ a0S

*

bh1
V :

(4.10)
In this case, its derivative gives

d ~MðtÞ
dt

¼ sd5
bh1

�
2� S

S*
� S*

S

�
þ k1d5

bh1
EðRc �1Þ: (4.11)
Thus, combining (4.11) and (4.9) also leads to the global asymptotical stability of the DFE, E0.
Theorem 4.3 implies that COVID-19 is eliminated from the population if the control reproduction number,Rc, of the model (2.2)

is less than or equal to one. Thus, Theorem 4.3means epidemiologically that the use of quarantine, hospitalization and the control
of the amount of virus in the environment can lead to elimination of the COVID-19 if the mentioned controls can keep the threshold
quantity, Rc, to a value less than or equal to unity. This implies that the condition Rc � 1 is necessary and sufficient for the
elimination of COVID-19.Moreover, it follows from Theorem 4.3 that the longer infected individuals abide in the exposed class, the
higher the likelihood of COVID-19 eradication from the population.
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4.3. Existence of the endemic equilibrium point (EEP)

Let E* ¼ ðS**; E**;A**; I**;U**;Q**;H**;V**;R**Þ be any arbitrary equilibrium of system (2.2). In this section, we provide
conditions for the existence of equilibria for which COVID-19 is endemic in the community, that is, at least one of the infected
variables is non-zero. For this, consider the following associated force of infection for COVID-19 at endemic steady state

l**s ¼ bðI** þA** þU** þh1H
**Þ þ a0V

**: (4.12)
The endemic equilibrium point (EEP) of system (2.2) is obtained by setting the right hand side of the equations to zero; it is
given in terms of l**s S** as follows:

E** ¼ l**s S**

k1
; A** ¼ kl**s S**

k1k2
; I** ¼ hl**s S**

k1k3
; U** ¼ N1l

**
s S**;

Q** ¼ el**s S**

k1k5
; H** ¼ N2l

**
s S**; V** ¼ N3l

**
s S**; R** ¼ N4l

**
s S**;

(4.13)

where.
S** ¼ s

l
**
s þm

; N1 ¼ b
k1k4

þ kq
k1k2k4

, N2 ¼ d0h
k1k3k6

þ d1e
k1k5k6

, N3 ¼ sh
k1k3d5

þ a1d0h
k1k3k6d5

þ a1d1e
k1k5k6d5

þ ku1
k1k2d5

þ bu0
k1k4d5

þ kqu0
k1k2k4d5

,

N4 ¼ rh
k1k3m

þ bn
k1k4m

þ knq
k2k2k4m

þ kg
k1k2m

þ ea
k1k5m

þ rd0h
k1k3k6m

þ rd1e
k1k5k6m

.

Inserting the expressions of (4.13), except R**, into (4.12), gives

l**s ¼ l**s S**
�
bh

k1k3
þ bk
k1k2

þ bN1 þ bh1N2 þ a0N3

�
: (4.14)
Using the expression of S**, equation (4.14) becomes

l**s l**s þ ml**s ¼ sl**s

�
bh

k1k3
þ bk
k1k2

þ bN1 þ bh1N2 þ a0N3

�
: (4.15)
As mentioned above, we have l**s s0. Dividing each term in (4.15) by l**s , we obtain

1þ 1
m
l**s ¼ bhs

mk1k3
þ bks
mk1k2

þ bs
m
N1 þ

bh1s
m

N2 þ
a0s
m

N3: (4.16)
It is worth noting that

1þ 1
m
l**s ¼ bks

mk1k2
þ bhs
mk1k3

þ bbs
mk1k4

þ bqks
mk1k2k4

þ bh1hd0s
mk1k3k6

þ bh1ed1s
mk1k5k6

þ kqa0u0s
mk1k2k4d5

þ ka0u1s
mk1k2d5

þ hd0a0a1s
mk1k3k6d5

þ hsa0s
mk1k3d5

þ ba0u0s
mk1k4d5

þ ed1a0a1s
mk1k5k6d5

;

¼ Rc:
Thus,

l**s ¼ mðRc �1Þ>0; if Rc >1: (4.17)
Hence, each coordinate of the EEP E* is obtained by introducing the unique value of l**s provided in (4.17) into the different
expressions in (4.13). Summarizing the above discussion on the EEP E*, we obtain the following result.

Lemma 4.5. If Rc >1, then system (2.2) admits in U
̊
a unique positive endemic equilibrium, E*.
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4.4. Local stability of the endemic equilibrium point

This section is devoted to the local stability of the unique endemic equilibrium point guaranteed by Lemma 4.2 whenever
Rc >1. To do this, we follow the method developed in (Hethcote and Thieme, 1985) that takes its essence from the technique
proposed by Krasnoselskii (Krasnoselskii, 1964).

We have the following result.

Theorem 4.6. If Rc >1, then the unique endemic equilibrium point, E*, of system (2.2) is locally asymptotically stable.
proof. First of all, note that the total population N is asymptotically constant, that is N / N* as t / ∞. Thus, the proof of

Theorem 4.6 is established by using a reduced system of (2.2),which is obtained by considering only the components E, A, I, U, Q, H,
V, R. Thus, we can set N ¼ N*, for large t, so that the unique endemic equilibrium point, E*, of the system (2.2) becomes E*1 ¼
E*jN¼N* . This eliminates the equation for S from this part of the analysis through the substitution S ¼
N* � (E þ A þ I þ U þ Q þ H þ R), in which case, system (2.2) is reduced to8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dE
dt

¼ ðbðI þ Aþ U þ h1HÞ þ a0VÞðN* � E � A� I � U � Q � H � RÞ � ðmþ kþ eþ bþ hÞE;

dA
dt

¼ kE � ðmþ d4 þ gþ qÞA;

dI
dt

¼ hE � ðmþ d1 þ rþ d0ÞI;

dU
dt

¼ bE þ qA� ðmþ d3 þ nÞU;

dQ
dt

¼ eE � ðmþ aþ d1ÞQ ;

dH
dt

¼ d0I þ d1Q � ðmþ d2 þ rÞH;

dV
dt

¼ sI þ a1H þ u1Aþ u0U � d5V ;

dR
dt

¼ rI þ nU þ gAþ aQ þ rH � mR:

(4.18)
Now, linearizing system (4.18) at the endemic equilibrium point, E*1, yields8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dE
dt

¼ ½�e1 � ðmþ kþ eþ bþ hÞ�E þ ðe2 � e1ÞAþ ðe2 � e1ÞI þ ðe2 � e1ÞU � e1Q þ ðh1e2 � e1ÞH þ a0e2
b

V � e1R;

dA
dt

¼ kE � ðmþ d4 þ gþ qÞA;

dI
dt

¼ hE � ðmþ d1 þ rþ d0ÞI;

dU
dt

¼ bE þ qA� ðmþ d3 þ nÞU;

dQ
dt

¼ eE � ðmþ aþ d1ÞQ ;

dH
dt

¼ d0I þ d1Q � ðmþ d2 þ rÞH;

dV
dt

¼ sI þ a1H þ u1Aþ u0U � d5V ;

dR
dt

¼ rI þ nU þ gAþ aQ þ rH � mR;

(4.19)
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where

e1 ¼ mðRc �1Þ and e2 ¼ bs
mRc

:

Thus, the Jacobian matrix of this linearized system (4.19), evaluated at E*1, is

J1ðE*1Þ ¼

0
BBBBBBBBBBBBBBBBBBBB@

�e1 � k1 e2 � e1 e2 � e1 e2 � e1 �e1 h1e2 � e1
a0e2
b

�e1

k �k2 0 0 0 0 0 0

h 0 �k3 0 0 0 0 0

b q 0 �k4 0 0 0 0

e 0 0 0 �k5 0 0 0

0 0 d0 0 d1 �k6 0 0

0 u1 s u0 0 a1 �d5 0

0 g r n a r 0 �m

1
CCCCCCCCCCCCCCCCCCCCA

:

Now, following the method developed in (Hethcote and Thieme, 1985), we assume that the linearized system (4.19) has so-
lution of the form

ZðtÞ ¼ Z0e
wt ; (4.20)

with w and the components of Z0 ¼ (Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8) in C. Substituting a solution of the form (4.20) into the linearized
system (4.19) of the endemic equilibrium E*1 yields the following system of linear equations8>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

wZ1 ¼ ½�e1 � k1�Z1 þ ðe2 � e1ÞZ2 þ ðe2 � e1ÞZ3 þ ðe2 � e1ÞZ4 � e1Z5 þ ðh1e2 � e1ÞZ6 þ
a0e2
b

Z7 � e1Z8;

wZ2 ¼ kZ1 � k2Z2;

wZ3 ¼ hZ1 � k3Z3;

wZ4 ¼ bZ1 þ qZ2 � k4Z4;

wZ5 ¼ eZ1 � k5Z5;

wZ6 ¼ d0Z3 þ d1Z5 � k6Z6;

wZ7 ¼ u1Z2 þ sZ3 þ u0Z4 þ a1Z6 � d5Z7;

wZ8 ¼ gZ2 þ rZ3 þ nZ4 þ aZ5 þ rZ7 � mZ8;

(4.21)

where ki, i ¼ 1, …, 6, are given in (4.2).
Now, by solving the second, third and fifth equations of (4.21) for Z2, Z3 and Z5, and substituting the results into the other

equations, we obtain the following system:	
ll½1þ F1ðwÞ�Z1 ¼ ðGZÞ1; ½1þ F2ðwÞ�Z2 ¼ ðGZÞ2; ½1þ F3ðwÞ�Z3 ¼ ðGZÞ3; ½1þ F4ðwÞ�Z4 ¼ ðGZÞ4;
½1þ F5ðwÞ�Z5 ¼ ðGZÞ5; ½1þ F6ðwÞ�Z6 ¼ ðGZÞ6; ½1þ F7ðwÞ�Z7 ¼ ðGZÞ7; ½1þ F8ðwÞ�Z8 ¼ ðGZÞ8;

(4.22)

where

F1ðwÞ ¼ w
k1
þ e1

k1

h
1þ k

wþk2
þ h

wþk3
þ e

wþk5

i
þ e1

k1ðwþk4Þ
h
bþ kq

wþk2

i
þ e1

k1ðwþk6Þ
h

d0h
wþk3

þ ed1
wþk5

i
þ e1

k1ðwþmÞ
n

kg
wþk2

þ rh
wþk3

þ n
wþk4

h
bþ kq

wþk2

io
þ e1

k1ðwþmÞ
n

ea
wþk5

þ r
wþd5

h
ku1
wþk2

þ sh
wþk3

þ ea1
wþk5

þ u0
wþk4

�
bþ kq

wþk2

� io
, F2ðwÞ ¼ w

k2
; F3ðwÞ ¼ w

k3
; F4ðwÞ ¼ w

k4
; F5ðwÞ ¼ w

k5
;

F6ðwÞ ¼ w
k6
; F7ðwÞ ¼ w

d5
; F8ðwÞ ¼ w

m
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and

G ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0
e2
k1

e2
k1

e2
k1

0
h1e2
k1

a0e2
bk1

0

k
k2

0 0 0 0 0 0 0

h

k3
0 0 0 0 0 0 0

b
k4

q

k4
0 0 0 0 0 0

e

k5
0 0 0 0 0 0 0

0 0
d0
k6

0
d1
k6

0 0 0

0
u1

d5

s

d5

u0

d5
0

a1
d5

0 0

0
g

m

r

m

n

m

a

m

r
m

0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

Note that, the non-zero entries of the matrix G are positive, and the equilibrium E*1 ¼ ðE**;A**; I**;U**;Q**;H**;V**;R**Þ
satisfies E*1 ¼ GE*1. Here (GZ)i, i ¼ 1, …, 8, denotes the ith component of the vector matrix GZ. Since the components of E*1 are all
positive, then if Z represents any solution of system (4.22), there is a minimal positive real number c0 (see (Esteva et al., 2009;
Esteva and Vargas, 2000; Safi and Gumel, 2010) and the references therein) such that

jZj � c0E*1; (4.23)

where |Z|¼ (|Z1|, |Z2|, |Z3|, |Z4|, |Z5|, |Z6|, |Z7|, |Z8|), and |z| denotes the modulus of the complex number z. In fact, the goal is to prove
that Re w < 0. This is done by contradiction. To do so, we assume that Re w � 0.

First, we assume that w ¼ 0.
This case directly implies that (4.21) is a homogeneous linear system in the variables Zi, i ¼ 1, …, 5.
So, computing the determinant of this system yields

D ¼ Bþ
�
1� bs

mRc

�
k

k1k2
þ h

k1k3
þ b
k1k4

þ qk
k1k2k4

þ h1hd0
k1k3k6

þ h1ed1
k1k5k6

þ kqa0u0

bk1k2k4d5

þ ka0u1

bk1k2d5
þ hd0a0a1
bk1k3k6d5

þ hsa0
bk1k3d5

þ ba0u0

bk1k4d5
þ ed1a0a1
bk1k5k6d5

��
mk1k2k3k4k5k6d5;

¼ Bþ
�
1�Rc

Rc

�
mk1k2k3k4k5k6d5;

¼ B;

(4.24)

where
B ¼ emd1k2k3k4d5e1 þ erd1k2k3k4d5e1 þ emk2k3k4k6d5e1 þ eak2k3k4k6d5e1
þmk2k3k4k5k6d5e1 þ mqkk3k5k6d5e1 þ kqnk3k5k6d5e1 þ mkk3k4k5k6d5e1
þgkk3k4k5k6d5e1 þ mbk2k3k5k6d5e1 þ bnk2k3k5k6d5e1 þ md0hk2k4k5d5e1
þrd0hk2k4k5d5e1 þ mhk2k4k5k6d5e1 þ hrk2k4k5k6d5e1 >0:
Thus, one has D¼ B > 0. Accordingly, system (4.21) has the vanishing solution Z¼ 0,which corresponds to the DFE, E0, given in
(4.1).

Now, we evaluate the second case w s 0.
Since we have assumed that Rew > 0, then, it follows clearly that |1 þ Fi(w)| > 1, for all i ¼ 1,…, 8. Define F(w) ¼mini2{1, …,8}|

1 þ Fi(w)|. Thus, F(w) > 1, and then c0
FðwÞ< c0. Note that c0 is a minimal positive real number such that jZj � c0E*1. Hence, it follows

from the minimality of c0 that

jZj> c0
FðwÞE

*
1: (4.25)
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Now, by taking the norm on left and right sides of the third equation in (4.22), and using the fact that G is a non-negative matrix,
we get

FðwÞjZ3j � j1þ F3ðwÞkZ3j ¼ jðGZÞ3j �GjZ3j � c0GðE*1Þ3 ¼ c0I
**: (4.26)
From (4.26), we obtain jZ3j � c0
FðwÞI

**. This contradicts (4.25). Thus, Re w < 0, that is, all eigenvalues of the characteristic
equation associated with the linearized system (4.19) around E*1, have negative real parts. Thus the unique EEP, E*1, is locally
asymptotically stable whenever Rc >1. This completes the proof of Theorem 4.6. ,

Theorem 4.6 implies that,whenRc >1, COVID-19will persist in the community if the initial sizes of the sub-populations, of the
model, are in the basin of attraction of the EEP E*1 ¼ E*jN¼N*.
4.5. Global stability of the endemic equilibrium

The following Theorem provides the global stability result for the endemic equilibrium point, E*, of system (2.2).

Theorem 4.7. The unique endemic equilibrium point of system (2.2) is globally asymptotically stable in UyU0 whenever Rc >1.
Proof. Let (S(t), E(t), A(t), I(t), U(t), Q(t), H(t), V(t), R(t)) be any positive solution of system (2.2) in UyU0. Define the following

Lyapunov function

M1ðtÞ ¼
d5S

**

bh1

�
S

S**
� 1� ln

S

S**

�
þ d5
bh1

E**
�

E

E**
� 1� ln

E

E**

�

þk4bd5S
** þ k4a0u1S

** þ a0qu0S
** þ bqd5S

**

bh1k2k4
A**
�

A

A**
� 1� ln

A

A**

�

þk6bd5S
** þ a0a1d0S

** þ a0sk6S
** þ bh1d0d5S

**

bh1k3k6
I**
�

I

I**
� 1� ln

I

I**

�

þbd5S
** þ a0u0S

**

bh1k4
U**
�

U

U** � 1� ln
U

U**

�
þ bh1d1d5S

** þ a0a1d1S
**

bh1k5k6
Q**

�
Q

Q** � 1� ln
Q

Q**

�

þbh1d5S
** þ a0a1S

**

bh1k6
H**
�

H

H**
� 1� ln

H

H**

�
þ a0S

**

bh1
V**
�

V

V**
� 1� ln

V

V**

�
:

Using the equilibrium conditions, after lengthy computations, the derivative of the above Lyapunov function computed along the
solutions of system (2.2) is given below:

dM1ðtÞ
dt

¼ sd5
bh1

�
2� S

S**
� S**

S

�
þ S**d5

h1
I**
�
3� S**

S
� SIE**

ES**I**
� EI**

IE**

�
þ S**d5

h1
A**
�
3� S**

S
� SAE**

ES**A** �
EA**

AE**

�

þ S**a0u1

bh1
A**
�
4� S**

S
� EA**

AE**
�AV**

VA** �
SVE**

ES**V**

�
þ S**a0u0q

bh1k4
A**
�
5� S**

S
� EA**

AE**
�AU**

UA** �
UV**

VU** �
SVE**

ES**V**

�

þ S**qd5
h1k4

A**
�
4� S**

S
� EA**

AE**
�AU**

UA** �
SUE**

ES**U**

�
þ S**bd5

h1k4
E**
�
3� S**

S
� EU**

UE**
� SUE**

ES**V**

�

þ S**a0u0b
bh1k4

E**
�
4� S**

S
� EU**

UE**
�UV**

VU** �
SVE**

ES**V**

�
þ S**a0a1d0

bh1k6
I**
�
5� S**

S
� EI**

IE**
� IH**

HI**
�HV**

VH** �
SVE**

ES**V**

�

þ S**a0s
bh1

I**
�
4� S**

S
� EI**

IE**
� IV**

VI**
� SVE**

ES**V**

�
þ S**d0d5

k6
I**
�
4� S**

S
� EI**

IE**
� IH**

HI**
� SHE**

ES**H**

�

þ S**d1d5
k6

Q**
�
4� S**

S
� EQ**

QE**
�QH**

HQ** �
SHE**

ES**H**

�
þ S**a0a1d1

bh1k6
Q**

�
5� S**

S
� EQ**

QE**
�QH**

HQ** �
HV**

VH** �
SVE**

ES**V**

�
:

Thus, by using the arithmetic-geometric means inequality and conditionRc >1, it follows that dM1ðtÞ
dt � 0.Moreover, dM1ðtÞ

dt ¼ 0,
holds if and only if S¼ S**, E¼ E**, A¼ A**, I¼ I**, U¼ U**, Q¼ Q**, H¼ H**, V¼ V**. Consequently,M1 is a Lyapunov function
on UyU0. So, by LaSalle’s invariance principle [12, Theorem 5.3.1], it follows that

limt/∞ðSðtÞ; EðtÞ;AðtÞ; IðtÞ;UðtÞ;QðtÞ;HðtÞ;VðtÞÞ ¼ ðS**; E**;A**; I**;U**;Q**;H**;V**Þ: (4.27)
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Again, combining this with system (2.2), gives limt/∞R(t)¼ R** as described in the proof of Theorem 4.1. Thus, every solution of
the model,with initial condition in UyU0, approaches the unique endemic equilibrium point of system (2.2)when t tends to∞ for
Rc >1. This completes the proof. ,

In other words, Theorem 4.7 shows that COVID-19 will persist in the community wheneverRc >1. Furthermore, it follows
from Theorem 4.7 that an imperfect follow-up of patients tested positive could lead to infection of many people in the
community. Fig. 2 below shows a good fit for total actual symptomatic infectious individuals and those predicted by the
model (2.2).

4.6. Sensitivity analysis with respect to quarantine an hospitalization

Here we analyze the threshold quantityRc, around the parameters associated to the quarantine of exposed individuals (e)
and the hospitalization of individuals with COVID-19 symptoms (d0), in order to measure the effect of quarantine and hos-
pitalization on the transmission dynamics of the disease. For this, we compute the partial derivative ofRc with respect to the
aforementioned parameters. First, computing the partial derivative of Rc with respect to e, we obtain

vRc

ve
¼ bd5sðd1k01k3 � hd0k5Þh1 � sðB0 � d1a0a1k01k3Þ

mk21k3k5k6d5
; (4.28)

where
B0 ¼ bhk5k6d5 þ hd0a0a1k5 þ hsa0k5k6 þ
bk3k5k6d5k

k2
þ bbk3k5k6d5

k4

þbqkk3k5k6d5
k2k4

þ kqa0u0k3k5k6
k2k4

þ ka0u1k3k5k6
k2

þ ba0u0k3k5k6
k4

:

It follows from (4.28) that
vRc

ve
<0 if and only if h1 < h1e;

and
vRc

ve
>0 if and only if h1 > h1e;

with
0< h1e ¼
B0 � d1a0a1k01k3

bd5ðd1k01k3 � hd0k5Þ
: (4.29)
This first evaluation implies that the quarantine of exposed individuals can reduce the control reproduction number, and
COVID-19 will reduce burden if the relative infectiousness of hospitalized individuals, h1, does not exceed the threshold
quantity h1e. If h1 > h1e, the use of quarantine of exposed individuals will increase the control reproduction number, and
COVID-19 will increase burden. Thus, the use of quarantine is injurious to the population.

The above discussion is summed up in the following result.

Lemma 4.8. The use of quarantine of the exposed individuals will have positive impact on the population if h1 < h1e, and negative
impact on the population whenever h1 > h1e.

Similarly, the computation of the partial derivative of Rc with respect d0, gives

vRc

vd0
¼ bhk03d5sh1 � shðk6ðsa0 þ bd5Þ � a0a1k03Þ

mk1k23k6d5
; (4.30)
It follows from (4.30) that

vRc

vd0
<0 if and only if h1 < h1d0

;

and
vRc

vd0
>0 if and only if h1 > h1d0

;

with
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Fig. 2. Fitted results from the model (2.2) using the parameter values from Table 1 except the following parameters: b ¼ 1.55 � 10�6, h1 ¼ 0.49, a0 ¼ 10�7, m ¼ 1/
59, d1 ¼ 0.156986, and Rc ¼ 1:2331>1. Here, the red line indicates the real symptomatic infectious cases and the blue line indicates the predicted symptomatic
infectious individuals.
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0< h1d0
¼ k6ðsa0 þ bd5Þ � a0a1k03

bk03d5
: (4.31)
This last evaluation implies that, the hospitalization of individuals with COVID-19 symptoms will be beneficial to the population
if the relative infectiousness of hospitalized individuals does not exceed the threshold quantity h1d0

, and is not beneficial if h1 >h1d0
.

We have the following result.

Lemma 4.9. Hospitalization of individuals with COVID-19 symptoms will have positive impact on the population if h1 <h1d0
, and

negative impact on the population if h1 >h1d0
.

Combining Lemma 4.3 and Lemma 4.4, we get the following result.

Theorem 4.10. The use of quarantine of exposed individual and hospitalization of individuals with COVID-19 symptoms will have

a) positive impact on the population if h1 <minfh1e;h1d0
g;

b) no impact on the population if h1 ¼ minfh1e;h1d0
g;

c) negative impact on the population if h1 >maxfh1e;h1d0
g.

The first item of Theorem 4.4means that the threshold quantityRc is a decreasing function of the quarantine and hospitalization
parameters e and d0, respectively;while the last item implies thatRc is an increasing function of these parameters. The graph of Fig. 3
shows that the control reproduction numberRc is a decreasing function of the quarantine rate e and the hospitalization rate d0. This
underscores the importance of the quarantine rate e and the hospitalization rate d0 in controlling the COVID-19 disease in Cameroon.
Fig. 3. Graph and contour plots of Rc as a function of quarantine rate of exposed individuals e and hospitalization rate of symptomatic infectious individuals d0.
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5. Optimal control problem

COVID-19 has not yet been controlled and is still ongoing. Thus, to expect that the disease can stop, we need to comply
with barrier measures (such as the regular washing of hands, the use of hydro-alcoholic gel, wearing face masks, social
distancing rules). In this Section, we propose and investigate an optimal control problem applied to COVID-19 dynamics
described by system (2.2)that we extend by adding three control functions u1, u2 and u3. The control u1 denotes the quar-
antining rate of individuals who have been in contact with infected individuals and have accepted to be quarantined during a
period of time (Yan et al., 2007). The term g2u1 denotes the rate of mandatory quarantine. In this case, the parameter e

becomes the natural quarantined rate. Next, the control function u2, which measures the rate of tracing, testing and hospi-
talization of people with clinical symptoms, moves infectious individuals from their symptomatic class to hospitalized class,
under an hospitalization program for special medical treatment at rate g1, with the natural hospitalization rate d0. Thus, u2
decreases the evolution of symptomatic class to hospitalized class. The control u3 represents the global effort of educational
campaigns. The term 1 � u3(t) is a decreasing factor that indicates the extent to which the production of unreported
symptomatic individuals is blocked as a result of multiple educational campaigns. Furthermore, from the factor 1 � u3(t),
through the aforementioned barrier measures, people in the community can significantly reduce the concentration of virus in
the environment. The flow diagram of the model with controls which elucidates the transmission phases of COVID-19 is
presented in Fig. 4.

From the flow diagram in Fig. 4, we propose the following nonlinear system with control:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dS
dt

¼ s� bSðI þ Aþ U þ h1HÞ � a0SV � mS;

dE
dt

¼ bSðI þ Aþ U þ h1HÞ þ a0SV � ðmþ kþ eþ bþ hþ g2u1ðtÞÞE;

dA
dt

¼ kE � ðmþ d4 þ gþ qð1� u3ðtÞÞÞA;

dI
dt

¼ hE � ðmþ d1 þ rþ d0 þ g1u2ðtÞÞI;

dU
dt

¼ bE þ qð1� u3ðtÞÞA� ðmþ d3 þ nÞU;

dQ
dt

¼ ðeþ g2u1ðtÞÞE � ðmþ aþ d1ÞQ ;

dH
dt

¼ ðd0 þ g1u2ðtÞÞI þ d1Q � ðmþ d2 þ rÞH;

dV
dt

¼ sð1� u3ðtÞÞI þ a1ð1� u3ðtÞÞH þ u1ð1� u3ðtÞÞAþ u0ð1� u3ðtÞÞU � d5V ;

dR
dt

¼ rI þ nU þ gAþ aQ þ rH � mR:

(5.1)
Fig. 4. Flow diagram of the model with controls.
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All the parameters and classes of system (5.1) are the same as in system (2.2). The optimal control problem associated to
model (5.1) requires the minimization of E(t), A(t), I(t), U(t), Q(t), H(t) and V(t) as well as the cost of implementation of the
interventions needed. Let T be a fixed terminal time. The objective functional which we seek to minimize is defined as in (Yan
et al., 2007) as follows:

J ðu1ðtÞ;u2ðtÞ;u3ðtÞÞ¼
ZT
0

½B1EðtÞþB2AðtÞþB3IðtÞþB4UðtÞþB5QðtÞþB6HðtÞþB7VðtÞ þ
1
2
R1u

2
1ðtÞþ

1
2
R2u

2
2ðtÞþ

1
2
R3u

2
3ðtÞ

�
dt:

(5.2)
Bi, i ¼ 1, …, 7 represent the cost coefficients for E(t), A(t), I(t), U(t), Q(t), H(t) and V(t), respectively. R1, R2 and R3 are cost
balancing coefficients associated with the hospitalized individuals in designated, susceptible quarantined individuals, and a
strategy applied to the whole population.

The admissible controls set is defined as

F ¼ fðu1; u2;u3Þ : ui is measurable;0 � uiðtÞ � bi;0< bi � 1; t2½0; T�; i ¼ 1;2;3g;
where bi, i ¼ 1, 2, 3, are fixed positive constant which depend on the amount of resources available for the implementation of
the control strategies. We need to determine the optimal control ðu*1;u*2;u*3Þ such that

J ðu*1;u*2;u*3Þ ¼ minfJ ðu1;u2;u3Þ : ðu1;u2;u3Þ2Fg:
This is given in the following Theorem.

Theorem 5.1. Consider the control problem with objective functional (5.2) and system (5.1). Then, there exists an optimal control
u* ¼ ðu*1;u*2;u*3Þ2F such that

J ðu*1;u*2;u*3Þ ¼ minðu1 ;u2 ;u3Þ2FJ ðu1;u2;u3Þ;

provided the following conditions are satisfied:

(a) The class of all initial conditions with controls u ¼ (u1, u2, u3) in the set of admissible controls, with system (5.1) being
satisfied, is not empty.

(b) The set of admissible controls F is convex and closed.
(c) The right-hand side of system (5.1) is continuous, bounded from above by a sum of the bounded control and the state, and

can be written as a linear function of controls (u1, u2, u3) with coefficients depending on time and state.
(d) The integrand of the objective functional (5.2) is convex on F and bounded from below by � e0 þ e1

�


u1j2 þju2j2 þju3j2
�
,

where e0 � 0 and e1 > 0.

proof. The proof is done by applying similar arguments as in the proof of Theorem 4.1 in (Fleming and Rishel, 1975).,We now
investigate the necessary conditions for the optimal control by using the Pontryagin’s maximum principle (Pontryagin et al., 1962).
Define the Lagrangian for this control problem as in (Joshi, 2002; Kirk, 2004):
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LðS; E;A; I;U;Q ;H;V ;R;u1;u2;u3; l1; l2; l3; l4;

l5; l6; l7; l8; l9;w11;w12;w21;w22;w31;w32Þ
¼ ½B1EðtÞ þ B2AðtÞ þ B3IðtÞ þ B4UðtÞ þ B5QðtÞ

þ B6HðtÞ þ B7VðtÞ þ
1
2
R1u

2
1 þ

1
2
R2u

2
2 þ

1
2
R3u

2
3

�

þl1½s� bSðIðtÞ þ AðtÞ þ UðtÞ þ h1HðtÞÞ � a0SðtÞVðtÞ � mSðtÞ�
þl2½bSðIðtÞ þ AðtÞ þ UðtÞ þ h1HðtÞÞ þ a0SðtÞVðtÞ
� ðmþ kþ eþ bþ hþ g2u1ðtÞÞEðtÞ�
þl3½kEðtÞ � ðmþ d4 þ gþ qð1� u3ðtÞÞÞAðtÞ�
þl4½hEðtÞ � ðmþ d1 þ rþ d0 þ g1u2ðtÞÞIðtÞ�
þl5½bEðtÞ þ qð1� u3ðtÞÞAðtÞ � ðmþ d3 þ nÞUðtÞ�
þl6½ðeþ g2u1ðtÞÞEðtÞ � ðmþ aþ d1ÞQðtÞ�
þl7½ðd0 þ g1u2ðtÞÞIðtÞ þ d1QðtÞ � ðmþ d2 þ rÞHðtÞ�
þl8½sð1� u3ðtÞÞIðtÞ þ a1ð1� u3ðtÞÞHðtÞ þ u1ð1� u3ðtÞÞAðtÞ
þ u0ð1� u3ðtÞÞUðtÞ � d5VðtÞ�
þl9½rIðtÞ þ nUðtÞ þ gAðtÞ þ aQðtÞ þ rHðtÞ � mRðtÞ�
�w11ðtÞðb1 � u1ðtÞÞ �w12ðtÞu1ðtÞ �w21ðtÞðb2 � u2ðtÞÞ
�w22ðtÞu2ðtÞ �w31ðtÞðb3 � u3ðtÞÞ �w32ðtÞu3ðtÞ;

where w11(t), w12(t), w21(t), w22(t), w31(t), w32(t) � 0 are penalty multipliers satisfying the following equations at u*:

w11ðtÞðb1 � u1ðtÞÞ ¼ 0; w12ðtÞu1ðtÞ ¼ 0;
w21ðtÞðb2 � u2ðtÞÞ ¼ 0; w22ðtÞu2ðtÞ ¼ 0;
w31ðtÞðb3 � u3ðtÞÞ ¼ 0; w32ðtÞu3ðtÞ ¼ 0:

Differentiating the above Lagrangian with respect to state variables S, E, A, I, U, Q, H, V, and R, respectively, and applying
Pontryagin’s maximum principle, the adjoint system reads

l01 ¼ �vL
vS

; l02 ¼ �vL
vE

; l03 ¼ �vL
vA

; l04 ¼ �vL
vI

; l05 ¼ �vL
vU

;

l06 ¼ �vL
vQ

; l07 ¼ �vL
vH

; l08 ¼ �vL
vV

; l09 ¼ �vL
vR

;

(5.3)

and the transversality conditions li(T) ¼ 0, i ¼ 1, …, 9, hold. Setting vL
vui

¼ 0, i ¼ 1, 2, 3, the optimality conditions are given by

vL
vu1

¼ R1u1 � l2g2E þ l6g2E þw11ðtÞ �w12ðtÞ ¼ 0;

vL
vu2

¼ R2u2 � l4g1I þ l7g1I þw21ðtÞ �w22ðtÞ ¼ 0;

vL
vu3

¼ R3u3 þ l3qA� l5qA� l8sI � l8a1H � l8u1A

�l8u0U þw31ðtÞ �w32ðtÞ ¼ 0:

The resolution of the above equations gives the following optimal controls
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u*1ðtÞ ¼
ðl2 � l6Þg2E �w11ðtÞ þw12ðtÞ

R1
;

u*2ðtÞ ¼
ðl4 � l7Þg1I �w21ðtÞ þw22ðtÞ

R2
;

u*3ðtÞ ¼
ðl3 � l5ÞqAþ l8ðsI þ a1H þ u1Aþ u0UÞ �w31ðtÞ þw32ðtÞ

R3
:

For the explicit expression of the optimal control u*1 on [0, b1], we consider three cases.
First, when u*1ðtÞ ¼ 0, we have w11(t) ¼ 0. It then follows that

0 ¼ u*1ðtÞ ¼
ðl2 � l6Þg2E þw12ðtÞ

R1
:

Owing to w12 � 0, it follows that ðl2�l6Þg2E
R1

� 0.
Next, when 0<u*1 < b1, it follows that w11(t) ¼ 0 and w12 ¼ 0. Consequently, one has

u*1ðtÞ ¼
ðl2 � l6Þg2E

R1
:

Finally, when u*1ðtÞ ¼ b1, one gets w12(t) ¼ 0. Thus,

b1 ¼ u*1ðtÞ ¼
ðl2 � l6Þg2E �w11ðtÞ

R1
:

This means that R1b1 ¼ (l2 � l6)g2E � w11(t), so that w11(t) ¼ (l2 � l6)g2E � R1 � 0. Thus ðl2�l6Þg2E
R1

� b1.
From the above discussion, we obtain

u*1 ¼

8>>>>>>>>>><
>>>>>>>>>>:

ðl2 � l6Þg2E
R1

; if0<
ðl2 � l6Þg2E

R1
< b1

0; if
ðl2 � l6Þg2E

R1
� 0

b1; if
ðl2 � l6Þg2E

R1
� b1:

This can also be written under the following compact form

u*1ðtÞ ¼ min
	
max

	
0;

ðl2 � l6Þg2E
R1

�
; b1

�
:

Similarly, we get the following expressions for the second and third optimal control

u*2ðtÞ ¼ min
	
max

	
0;

ðl4 � l7Þg1I
R2

�
; b2

�
;

u*3ðtÞ ¼ min
	
max

	
0;

ðl3 � l5ÞqAþ l8ðsI þ a1H þ u1Aþ u0UÞ
R3

�
; b3

�
:

Summarizing the above characterization we obtain the following result.

Theorem 5.2. Given the optimal controls ðu*1;u*2;u*3Þ and the existence of solutions of system (5.1), there exist adjoint variables li,
i ¼ 1, …, 9 satisfying the adjoint equations (5.3) together with the transversality conditions li(T) ¼ 0, for i ¼ 1,…, 9. Furthermore,
the optimal controls u*1ðtÞ, u*2ðtÞ and u*3ðtÞ are characterized as
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u*1ðtÞ ¼ min
	
max

	
0;

ðl2 � l6Þg2E
R1

�
; b1

�
; (5.4)

u*2ðtÞ ¼ min
	
max

	
0;

ðl4 � l7Þg1I
R2

�
; b2

�
; (5.5)

u*3ðtÞ ¼ min
	
max

	
0;

ðl3 � l5ÞqAþ l8ðsI þ a1H þ u1Aþ u0UÞ
R3

�
; b3

�
: (5.6)

We finally deal with the uniqueness for the optimality system including system (5.1) and adjoint equation (5.3). To do this, we
need the following result.

Lemma 5.3. (Garira et al., 2005; Joshi, 2002) The function u*1ð4Þ ¼ minfmaxf4; a12g; b12g is Lipschitz continuous with respect to
4, where a12 and b12 are two arbitrary fixed positive constants, with a12 < b12.

Now, from the fact that the state variables are uniformly bounded, it can easily be shown that the adjoint variables have finite
upper bounds. The uniqueness result for the optimality system states as follows.

Theorem 5.4. Bounded solutions of the optimality system are unique for a sufficiently small T > 0 .
Proof. Let (S, E, A, I, U, Q, H, V, R, l1, l2, l3, l4, l5, l6, l7, l8, l9) and (S, E, A, I, U, Q , H, V , R, l1, l2, l3, l4, l5, l6, l7, l8, l9) be two

solutions of the optimality system. Set S¼ e6tp1, E¼ e6tp2, A¼ e6tp3, I¼ e6tp4,U¼ e6tp5,Q¼ e6tp6,H¼ e6tp7, V¼ e6tp8, R¼ e6tp9,
l1 ¼ e�6tq1, l2 ¼ e�6tq2, l3 ¼ e�6tq3, l4 ¼ e�6tq4, l5 ¼ e�6tq5, l6 ¼ e�6tq6, l7 ¼ e�6tq7, l8 ¼ e�6tq8, l9
¼ e�6tq9. Analogously, let S ¼ e6tp1, E ¼ e6tp2, A ¼ e6tp3, I ¼ e6tp4, U ¼ e6tp5, Q ¼ e6tp6, H ¼ e6tp7, V ¼ e6tp8, R ¼ e6tp9,
l1 ¼ e�6tq1, l2 ¼ e�6tq2, l3 ¼ e�6tq3, l4 ¼ e�6tq4, l5 ¼ e�6tq5, l6 ¼ e�6tq6, l7 ¼ e�6tq7, l8 ¼ e�6tq8, l9 ¼ e�6tq9,where6
is a positive constant. Define

u*1ðtÞ ¼ min
	
max

	
0;

ðl2 � l6Þg2E
R1

�
; b1

�
;

u*2ðtÞ ¼ min
	
max

	
0;

ðl4 � l7Þg1I
R2

�
; b2

�
;

u*3ðtÞ ¼ min
	
max

	
0;

ðl3 � l5ÞqAþ l8ðsI þ a1H þ u1Aþ u0UÞ
R3

�
; b3

�
;

and

u*1ðtÞ ¼ min
	
max

	
0;

ðl2 � l6Þg2E
R1

�
; b1

�
;

u*2ðtÞ ¼ min
	
max

	
0;

ðl4 � l7Þg1I
R2

�
; b2

�
;

u*3ðtÞ ¼ min
	
max

	
0;

ðl3 � l5ÞqAþ l8ðsI þ a1H þ u1Aþ u0UÞ
R3

�
; b3

�
:

Then, from Lemma 5.3, it follows that



u*1ðtÞ � u*1ðtÞ


 � 



g2

R1
fp2ðq2 � q6Þ � p2ðq2 � q6Þg





;
¼ g2

R1
jp2ðq2 � q6Þ � p2ðq2 � q6Þj;



u*2ðtÞ � u*2ðtÞ


 � 



g1

R2
fp4ðq4 � q7Þ � p4ðq4 � q7Þg





;
¼ g1

R2
jp4ðq4 � q7Þ � p4ðq4 � q7Þj;

and
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u*3ðtÞ � u*3ðtÞ


 � j 1

R3
fqp3ðq3 � q5Þ � p3ðq3 � q5Þ þ sðp4q8 � p4q8Þ

þ a1ðp7q8 � p7q8Þ þ u1ðp3q8 � p3q8Þ þ u0ðp5q8 � p5q8Þgj;

¼ 1
R3

jqp3ðq3 � q5Þ � p3ðq3 � q5Þ þ sðp4q8 � p4q8Þ

þa1ðp7q8 � p7q8Þ þ u1ðp3q8 � p3q8Þ þ u0ðp5q8 � p5q8Þj:

Inserting S ¼ e6tp1 in the first equation of (5.1) yields

p01 þ6p1 ¼ se�6t � bp1ðp3 þp4 þ p5 þh1p7Þe6t � a0p1p8e
6t � mp1: (5.7)

In a similar way for the other state and adjoint variables, we obtain

p02 þ6p2 ¼ bp1ðp3 þ p4 þ p5 þ h1p7Þe6t þ a0p1p8e
6t � ðmþ kþ eþ bþ hþ g2u

*
1Þp2; (5.8)

p03 þ6p3 ¼ kp2 �
�
mþ d4 þ gþ qð1� u*3Þp3; (5.9)

p04 þ6p4 ¼ hp2 � ðmþ d1 þ rþ d0 þ g1u
*
2Þp4; (5.10)

p05 þ6p5 ¼ bp2 þ qð1� u*3Þp3 � ðmþ d3 þ nÞp5; (5.11)

p06 þ6p6 ¼ ðeþ g2u
*
1Þp2 � ðmþ aþ d1Þp6; (5.12)

p07 þ6p7 ¼ ðd0 þ g1u
*
2Þp4 þ d1p6 � ðmþ d2 þ rÞp7; (5.13)

p08 þ6p8 ¼ sð1� u*3Þp4 þ a1ð1� u*3Þp7 þ u1ð1� u*3Þp3 þ u0ð1� u*3Þp5 � d5p8; (5.14)

p09 þ6p9 ¼ rp4 þ np5 þ gp3 þ ap6 þ rp7 � mp9; (5.15)

�q01 þ6q1 ¼ �mq1 � bq1ðp3 þ p4 þ p5 þ h1p7Þe6t þ a0q1p8e
6t

þbq2ðp3 þ p4 þ p5 þ h1p7Þe6t þ a0q2p8e
6t ;

(5.16)

�q02 þ6q2 ¼ B1e
6t � ðmþ kþ eþ bþ hþ g2u

*
1Þq2

þkq3 þ hq4 þ bq5 þ ðeþ g2u
*
1Þq6;

(5.17)

�q03 þ6q3 ¼ B2e
6t � bp1q1e

6t � �mþ d4 þ gþ qð1� u*3Þq3
þbp1q2e

26t þ qð1� u*3Þq5 þ u1ð1� u*3Þq8 þ gq9;
(5.18)

�q04 þ6q4 ¼ B3e
6t � bp1q1e

6t � ðmþ d1 þ rþ d0 þ g1u
*
2Þq4

þbp1q2e
6t þ ðd0 þ g1u

*
2Þq7 þ sð1� u*3Þq8 þ rq9;

(5.19)

�q05 þ6q5 ¼ B4e
6t � bp1q1e

6t � ðmþ d3 þ nÞq5
þbp1q2e

6t þ u0ð1� u3Þq8 þ nq9;
(5.20)

�q06 þ6q6 ¼ B5e
6t � ðmþ aþ d1Þq6 þ d1q7 þ aq9 (5.21)

�q07 þ6q7 ¼ B6e
6t � bh1p1q1e

6t � ðmþ d2 þ rÞq7
þbh1p1q2e

6t þ a1ð1� u*3Þq8 � rq9;
(5.22)
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�q08 þ6q8 ¼ B7e
6t � a0p1q1e

6t þ a0p1q2e
6t � d5q8; (5.23)

�q09 þ6q9 ¼ �mq9: (5.24)

Also, introducing S ¼ e6tp1 in the first equation of (5.1) yields

p01 þ6p1 ¼ se�6t � bp1ðp3 þp4 þ p5 þh1p7Þe6t � a0p1p8e
6t � mp1: (5.25)

Then, the result is obtained by subtracting the equations for S and S, E and E, A and A, I and I,U and U,Q and Q ,H and H, Vand V ,
R and R, l1 and l1, l2 and l2, l3 and l3, l4 and l4, l5 and l5, l6 and l6, l7 and l7, l8 and l8, l9 and l9, multiplying each resulting
equation by an appropriate difference of functions, and integrating from 0 to T. For example, subtracting equation (5.7) from (5.25)
leads to

ðp1 � p1Þ0 þ6ðp1 � p1Þ ¼ �be6t ½p1ðp3 þ p4 þ p5 þ h1p7Þ � p1ðp3 þ p4 þ p5 þ h1p7Þ�
�a0e

6t ½p1p8 � p1p8� � mðp1 � p1Þ:
(5.26)

Multiplying the left and right hand sides of (5.26) by ðp1 �p1Þ and integrating from 0 to T gives

1
2
ðp1 � p1Þ2 þ6

ZT
0

ðp1 � p1Þ2dt

� m

ZT
0

ðp1 � p1Þ2dt þ C1e
6T
ZT
0

h
ðp1 � p1Þ2 þ ðp3 � p3Þ2

þ ðp4 � p4Þ2 þ ðp5 � p5Þ2 þ ðp7 � p7Þ2 þ ðp8 � p8Þ2
i
dt;

where the constant C1 depends on the coefficients and the bounds on state variables p1, p3, p4, p5 and p7. Noting that e6T � e36T,we
get

1
2
ðp1 � p1Þ2 þ6

ZT
0

ðp1 � p1Þ2dt

� C0
1

ZT
0

"
ðp1 � p1Þ2dt þ C0

2e
36T

ZT
0

h
ðp1 � p1Þ2 þ ðp3 � p3Þ2

þ ðp4 � p4Þ2 þ ðp5 � p5Þ2 þ ðp7 � p7Þ2 þ ðp8 � p8Þ2
i
dt:

(5.27)

C0
1 and C0

2 depend on the coefficients and the upper bounds of state variables p1, p3, p4, p5, p7, p7.
Now, introducing l2 ¼ e�6tq2 in the second equation of (5.3), we obtain

�q02 þ6q2 ¼ B1e
6t � ðmþ kþ eþ bþ hþ g2u

*
1Þq2

þkq3 þ hq4 þ bq5 þ ðeþ g2u
*
1Þq6:

(5.28)

Subtracting equation (5.17) from (5.27), yields

�ðq1 � q2Þ0 þ6ðq2 � q2Þ ¼ �½ðk1 þ g2u
*
1Þq2 � ðk1 þ g2u

*
1Þq2�

þkðq3 � q3Þ þ hðq4 � q4Þ þ bðq5 � q5Þ þ ½ðeþ g2u
*
1Þq6 � ðeþ g2u

*
1Þq6�;

(5.29)

where k1 ¼ m þ k þ e þ b þ h. Multiplying the left and right hand sides of (5.28) by ðq2 �q2Þ and integrating from 0 to T gives
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1
2
ðq2ð0Þ � q2ð0ÞÞ2 þ6

ZT
0

ðq2 � q2Þ2dt

¼ �k1

ZT
0

ðq2 � q2Þ2dt � g2

ZT
0

ðu*1q2 � u*1q2Þðq2 � q2Þdt

þk
ZT
0

ðq2 � q2Þðq3 � q3Þdt þ h

ZT
0

ðq2 � q2Þðq4 � q4Þdt

þb
ZT
0

ðq2 � q2Þðq5 � q5Þdt þ e

ZT
0

ðq2 � q2Þðq6 � q6Þdt þ g2

ZT
0

ðu*1q6 � u*1q6Þðq2 � q2Þdt:

The last term of the above equation reads

g2

ZT
0

ðu*1q6 � u*1q6Þðq2 � q2Þdt ¼ g2

ZT
0

u*1ðq6 � q6Þðq2 � q2Þ þ q2ðu*1 � u*1Þðq2 � q2Þdt;

� C01

ZT
0

h
ðq2 � q2Þ2 þ ðq6 � q6Þ2 þ ðu*1 � u*1Þ

2i
dt:

(5.30)

Now

ZT
0

ðu*1 � u*1Þ
2
dt �

�
g2
R1

�2 ZT
0

½p2ðq2 � q6Þ � p2ðq2 � q6Þ�2dt;

¼
�
g2
R1

�2 ZT
0

h
p22ðq2 � q6Þ2 � 2p2ðq2 � q6Þp2ðq2 � q6Þ þ p22ðq2 � q6Þ2

i
dt;

� C03

�
g2
R1

�2 ZT
0

h
ðq2 � q2Þ2 þ ðq6 � q6Þ2

i
dt:

(5.30)

From this inequality, (5.29) becomes

g2

ZT
0

ðm*1q6 �m*1q6Þðq2 � q2Þdt � C4

ZT
0

h
ðq2 � q2Þ2 þ ðq6 � q6Þ2

i
dt:

The constants C01, C03, C04, C3 and C4 which appear in the preceding inequalities depend on the coefficients and the bounds on
state and adjoint variables. Consequently, we get
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1
2
ðq2ð0Þ � q2ð0ÞÞ2 þ6

ZT
0

ðq2 � q2Þ2dt

� k
ZT
0

h
ðq2 � q2Þ2 þ ðq3 � q3Þ2

i
dt þ h

ZT
0

h
ðq2 � q2Þ2 þ ðq4 � q4Þ2

i
dt

þb
ZT
0

h
ðq2 � q2Þ2 þ ðq5 � q5Þ2

i
dt þ e

ZT
0

h
ðq2 � q2Þ2 þ ðq6 � q6Þ2

i
dt

þC0
3

ZT
0

h
ðq2 � q2Þ2 þ ðq3 � q3Þ2 þ ðq4 � q4Þ2 þ ðq5 � q5Þ2

þ ðq6 � q6Þ2 þ ðq7 � q7Þ2 þ ðq8 � q8Þ2 þ ðq9 � q9Þ2
i
dt;

(5.31)

where the constant C0
3 depends on the coefficients and the upper bounds of state and adjoint variables.

Using the same reasoning for the remaining eight state and adjoint variables, we obtain their integral equations and their
estimates. The combination of these eighteen estimates yields

1
2
ðp1 � p1Þ2ðTÞ þ

1
2
ðp2 � p2Þ2ðTÞ þ

1
2
ðp3 � p3Þ2ðTÞ þ

1
2
ðp4 � p4Þ2ðTÞ

þ1
2
ðp5 � p5Þ2ðTÞ þ

1
2
ðp6 � p6Þ2ðTÞ þ

1
2
ðp7 � p7Þ2ðTÞ þ

1
2
ðp8 � p8Þ2ðTÞ

þ1
2
ðp9 � p9Þ2ðTÞ þ

1
2
ðq1 � q1Þ2ð0Þ þ

1
2
ðq2 � q2Þ2ð0Þ þ

1
2
ðq3 � q3Þ2ð0Þ

þ1
2
ðq4 � q4Þ2ð0Þ þ

1
2
ðq5 � q5Þ2ð0Þ þ

1
2
ðq6 � q6Þ2ð0Þ

þ1
2
ðq7 � q7Þ2ð0Þ þ

1
2
ðq8 � q8Þ2ð0Þ þ

1
2
ðq9 � q9Þ2ð0Þ

þ6

ZT
0

h
ðp1 � p1Þ2 þ ðp2 � p2Þ2 þ ðp3 � p3Þ2 þ ðp4 � p4Þ2 þ ðp5 � p5Þ2 þ ðp6 � p6Þ2

þðp7 � p7Þ2 þ ðp8 � p8Þ2 þ ðp9 � p9Þ2 þ ðq1 � q1Þ2 þ ðq2 � q2Þ2 þ ðq3 � q3Þ2

þ ðq4 � q4Þ2 þ ðq5 � q5Þ2 þ ðq6 � q6Þ2 þ ðq7 � q7Þ2 þ ðq8 � q8Þ2 þ ðq9 � q9Þ2
i
dt

�
�
~D1 þ ~D2e

36T
�ZT

0

h
ðp1 � p1Þ2 þ ðp2 � p2Þ2 þ ðp3 � p3Þ2

þðp4 � p4Þ2 þ ðp5 � p5Þ2 þ ðp6 � p6Þ2 þ ðp7 � p7Þ2 þ ðp8 � p8Þ2 þ ðp9 � p9Þ2
þðq1 � q1Þ2 þ ðq2 � q2Þ2 þ ðq3 � q3Þ2 þ ðq4 � q4Þ2 þ ðq5 � q5Þ2 þ ðq6 � q6Þ2
þ ðq7 � q7Þ2 þ ðq8 � q8Þ2 þ ðq9 � q9Þ2

i
dt:

From this, we deduce that
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�
6� ~D1 � ~D2e

36T
�ZT

0

h
ðp1 � p1Þ2 þ ðp2 � p2Þ2 þ ðp3 � p3Þ2

þðp4 � p4Þ2 þ ðp5 � p5Þ2 þ ðp6 � p6Þ2 þ ðp7 � p7Þ2 þ ðp8 � p8Þ2 þ ðp9 � p9Þ2
þðq1 � q1Þ2 þ ðq2 � q2Þ2 þ ðq3 � q3Þ2 þ ðq4 � q4Þ2 þ ðq5 � q5Þ2 þ ðq6 � q6Þ2

þ ðq7 � q7Þ2 þ ðq8 � q8Þ2 þ ðq9 � q9Þ2
i
dt � 0;

(5.32)

where the constants ~D1 and ~D2 depend on the coefficients and the upper bounds on state and adjoint variables.

By choosing 6> ~D1 þ ~D2 and T < 1
36 ln

 
6�~D1
~D2

!
, it follows that pi ¼ pi and qi ¼ qi, for i ¼ 1, …, 9. Thus, the solution of the

optimality system is unique for T sufficiently small. ,

Theorem 5.3. implies that the unique optimal controls u*1, u
*
2 and u*3 are characterized in terms of the unique solution of the

optimality system.
6. Numerical simulations

In this section, we simulate the COVID-19 model (2.2) as a function of time. Recall that COVID-19 is eliminated from the
population if Rc <1 and persists whenever Rc >1. The parameter values used here are given in Table 1. Most of the pa-
rameters were obtained from (Tang et al., 2020), n is from (Liu et al., 2020), m is from (WHO, 2020a, 2020b) and some are
chosen arbitrarily to satisfy the stability property of the disease-free equilibrium as well as the endemic equilibrium of the
COVID-19 model (2.2). Taking the parameter values from Table 1, except: b ¼ 3.62 � 10�7, h1 ¼ 0.9, a0 ¼ 10�12, m ¼ 1/57,
d1 ¼ 0.156986, we obtain Rc ¼ 0:3073<1. Here we consider the following four sets of initial conditions:

Initial-1: (S(0), E(0), A(0), I(0), U(0), Q(0), H(0), V(0), R(0)) ¼ (12081, 8, 0, 0, 0, 80, 10, 1, 0),
Initial-2: (S(0), E(0), A(0), I(0), U(0), Q(0), H(0), V(0), R(0)) ¼ (20081, 16, 0.5, 0.2, 0.3, 100, 20, 1.4, 10),
Initial-3: (S(0), E(0), A(0), I(0), U(0), Q(0), H(0), V(0), R(0)) ¼ (50000, 26, 1.3, 0.4, 0.7, 200, 28, 2, 20),
Initial-4: (S(0), E(0), A(0), I(0), U(0), Q(0), H(0), V(0), R(0)) ¼ (100000, 33, 2.3, 0.55, 1.1, 320, 40, 4, 40).

In these cases, the disease-free equilibrium E0 is globally asymptotically stable. Figs. 5 and 6 clearly confirm this fact and
we also observe that the COVID-19 system initiating with Initial-1, Initial-2, Initial-3 and Initial-4 approaches the disease-free
equilibrium E0 ¼ ð2 � 105;0;0;0;0;0;0;0;0Þ. Thus, the numerical findings support Theorem 4.1. This illustrates the fact that
COVID-19 could be eliminated from the Cameroonian population.

Again considering the parameter values from Table 1 and taking b ¼ 2.08 � 10�6, h1 ¼ 0.49, a0 ¼ 10�7, m ¼ 1/59,
d1 ¼ 0.156986, we obtain Rc ¼ 1:6543>1. Here we also consider four sets of initial conditions:

Initial-5: (S(0), E(0), A(0), I(0), U(0), Q(0), H(0), V(0), R(0)) ¼ (120810, 8, 0, 0, 0, 80, 10, 1, 0),
Initial-6: (S(0), E(0), A(0), I(0), U(0), Q(0), H(0), V(0), R(0)) ¼ (170810, 16, 0.5, 0.2, 0.3, 100, 20, 1.4, 10),
Initial-7: (S(0), E(0), A(0), I(0), U(0), Q(0), H(0), V(0), R(0)) ¼ (280050, 26, 1.3, 0.4, 0.7, 200, 28, 2, 20),
Initial-8: (S(0), E(0), A(0), I(0), U(0), Q(0), H(0), V(0), R(0)) ¼ (550000, 33, 2.3, 0.55, 1.1, 320, 40, 4, 40).

It follows that the unique endemic equilibrium point is globally asymptotically stable as can be observed numerically from
Figs. 7 and 8, where the state variables initiating with Initial-5, Initial-6, Initial-7 and Initial-8 approach the endemic equi-
librium E* ¼ ð105; 0:3 � 104; 2800; 800; 2500; 900; 0:6 � 104; 99; 1:3 � 105Þ, which agrees with Theorem 4.7. This means
epidemiologically that COVID-19 could persist in Cameroon.

Fig. 9 shows a good fit for total actual recovered individuals and those predicted by the model (2.2).
Figs. 10 and 11 illustrate the magnitude of quarantine and hospitalization. From these Figures, we clearly see that if the

quarantine and hospitalization are operated efficiently, the disease will reduce considerably.
Figs. 12 and 13 illustrate Theorem 4.10.
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Fig. 5. Simulation of the COVID-19 model (2.2) as a function of time using various initial conditions and the parameter values from Table 1 except b ¼ 3.62 � 10�7,
h1 ¼ 0.9, a0 ¼ 10�12, m ¼ 1/57, d1 ¼ 0.156986, and Rc ¼ 0:3073<1.
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Fig. 6. Simulation of the COVID-19 model (2.2) as a function of time using various initial conditions and the parameter values from Table 1 except b ¼ 3.62 � 10�7,
h1 ¼ 0.9, a0 ¼ 10�12, m ¼ 1/57, d1 ¼ 0.156986, and Rc ¼ 0:3073<1.
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Fig. 7. Simulation of the COVID-19 model (2.2) as a function of time using various initial conditions and the parameter values from Table 1 except b ¼ 2.08 � 10�6,
h1 ¼ 0.49, a0 ¼ 10�7, m ¼ 1/59, d1 ¼ 0.156986, and Rc ¼ 1:6543>1.
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Fig. 8. Simulation of the COVID-19 model (2.2) as a function of time using various initial conditions and the parameter values from Table 1 except b ¼ 2.08 � 10�6,
h1 ¼ 0.49, a0 ¼ 10�7, m ¼ 1/59, d1 ¼ 0.156986, and Rc ¼ 1:6543>1.
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We clearly observe from Fig. 12 that the cumulative number of new predicted active cases is higher when quarantine and
hospitalization are not performed thanwhen these control measures are implemented. This means that when condition h1 <
minfh1e; h1d0

g is satisfied, the use of quarantine and hospitalization could have positive impact on the community. But on
Fig. 13, we see that the cumulative number of new predicted active cases is higher when quarantine and hospitalization are
used thanwhen these control measures are not implemented. This means that when condition h1 >maxfh1e; h1d0

g is satisfied,
the use of quarantine and hospitalization could have negative impact to the community. The contour plots of Fig. 3 show the
subordination of control reproduction number Rc on the quarantine rate e and the hospitalization rate d0 for Cameroon.

Finally, the optimality system constituted of the established state equation (5.1), adjoint equation (5.3), control charac-
terization (5.4)e(5.6) and corresponding initial and final conditions are carried out by using the forward-backward method.
The algorithm starts by solving the state variables equations with a guess for the controls over the simulated time using an
iterative method with forward fourth order Runge Kutta scheme. The state variables system with an initial guess is solved
240



Fig. 9. Fitted results from the COVID-19 model (2.2) using the parameter values from Table 1 except b ¼ 2.08 � 10�6, h1 ¼ 0.49, a0 ¼ 10�7, m ¼ 1/59, d1 ¼ 0.156986,
and Rc ¼ 1:6543>1. Here, the red starred line indicates the real recovered cases and the blue line indicates the predicted recovered individuals.

Fig. 10. Time plots for COVID-19 model (5.1) with quarantine and hospitalization(solid line) or without quarantine and hospitalization (dashed line) using various
initial conditions. The parameter values are as given in Table 1, except b ¼ 1.55 � 10�6, h1 ¼ 0.49, a0 ¼ 10�7, m ¼ 1/59, d1 ¼ 0.156986, and Rc ¼ 1:2331> 1.
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forward in time and then the adjoint system (5.3) is solved backward in time by a backward fourth order Runge Kutta scheme.
This iterative process breaks off when the current state, adjoint, and control values converge sufficiently. Here, we choose the
initial condition (S(0), E(0), A(0), I(0), U(0), Q(0), H(0), V(0), R(0)) ¼ (450000, 8, 0, 0, 0, 80, 10, 1, 0) to illustrate the control
strategies. We choose the upper bound b1 of u1 equal to 0.8, owing to the reasonable case in Cameroon that it took at least
average 3 days to quarantine people who have been exposed to COVID-19. We choose the upper bound b2 of u2 similarly to u1
and the upper bound b3 of u3 equal to 0.7. Considering the weight coefficients associated with E, A, I, U, Q, H and V, we choose
B1 ¼100, B2 ¼ 500, B3 ¼ 2000, B4 ¼ 700, B5 ¼ 100, B6 ¼ 1500, B7 ¼ 800, R1 ¼ 3.5 � 107, R2 ¼ 107 and R3 ¼ 2.5 � 108 to illustrate
the optimal strategies. We suppose that the weight coefficient R3 associated with control u3 is greater than R1 and R2 which
have close values associated with the controls u1 and u2, respectively. These assumptions are based on the fact that: the cost
associated with u1 includes the cost of monitoring and quarantining schedule, and the cost associated with u2 includes the
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Fig. 11. Time plots for COVID-19 model (2.2) with quarantine and hospitalization (solid line) or without quarantine and hospitalization (dashed line) using
various initial conditions. The parameter values are as given in Table 1, except b ¼ 1.55 � 10�6, h1 ¼ 0.49, a0 ¼ 10�7, m ¼ 1/59, d1 ¼ 0.156986, and Rc ¼ 1:2331> 1.

Fig. 12. Simulation of the COVID-19 model (2.2) giving the cumulative number of new cases of infection as a function of time and using various initial conditions.
The parameter values are as given in Table 1, except b ¼ 1.55 � 10�6, a0 ¼ 10�7, m ¼ 1/57, d1 ¼ 0.999, and h1 ¼ 0.4, so that Rc ¼ 1:2241>1, h1e ¼ 0.9905, h1d0

¼
0:4145 and h1 <minfh1e; h1d0

g.
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cost of hospital special medical treatment resource, while the cost associated with u3 includes the cost of hydro-alcoholic gel,
disinfectant products and face masks. We observe on Figs. 14 and 15 that when the controls are used, the unreported
symptomatic infectious individuals cases decrease faster thanwhen the strategies are not applied. Moreover, in the presence
of control measures, we have less infectious individuals than in the absence of the control. Also, the compliance with barrier
measures such as the regular washing of hands, the use of hydro-alcoholic gel, wearing facemasks, social distancing rules and
disinfected surfaces can significantly reduce the number of infected and infectious individuals as well as the concentration of
virus in the environment. Thus, the disease could infect a large part of the population if these measures are not followed.

Fig. 16 depicts the extremal control behaviour of u1, u2 and u3. In order to minimize the total infected individuals,
Eþ Aþ IþUþQþH and the concentration of virus in the environment, V, the optimal control u1 stays at its upper bound for a
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Fig. 13. Simulation of the COVID-19 model (2.2) giving the cumulative number of new cases of infection as a function of time and using various initial conditions.
The parameter values are as given in Table 1, except b ¼ 1.55 � 10�6, a0 ¼ 10�7, m ¼ 1/57, e ¼ 0.01, d1 ¼ 0.999, and h1 ¼ 0.9906, so that Rc ¼ 1:5112> 1,
h1e ¼ 0.9905, h1d0

¼ 0:4145 and h1 >maxfh1e; h1d0
g.

Fig. 14. Time plots for COVID-19 model (5.1) with control (solid line) or without control (dashed line). The parameter values are as given in Table 1, except
g1 ¼ 0.7, g2 ¼ 0.5, b ¼ 1.55 � 10�6, h1 ¼ 0.49, a0 ¼ 10�7, m ¼ 1/57.
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Fig. 15. Time plots for COVID-19 model (5.1) with control (solid line) or without control (dashed line). The parameter values are as given in Table 1, except
g1 ¼ 0.7, g2 ¼ 0.5, b ¼ 1.55 � 10�6, h1 ¼ 0.49, a0 ¼ 10�7, m ¼ 1/57.
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short time, approximately 20 days and then steadily decreases to the lower bound in the remaining simulated time.
Meanwhile, the optimal control u2 starts at a lower level value zero, steadily increases to its upper bound and stays for short
time, about 10 days, then steadily decreases to the lower bound in the simulated time until 500 days and, at the end, increases
again to the level value (0.003). In the meantime, the optimal control u3 also starts at a lower level value zero, steadily in-
creases to an upper level value (8.7� 10�5) and stays for a short time, nearly up to 25 days, then is tapered off to a lower level
(2.5 � 10�5), and increases to its upper bound where it stays during two months and finally decreases steadily to the lower
bound over the remaining simulated time.

Note that at the beginning of simulated time, the optimal control u1 is staying at its upper bound in order to quarantine
many exposed individuals (E) to prevent the increasing of the number of the infected classes. But at the beginning of
simulated time, the optimal control u2 seems to start by tracing, testing and then reaches its upper bound where it stays in
order to hospitalize many symptomatic infectious individuals (I) to prevent the increasing of the number of people with
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Fig. 16. The optimal control profiles (a) u1(t), (b) u2(t) and (c) u3(t) with g1 ¼ 0.7, g2 ¼ 0.5, B1 ¼100, B2 ¼ 500, B3 ¼ 2000, B4 ¼ 700, B5 ¼ 100, B6 ¼ 1500, B7 ¼ 800,
R1 ¼ 3.5 � 107, R2 ¼ 107 and R3 ¼ 2.5 � 108.

Fig. 17. The optimal control profiles (a) u1(t), (b) u2(t) and (c) u3(t) with B1 ¼ 100, B2 ¼ 500, B3 ¼ 2000, B4 ¼ 700, B5 ¼ 100, B6 ¼ 1500, B7 ¼ 800, R1 ¼ 3.5 � 107,
R2 ¼ 107 and R3 ¼ 2.5 � 108.
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Fig. 18. Time plots for COVID-19 model (5.1) with control (solid lines) or without control (dashed lines). The parameter values are as given in Table 1, except
b ¼ 1.55 � 10�6, h1 ¼ 0.49, a0 ¼ 10�7, m ¼ 1/57.
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clinical symptoms. Now, we see on Fig. 16 (c) that the optimal control u3 implements the global effort of educational cam-
paigns that run for over 250 days in order to prevent the increasing of the concentration of virus in the environment.

Fig.17 shows the time dependent optimal control u1, u2 and u3, for different values of special medical treatment rate g1 and
mandatory quarantine rate g2. From this figure, we can see that the higher the values of g1 and g2, the more effective the
controls u1 and u2 are, while the control u3 is effective only at 50% of these values.

Figs. 18 and 19 illustrate how optimal control strategies change as the special medical treatment rate g1 and mandatory
quarantine rate g2 vary. These Figures confirm that from 50% of the value of g1 and g2, one could expect a considerable
reduction of the infection in the community.

Fig. 20 represents the evolution number of positive cases in Cameroon from March 6 to July 20, 2020.
7. Conclusion

In this paper, to understand the transmission dynamics of COVID-19 in Cameroon, we formulated a compartmental or-
dinary differential equations model. A particular stress has been placed on quarantine and hospitalized classes. More pre-
cisely, we studied the impact of quarantine and hospitalization on curtailing the spread of the disease. The model is
completely analyzed and the strategies for effective control of the progress of the disease are suggested. Using the method
developed by van den Driessche and Wattmough (van den Driessche and Watmough, 2002), we obtained the control
reproduction numberRc of the model. We constructed a suitable Lyapunov function to prove that system (2.2) has a globally
asymptotically stable disease-free equilibrium whenever the control reproduction number is less than unity. When the
control reproduction number exceeds unity, the disease-free equilibrium loss its stability and gives rise to a unique endemic
equilibrium. By a skillful construction of a suitable Lyapunov function we proved that the endemic equilibrium is globally
asymptotically stable. The efficiency of the quarantine of exposed cases and the isolation of hospitalized cases is dependent on
the size of the modification parameter for the reduction of infectiousness of hospitalized individuals h1. It is shown that the
use of quarantine and hospitalization could have positive impact on the population if h1 <minfh1e;h1d0

g, no impact if h1 ¼
minfh1e;h1d0

g, and harmful impact if h1 >maxfh1e;h1d0
g. Adding to this investigation the optimal control problem, we suggest

quarantine and hospitalization as good strategies for controlling the disease. Note that COVID-19 is still ongoing in Cameroon
and in many other countries in the world. This investigation attempt to provide Cameroonian authorities with some in-depth
understanding of the disease dynamics so as to help them take better decisions for fighting against this highly deadly
pandemic.
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Fig. 19. Time plots for COVID-19 model (5.1) with control (solid lines) or without control (dashed lines). The parameter values are as given in Table 1, except
b ¼ 1.55 � 10�6, h1 ¼ 0.49, a0 ¼ 10�7, m ¼ 1/57.
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Fig. 20. Evolution number of positive cases. Source: Cameroon Ministry of Public Health.
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