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Application of the CAR targeting strategy in solid tumors is challenged by the need for

adequate target antigens. As a consequence of their tissue origin, embryonal cancers

can aberrantly express membrane-anchored gangliosides. These are carbohydrate

molecules consisting of a glycosphingolipid linked to sialic acids residues. The

best-known example is the abundant expression of ganglioside GD2 on the cell surface

of neuroblastomas which derive from GD2-positive neuroectoderm. Gangliosides are

involved in various cellular functions, including signal transduction, cell proliferation,

differentiation, adhesion and cell death. In addition, transformation of human cells

to cancer cells can be associated with distinct glycosylation profiles which provide

advantages for tumor growth and dissemination and can serve as immune targets.

Both gangliosides and aberrant glycosylation of proteins escape the direct molecular

and proteomic screening strategies currently applied to identify further immune targets

in cancers. Due to their highly restricted expression and their functional roles in

the malignant behavior, they are attractive targets for immune engineering strategies.

GD2-redirected CAR T cells have shown activity in clinical phase I/II trials in neuroblastoma

and next-generation studies are ongoing. Further carbohydrate targets for CAR T cells in

preclinical development are O-acetyl-GD2, NeuGc-GM3 (N-glycolyl GM3), GD3, SSEA-4,

and oncofetal glycosylation variants. This review summarizes knowledge on the role and

function of somemembrane-expressed non-protein antigens, including gangliosides and

abnormal protein glycosylation patterns, and discusses their potential to serve as a CAR

targets in pediatric solid cancers.
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INTRODUCTION

The potency of T cells to control solid tumor growth is illustrated by activity of immune checkpoint
inhibitors in several tumors in adults (1, 2). Most childhood tumors are not optimal candidates for
this type of immunotherapy, for the following reasons [reviewed in (3)]: Checkpoint inhibitors
unleash antigen-specific effector responses of T cells that were reversibly tolerized by inhibitory
ligand-receptor interactions. The key prerequisite for efficacy is the presence of T cells with
native specificity against tumor-associated neoantigens (4). To be recognized by T cells, the
antigens must be processed and presented by the major histocompatibility complex to engage
native T cell receptors (Figure 1). Tumor neoantigens are created by somatic mutations in the
tumor microenvironment (5). Consequently, high non-synonymous somatic mutation frequency
has emerged as one of the major prerequisites for successful T cell therapy with checkpoint
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FIGURE 1 | Structures of T cell receptor (left) and chimeric antigen receptor (CAR) (right). T cell receptors recognize intracellular antigens presented as peptides on

MHC class I. Chimeric antigen receptors redirect T cells to surface antigens independent of MHC-restricted antigen presentation.

inhibitors (6, 7). Most childhood tumors have very low
mutational burdens, and the individual recurrent mutations
typically found in childhood tumors and sarcomas are not
coding for effective tumor rejection antigens. Consequently, the
microenvironment of typical pediatric tumors generally is devoid
of antigen-specific T cells that could potentially be reactivated by
immune checkpoint inhibition (8, 9). In fact, the clinical results
of early-phase trials of checkpoint inhibitors in childhood cancers
are discouraging (10, 11).

An alternative strategy to exploit T cells for cancer therapy
is adoptive transfer of T cells that recognize tumor-associated
surface antigens by genetic modification with chimeric antigen
receptors (CARs) (12). CARs link the single-chain antigen-
binding domains of amonoclonal antibody to activation domains
of costimulatory receptors and the T cell receptor ζ chain
(Figure 1). This allows recognition of antigens expressed on
the cell surface, independent of peptide presentation on MHC.
CAR T cells directed against the B lineage antigen CD19 have
been highly effective to control and eliminate B cell cancers
in both children and adults (13–16). Intensive efforts are on
the way to extend the promise of CAR T cell therapy to solid
tumors. One difficulty is the identification of adequate target
antigens. Effective CAR T cell therapy requires the presence
of a target antigen selectively expressed on the cell surface of
tumor cells but not by essential normal tissues. Examples for
protein antigens targeted by CARs in advanced preclinical or
early clinical development are IL13Rα (17), HER2 (18), EGFRvIII
(19), CEA (20), mesothelin (21), EphA2 (22). Overall, the range
of adequate antigens beyond B lineage markers is limited.

Standard high-throughput screening tools used to identify
novel cancer-associated antigens, including antigens enriched
or preferentially expressed on the tumor cell membrane, analyse
gene transcripts and proteins (23). The approaches do not
cover the full spectrum of potential CAR targets. Unlike T
cell receptor targets, antigens recognized by CARs include
non-protein targets (Figure 2). These can be gangliosides
(glycolipids/glycosphingolipids) or abnormally-glycosylated
normal proteins (glycoforms) contributing to the outer

glycan layer of the cell surface. Gangliosides are a subclass
of glycosphingolipids characterized by the presence of one
or more sialic acids. Aberrant glycosylation can include
sialylation, fucosylation, O-glycan truncation, and N- and
O-linked glycan branching. Both aberrant expression of
carbohydrates and acquisition of aberrant glycosylation profiles
can accompany malignant transformation. They can be unique
to the malignant cell, or be restricted to immature cells but
not adult somatic tissues (cancer-testis antigens), and they can
contribute to tumor growth and metastasis and to immune
escape. Due to their selective expression and biological role
in the malignant behavior of the tumor cells, non-protein
targets may be attractive target antigens. Expressed in the outer
leaflet of the plasma membrane on the cell surface, they are
amenable to antibody-based immunotherapeutic strategies,
including antibodies (24, 25), immunotoxins, -cytokines or
radioconjugates (26, 27) and more recently CAR-engineered T
cells.

The first to show that CARs can redirect T cells to
carbohydrates and thereby extend application of targeted
T cell therapy to antigens not naturally recognized by
T cells was Zelig Eshhar’s group (28). They generated a
CAR against the difucosylated carbohydrate Lewis-Y and
found that it can effectively induce T cell lysis of antigen-
expressing tumor cells despite low affinity. Lewis-Y can
be coupled to various proteins and lipids, including some
tumor-associated antigens. It is expressed at high levels
on many types of epithelial-derived cancers as well as a
proportion of cells in acute myeloid leukemia (AML) and in
multiple myeloma. By contrast, it is completely absent from
childhood solid tumors and other cancers of neuroectodermal
or mesodermal origin (29). The first carbohydrate used as a
CAR target in a pediatric cancer was the ganglioside antigen
GD2 (30).

This review summarizes knowledge on the current most
promising carbohydrate antigens for CAR T cell therapy in
pediatric cancers, including GD2 and another ganglioside, SSEA-
4, as well as aberrant glycosylation motifs.
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FIGURE 2 | Glycosphingolipids are located in microdomains of the lipid bilayer of the plasma membrane, along with membrane phospholipids, cholesterol and

transmembrane proteins such as glycosylated proteins.

Glycolipid Targets: Gangliosides
Gangliosides were among the first antigens exploited as
tumor targets for CARs. Gangliosides are complex mammalian
glycolipids. They are expressed in all vertebrates and are identical
in humans and in mice and other non-human species. Located
in specific microdomains of the outer leaflet of the plasma
membrane, they interact with membrane phospholipids and
transmembrane receptors (Figure 2). As so-called glycosynapses,
carbohydrate-containing microdomains are involved in cell
adhesion and subsequent signal transduction. Gangliosides
have been attributed various functions in cell-cell adhesion,
viability, proliferation and in the modulation of cell signaling
pathways (31). Ganglioside biosynthesis is performed in the
Golgi apparatus by the stepwise addition of monosaccharides to
ceramide by specific glycosyltransferases along complex synthesis
pathways (Figure 3). As a consequence of the stepwise synthesis
pathways from its precursors, individual gangliosides are often
expressed in the context of their up- and downstream epitope
neighbors (32).

Individual gangliosides are expressed in a tissue-
specific manner, with abundant expression on immature
neural, sympathoadrenergic and mesenchymal cells during
embryogenesis (33–36). While the predominant gangliosides
in early embryonic brains are simple gangliosides (GM3, GD3),
later developmental stages are associated with more complex
gangliosides with two or more sialic acid residues, such as GD2,
GM1a, GD1a, GD1b, and GT1b (Figure 3). After birth, expression
is mainly restricted to the central nervous system where complex
gangliosides at low levels are found on neuronal cell bodies. The
changes in the pattern of ganglioside expression during cellular
differentiation suggest specific roles of individual gangliosides
at different neurodevelopmental stages. Low-level expression
is also found in peripheral nerves, mesenchymal stroma cells
(34), and skin melanocytes (37). The pattern of expression

on healthy tissues raises important safety considerations for
ganglioside-targeted therapy which will be discussed in more
detail. Substantial alterations in ganglioside expression have been
observed in cancer cells (38).

Ganglioside GD2: Expression and Biology in
Tumor Cells
Corresponding to its consistent association with immature
neural crest tissue, aberrant expression of GD2 characterizes
cancers of neuroectodermal origin, such as melanoma (39) and
neuroblastoma (40). GD2 was further found to be expressed
in several additional childhood tumors, including tumors of
the CNS [retinoblastoma (41), diffuse intrinsic pons glioma
(42)] and mesenchymal malignancies of the bone (Ewing
sarcoma, osteosarcoma) and soft tissues (rhabdomyosarcoma,
desmoplastic small round cell tumors) (43–47). Among non-
melanoma cancers in adults, ganglioside GD2 was detected in a
proportion of tumor cells in breast cancers (48) and in small cell
lung cancer (49).

The mechanisms regulating expression of GD2 in normal
human development and in cancer have not been resolved in
detail. In general, expression of gangliosides during development
is regulated through stage- and tissue-specific expression
of ganglioside synthase genes (50). Key enzymes in GD2

synthesis are the glycosyltransferases GD3 synthase (GD3S)
which synthesizes GD3 from GM3 and GM2/GD2 synthase,
converting GD3 to GD2 (Figure 3). GD3S is expressed during
early stages of neuronal differentiation (51). Among adult human
tissues, GD3S mRNA expression is restricted to the brain. GD3S
transcripts are found in GD2+ tumor cells of various histology
(52), and surface expression of GD2 in breast cancer cells was
found to be associated with expression of genes encoding for
these enzymes, especially GD3S (53).
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FIGURE 3 | Biosynthesis pathways for gangliosides.

The activity of glycosyltransferases in normal tissues and
in tumors is regulated at the transcriptional level. Studies of
GD3S promoter activity in breast cancer and neuroblastoma
cell lines have demonstrated a role for nuclear factor κB
(NFκB) activation in transcriptional activation of the GD3S
gene (52, 54). Recent studies highlight the role of epigenetic
mechanisms in regulating glycosyltransferase gene expression
during cellular differentiation and brain development [reviewed
in (55)]. Specifically, hyperacetylation of histones was found to

contribute to developmental alterations of expression of GD3S
and other key enzymes of ganglioside synthesis (56, 57). Thus,
epigenetic regulation of enzymes upstream of GD2 may be
involved in the aberrant expression of GD2 in childhood cancers.

The biological effects of GD2 in both normal development
and in tumors are not fully understood. GD2 expressed in tumor
cells was found to contribute to malignant properties, including
cell proliferation, invasive properties and motility (58). One
potential mechanism is modulation of signal transduction along
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the pathways originating from GD2-containing glycosynapses.
Indeed, examples for GD2-mediated activation of receptor
tyrosine kinases and subsequent deregulation of critical pathways
and molecules determining cell function have been reported
(59, 60). Gangliosides interact with transmembrane proteins in
the formation of lipid shells [reviewed in (61)]. The interaction
partners of GD2 within the lipid microdomains and the structural
relationships and downstream signaling of such interactions in
normal cells and in cancer have not yet been systematically
analyzed. In addition, interaction of cell surface GD2 with
molecules in the extracellular matrix, used by neural crest
cells during embryonic development to travel to distant sites,
could contribute to tissue invasion and metastasis of GD2-
positive cancer cells. In breast cancer, GD2 was identified as a
surface marker of a subpopulation of tumor cells with specific
functional properties, including self-renewal, chemoresistance,
and epithelial-mesenchymal transition (EMT) (53). Inhibition of
GD2 biosynthesis by genetic knockdown of GD3S in breast cancer
cells hampered mammosphere formation, tumor initiation, and
cell motility, as well as EMT and metastasis (53, 62). Besides
cell-intrinsic functions, GD2 can contribute to immune invasion
by the activation and support of immunosuppressive myeloid
bystander cells in the tumor microenvironment (63). The
relevance of each of these mechanisms in childhood cancers with
uniform or variable GD2 expression, such as neuroblastoma and
Ewing sarcoma or osteosarcoma, respectively, has not yet been
elucidated.

Ganglioside GD2 as an Immunotherapeutic
Target
Due to its restricted tissue expression, GD2 is a highly ranked
target for immunotherapy (64). It was first evaluated as a
therapeutic target in neuroblastoma, a cancer with abundant and
highly consistent GD2 expression reminiscent of its origin from
GD2-positive neuroectoderm (65).

Clinical development of GD2 targeting started with two
murine monoclonal antibodies, IgG3 antibody 3F8 and IgG2a
class-switched 14.G2a, in phase I clinical trials in neuroblastoma
patients in the late 1980s (24, 25). Both antibodies had similar
toxicity profiles with often severe side effects including pain,
fever, hypersensitivity reactions and capillary leak syndrome.
Several measures were taken to enhance the activity of
the antibody by promoting antibody-dependent cell-mediated
cytotoxicity (ADCC) and reduce toxic side effects, especially
the pain syndrome, attributed to complement activation by
the Fc domain (66). Chimeric and humanized antibodies
were developed to replace murine by human Fc domains
to enhance ADCC (67, 68). Subsequent clinical studies used
anti-GD2 antibody to eliminate minimal residual disease after
completion of intensive multimodal treatment, either alone (69),
or combined with granulocyte-macrophage colony stimulating
factor GM-CSF to activate granulocytes (70), or in addition
with interleukin-2 to stimulate NK cells (71). In a randomized
phase III trial, the combined immunotherapeutic regimen
resulted in significant increases of event-free and overall
survival of high-risk neuroblastoma patients at 2 years (71).

The toxicities of anti-GD2 antibody therapy have remained
significant but are manageable by optimized supportive care
(72). Although the contribution of anti-GD2 antibody therapy to
the long-term outcomes after high-risk neuroblastoma treatment
has not ultimately been proven, it is now considered a
standard component of state-of-the-art treatment regimens (73).
Importantly, antigen escape variants by downregulation or loss
of GD2 expression in response to GD2-specific targeting have
been rare (71, 74, 75), supporting the value of this antigen in
neuroblastoma.

Redirecting T cells to GD2 exploits the trafficking qualities and
potent effector functions of T cells and thus could be a more
effective strategy to target GD2-expressing tumor cells. The first
CAR generated against GD2 was derived from the single-chain
Fv (scFv) domains of monoclonal antibody 14.G2a (76), linked
to the T cell receptor ζ chain (30). 14.G2a-redirected CAR T
cells specifically and effectively lysed GD2-positive neuroblastoma
cells in vitro. Since soluble GD2 is present at high concentrations
in serum of advanced-stage neuroblastoma patients, competitive
binding and blockade of GD2-directed CAR T cell activity had
to be excluded. Soluble GD2 did not impede tumor cell lysis by
14.G2a-CAR T cells in vitro (30). Lack of a competing effect
of shed antigen on the antitumor activity of CAR-redirected T
cells had previously been shown for another carbohydrate target,
Lewis-Y (77), and also for protein antigens shed into the blood
stream by tumor cells such as CEA (78).

In an early clinical trial, treatment of neuroblastoma patients
with autologous virus-specific T cells expressing the anti-GD2

CAR was safe, with some evidence of activity (79–81). Further
phase I clinical studies have used signal-enhanced CARs and
refined treatment regimens (82, 83). The presence of GD2 at
low levels on neuronal cell bodies has caused significant safety
concerns for the clinical use of GD2-specific CAR T cells.
Whereas, the brain is protected from intravenous infusions of
GD2 antibody by the blood-brain barrier, CAR T cells effectively
penetrate into the CNS. Neither of the clinical trials performed so
far has shown any evidence of neurotoxic side effects or pain (79,
80, 83), and this includes a recent trial demonstrating impressive
clinical responses associated with tumor lysis syndrome and
cytokine release (83). Thus, the lack of significant on-target off-
tumor toxicities in the central and peripheral nervous system
cannot be attributed to lack of activity. As the 14.G2a-derived
GD2-specific CAR was designed to contain the isolated scFv
fragment without any immunoglobulin heavy chain components
to bridge it from the plasma membrane, the lack of any pain
side effects is consistent with the hypothesis that activation of
complement by the Fc domain of anti-GD2 antibodies is the
responsible mechanism for this side effect (66). In contrast to
clinical trials, neurotoxicity was reported in a mouse model
following treatment with T cells expressing an affinity-enhanced
14.G2a-based CAR (84). Clinical signs of encephalopathy in this
model were associated with T cell infiltration in brain regions
with low-level GD2 expression. Whether the clinical picture
indeed represented on-target cross-reactivities with murine brain
or cytokine-mediated off-target toxicities, as well-known from
the use of CD19-specific CAR T cells, remains controversial
(85). In further xenograft models, potent antitumor activity of
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GD2-specific CAR T cells was not associated with neurotoxicities
(45, 86). This encouraged the development of this therapy even
for GD2-positive CNS tumors (42). In preclinical studies, GD2-
specific CAR T cells were highly active against GD2-positive
diffuse intrinsic pons glioma xenografts in the CNS. Neurological
symptoms occurring in some of the animals were associated
with tumor swelling by pseudoprogression, without histological
damage of brain tissue. As long as safety concerns remain, the
use of NK cells rather than long-lived T cells could be a safer
alternative to targeting GD2-positive tumors (44).

Preclinical data support the value of GD2-specific CARs
also for immunotherapy of GD2-expressing sarcomas, such
as Ewing sarcomas (44, 87, 88) and osteosarcomas (45). In
contrast to neuroblastomas, only a proportion of these tumors
express significant levels of GD2, and antigen expression is often
heterogeneous (45, 87). Thus, GD2-specific immunotherapy in
childhood sarcomas will have to be combined with strategies
eliminating also GD2low and GD2neg tumor cell subpopulations
and preventing antigen-negative immune escape.

A highly related variant of GD2 is O-acetyl-GD2 (OAcGD2),
characterized by a 9-O-acetyl modification on the terminal sialic
acid of GD2. While tumors that express GD2 were generally found
to also express the O-acetylated variant, human peripheral nerve
fibers do not express OAcGD2 (89). Consequently, antibodies
targeting this variant were developed to avoid the allodynic
properties of GD2 (90). Whether selective recognition of the O-
acetylated variant of GD2 is preferable for GD2-specific CARs is
not clear.

Ganglioside GD3: An Alternative or
Complementary Immune Target?
GD3 is a b-series ganglioside containing two sialic acids. It
is produced from its precursor GM3 by the activity of GD3S.
Physiologically it is highly expressed in embryonic neural stem
cells (36). Its interest as a tumor antigen has mostly been in
melanoma where GD3 is highly expressed, with no or minimal
levels of GD3 on human normal melanocytes and restricted
expression on other normal tissues to low levels on retinal
pigment cells and in the CNS. GD3 has been investigated as a
target for antibody therapy in melanoma (91, 92), and anti-GD3

CARs are in preclinical development (93, 94).
While neuroblastomas have only moderate expression of

GD3 compared to GD2, an immunohistochemical analysis of
various childhood sarcomas has demonstrated a high prevalence
of GD3 expression especially in osteosarcomas, but also in a
proportion of Ewing sarcomas and rhabdomyosarcomas (43).
Moreover, malignant gliomas express high levels of GD3 as
well as O-acetylated GD3 and GD3S (95, 96), and expression
is associated with the degree of malignancy (96) and with
neurosphere formation and clonogenic properties (97). A GD3-
specific antibody, acting via complement-dependent cytotoxicity,
was found to inhibit glioblastoma tumor growth in an in vivo
model (97).

Thus, GD3 could be a CAR target in both CNS tumors and
extracranial tumors in the pediatric population, either alone or in
combination with GD2, to broaden T cell recognition in cancers

with heterogeneous expression of either of the two gangliosides.
However, potential on-target/off-tumor side effects by reactivity
of GD3-specific CAR T cells with CNS tissues, especially with the
retina, will have to be studied diligently.

Ganglioside N-Glycolyl GM3 (NeuGcGM3)
GM3 is a monosialoganglioside and the direct precursor of
GD3 (Figure 3). Whereas, the acetylated form, N-acetyl GM3,
is abundant in normal tissues, humans in contrast to other
mammals cannot generate N-glycolylated GM3 (NeuGcGM3)
due to a constitutional deletion in the gene encoding the
enzyme which catalyzes the conversion of N-acetyl to N-glycolyl
sialic acid (98). Expression of NeuGcGM3 was observed in
human cancers and explained by expression of the sialic acid
transporter under hypoxic conditions, resulting in incorporation
of non-human sialic acid from dietary supplies (99). In fact,
natural xeno-autoantibodies against NeuGcGM3 were found
in human serum and correlated with the presence of cancers
(100). Among pediatric tumors, neuroblastomas, Wilms tumors,
Ewing sarcomas and retinoblastomas were reported to express
NeuGcGM3 (101) whereas various normal tissues were negative
[summarized in (102)]. An anti-idiotype vaccine, racotumumab,
was able to induce antibody responses to the target in a
phase I clinical trial in refractory childhood cancers, without
any evidence for off-tumor toxicities (103). Direct antibody
or CAR targeting of this antigen has not yet reached clinical
translation. Again, although immunoreactivity of the anti-
NeuGcGM3 antibody has so far been restricted to tumor tissues,
interactions with healthy tissues, with the potential to cause
limiting toxicities, cannot be excluded.

Stage-Specific Embryonic Antigen-4
(SSEA-4): A Marker for Embryonic Stem
Cells
SSEA-4 is a globo-series ganglioside synthesized from SSEA-3
by the enzyme ST3 beta-galactoside alpha-2,3-sialyltransferase 2
(ST3GAL2) (104) (Figure 4). As other glycosphingolipids, SSEA-
4 is a component of glycosynapses of the plasma membrane
(Figure 2). Due to its highly restricted expression in pluripotent
human embryonic stem cells, SSEA-4 conceptually is an attractive
target for CAR T cell therapy. During human preimplantation
development, SSEA-4 is first observed on the pluripotent cells
of the inner cell mass and lost upon differentiation (105). After
birth, human germ stem cells in the testis and ovary (106,
107) as well as mesenchymal stem cells (108) express SSEA-4.
Its biological function has not yet been resolved in detail. In
human tumors, SSEA-4 was first identified in a teratocarcinoma
cell line (109). It was further found to be overexpressed in
osteosarcoma (110), prostate cancer (111), breast cancer (112),
and glioblastoma (113).

Several studies suggest that SSEA-4 expression in cancer
marks subpopulations with specific biological properties within
the tumor bulk. Among osteosarcoma cells, SSEA-4-positive
subpopulations, but not SSEA-4-negative tumor cells, reliably
established xenografts in mice, and in patients with this cancer,
the frequency of SSEA-4 expressing tumor cells was inversely
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FIGURE 4 | Biosynthesis pathway for globo-series gangliosides.

correlated with overall survival (110). Moreover, tumor tissue
extracted after chemotherapy showed a higher number of SSEA-
4-positive tumor cells, suggesting selection by chemotherapy,
and/or an upregulation of the antigen by cytotoxic agents (110).
In prostate cancer, SSEA-4 expressing cell subpopulations were
highly tumorigenic, had higher cellular adhesion and a migratory
phenotype, indicating a role of SSEA-4 in cancer invasion (111).
SSEA-4 in breast cancer cells was found to be highly expressed
in a subpopulation of chemotherapy-resistant tumor cells, and
expression of enzyme ST3GAL2 was a predictive marker for
poor outcome (112). In astrocytomas, SSEA-4 expression was
associated with higher tumor grades (113).

Selective presence in cancer cells and association with self-
renewing and migratory properties makes SSEA-4 a candidate
target for antibody-based immunotherapies. In preclinical
experiments, the SSEA-4 specific monoclonal antibody MC 813-
70 was indeed active to inhibit the growth of glioblastomas
in nude mice (113). Apparent toxicities were not described
in this model (113). By contrast, SSEA-4-specific CAR T cells
were found to cause major alterations in the composition of
the hematopoietic compartment in a preclinical mouse model,
suggestive of on-target/off-tumor toxicity (114). Whether SSEA-
4 expression in humans after birth is sufficiently restricted to
cancer cells to allow for safe targeting of cancer with CAR-
engineered T cells remains an open question.

Carbohydrate Modifications of Cell
Surface Proteins
Besides membrane glycolipids, aberrant glycosylation of cell
surface proteins in cancers leads to expression of distinct
glycoproteins which could allow for selective CAR targeting.

Cancer-associated cell surface glycosylation was shown to be
directly involved in malignant transformation and metastasis
[reviewed in (115)], supporting the potential of glyco-epitopes
as immune targets. The most prevalent glyco-epitopes in
carcinomas are Tn (GalNAcα1-Ser/Thr) and sialyl-Tn (STn,
NeuAcα2,6GalNAc-Ser/Thr). Tn and STn are present on many
glycoproteins expressed in epithelial cancers, including MUC1
(116, 117). MUC1 carring such variations was associated with
poor prognosis, reduced chemosensitivity and with immune-
inhibitory properties in breast cancer (116).

The first CARs against MUC1 were directed against the
protein core. Their tumor selectivity was mediated by MUC1
hypoglycosylation which enabled the scFv to access the protein
(118).More recently, CARs were directed to specific truncatedO-
glycopeptide epitopes not expressed on normal tissues and shown
to differentiate between wild-type and Tn-glycoforms of MUC1
(117). CART cells against Tn-MUC1 effectively controlled tumor
growth in murine xenograft models. Thus, aberrant glycosylation
can turn a self-antigen into a neoantigen which can serve as target
for tumor rejection by CAR T cells.

Proteins that recognize glycans, so-called lectins, could be
alternative recognition domains for CARs targeting aberrant
glycosylation. In a recent report, lectins were identified that
specifically bind to a fucosylated glycan epitope on the surface
of pancreatic cancer cell lines (119).

In pediatric cancers, oncofetal chondrosulfate (ofCS)
modifications of glycosaminoglycans attached to proteoglycans
on the cell surface have potential to serve as CAR targets
(120). Chondroitin sulfate chains normally restricted to the
placenta are found on many cancer-associated proteoglycans,
including CSPG4, syndecan-1,−4, CD44, and glypican-1, with
widespread expression also in pediatric tumors (120). Placental
ofCS is detected by malaria protein VAR2CSA, suggesting
a role in pregnancy-associated malaria (120). Studies using
VAR2CSA as a model ligand for ofCS demonstrated a key role
of this modification in the malignant phenotype, especially
in tumor cell motility and metastatic potential (121). The
ligand was further found to be able to isolate circulating
tumor cells from peripheral blood (122). Thus, ofCS could
be both a marker and a therapeutic target of the highly
metastatic subpopulation of tumor cells across various types
of cancer, including childhood solid tumors. A concern is the
variability of protein glycosylation, which despite the biological
function of the oncofetal modification could allow easy escape
from immune targeting. Moreover, lack of expression on
normal tissues besides placenta will have to be unequivocally
demonstrated.

Outlook
The feasibility of redirecting T cells against carbohydrate antigens
which they do not normally recognize using CARs has been well
demonstrated in both preclinical and clinical studies. Still, among
the large numbers of CAR targets currently explored, relatively
few are non-protein antigens. Carbohydrate antigens may be
under-studied for technical reasons. Immunohistochemistry
detection of carbohydrates is often limited to cryopreserved
material not generally available from biopsies of pediatric tumors.
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Gangliosides and other glycolipids do not appear in gene and
protein expression analyses, and genes encoding for the enzymes
necessary for ganglioside synthesis are not useful surrogates
to predict expression of specific gangliosides since these are
products of numerous glycoslytransferases. A major challenge
to the identification of cancer-associated glycosylation variants
is their diversity and heterogeneity. Known carbohydrate targets
in cancer were identified by their interaction with monoclonal
anti-tumor antibodies followed by analysis of the chemical
structure of the antibody target. Novel mass spectrometry-
based technologies in modern glycomics now allow systematic
and high-throughput comparative analysis of the patterns
of gangliosides and oligosaccharides in tissues, followed by
purification and structural elucidation (123–125). Glycomic
screening of the cancer cell surface in pediatric cancers could be
a useful next step to identify novel carbohydrate targets for CAR
gene-modified T cells (126).

Many questions with regard to the tissue specificity and
biology of non-protein antigens are still unanswered. Many
gangliosides are physiologically expressed in a stage- and
tissue-specific manner in human embryogenesis and could be
present on neuronal, mesenchymal or hematopoietic stem cells
after birth, raising important safety concerns. The mechanisms
regulating tissue-specific expression of individual gangliosides
are often unknown but highly relevant to better understand
their biological role. This knowledge may also serve to find
interventions that upregulate presence of the antigen on cancer
cells with heterogeneous antigen expression, a major limitation
for effective tumor targeting by CAR T cells.

While it is unlikely that carbohydrate targets with restricted
expression on tumor cells will be found in the majority of
childhood cancers, novel T cell engineering strategies may allow
safe targeting of antigens despite low level expression in normal
tissues. One approach is combinatorial antigen recognition,
resulting in full T cell activation responses only in the presence
of two or more target antigens. For this purpose, T cells can be

cotransduced with a CAR that provides suboptimal activation in
response to antigen, along with a chimeric costimulatory receptor
that recognizes a second antigen (127). Alternatively, modular
synthetic receptors were designed on the basis of the capacity
of Notch receptors to perform transcriptional switches (128).
Engagement of a first CAR by its target antigen releases an
intracellular synthetic transcription factor that selectively induces
gene expression of a second CAR. In a mouse model, this resulted
in selective clearance of tumors coexpressing both antigens. An
alternative strategy to protect off-target tissues against CAR T
cells is cotransduction with an activating CAR and a CAR that
delivers inhibitory signaling in response to a second antigen
expressed exclusively on normal cells (129).

Moreover, control systems have been developed that allow
to remove T cells on demand in cases of on- or off-target
toxicities. Such suicide switches rely on genes that render the
cells sensitive to prodrugs (130, 131) or proapoptotic genes
activated by dimerization(132), or on surface markers for
antibody-mediated depletion, e.g., truncated epithelial growth
factor receptor (tEGFR) (133) or rituximab(134). An even
safer solution could be “on-switch” CARs. Separation of
intracellular or costimulatory signals from extracellular antigen
recognition in inducible gene expression systems allows to
turn on the respective signaling pathway by small molecules
on demand (135, 136). In the view of the rapidly expanding
toolbox for tuning and controlling the in vivo activity and
persistence of CAR T cells, carbohydrate antigens as well as
protein antigens with and without carbohydrate modifications,
despite low-level coexpression on healthy tissues, deserve
investigation as potential targets for future generations of
CARs.
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