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Abstract

Background: Epigenetic modifications are essential for controlling gene expression. Recent studies have shown
that not only single epigenetic modifications but also combinations of multiple epigenetic modifications play vital
roles in gene regulation. A striking example is the long hypomethylated regions enriched with modified H3K27me3
(called, “K27HMD” regions), which are exposed to suppress the expression of key developmental genes relevant to
cellular development and differentiation during embryonic stages in vertebrates. It is thus a biologically important
issue to develop an effective optimization algorithm for detecting long DNA regions (e.g., >4 kbp in size) that
harbor a specific combination of epigenetic modifications (e.g., K27HMD regions). However, to date, optimization
algorithms for these purposes have received little attention, and available methods are still heuristic and ad hoc.

Results: In this paper, we propose a linear time algorithm for calculating a set of non-overlapping regions that
maximizes the sum of similarities between the vector of focal epigenetic states and the vectors of raw epigenetic
states at DNA positions in the set of regions. The average elapsed time to process the epigenetic data of any of
human chromosomes was less than 2 seconds on an Intel Xeon CPU. To demonstrate the effectiveness of the
algorithm, we estimated large K27HMD regions in the medaka and human genomes using our method,
ChromHMM, and a heuristic method.

Conclusions: We confirmed that the advantages of our method over those of the two other methods. Our
method is flexible enough to handle other types of epigenetic combinations. The program that implements the
method is called “CSMinfinder” and is made available at: http://mlab.cb.k.u-tokyo.ac.jp/~ichikawa/Segmentation/

Background
Epigenetic modifications have been shown to play a vital
role in regulating gene expression. Recent genome-wide
studies have revealed that in vertebrates, although most
CpG sites in DNA sequences are highly methylated,
hypomethylated CpG islands proximal to genes are
involved in regulating gene expression [1]. Specifically,
hypermethylated CpG islands in promoter regions are
relevant to gene silencing, while hypomethylated CpG
islands are in an active or permissive state for transcrip-
tion [2]. In addition to cytosine methylation of CpG

sites, some histone modifications around promoter
regions also are known to affect the regulation of gene
expression [3,4].
It was found recently that long hypomethylated regions

enriched with H3K27me3 were likely to overlap with
regions encoding key genes essential for cell development
and differentiation in human embryonic stem cells [5],
mouse hematopoietic stem cells [6], early Xenopus tropi-
calis embryos demonstrates [7], and medaka fish blastula
(half-day) embryos [8]. Although many hypomethylated
domains (HMD) are subjected to modification of the
active histone mark H3K4me2 that promotes gene
expression [9-12], it is remarkable that ~300 HMDs of
length >4 kb rarely have H3K4me2 histone marks but
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have repressive H3K27me3 histone marks, and are found
in association mostly with developmental genes [8]. Pro-
moters in HMD with H3K27me3 marks (called,
“K27HMD”) are in a ‘poised’ state, in which the genes are
not simply silenced but are ready for activation immedi-
ately during cell differentiation, which is important for
sustaining the pluripotency of pluripotent cells [13,14].
Figure 1 shows four examples of long K27HMD regions
that include developmental genes such as cbx4, cbx8,
hoxa genes, six2, hnf6, and zic1/4.
Thus, there has been considerable interest in long

K27HMD regions with biologically important character-
istics. However, computational methods for detecting
long K27HMD regions are still heuristic and ad hoc,
emphasizing the need to develop an effective algorithm
from a profound background in computation theory.
For example, to identify K27HMD, Nakamura et al. pro-
posed a heuristic method that used certain ad hoc

parameter settings to define hypomethylated regions
and H3K27me3 peak detection [8]. The method is not
guaranteed to output K27HMD regions longer than a
given threshold, and it often generates regions of differ-
ing lengths. ChromHMM [15] is a statistical method
that classifies epigenetic modifications into classes of
combinations and divides a DNA sequence into sub-
regions such that each sub-region has a uniform combi-
nation of epigenetic states while neighboring sub-regions
have distinct characteristics. ChromHMM has been used
successfully to partition regions surrounding genes into
active/inactive promoters, exons, and introns by analyz-
ing epigenetic codes. Although ChromHMM can be
used for K27HMD detection by setting its parameters to
find regions that are hypomethylated and marked by
H3K27me3, ChromHMM often generates many short
regions and thus is not suitable for detecting large
K27HMD regions. Overall, these previous methods have

Figure 1 Examples of long K27HMD regions in the medaka genome. Examples of K27HMD regions enclosed in dashed boxes. Each screen
capture shows an image in a medaka genome browser that displays tracks of gene structures, CpG methylation levels observed by bisulfite
sequencing, and levels of H3K27me3 and H3K4me2 in blastula cells (half-day embryos). A. A K27HMD region of length ~4 kbp with cbx4, and a
~8 kbp region with cbx8. B. A large region of length ~90 kbp with hoxa genes. C. A ~6 kbp region with six2, and a ~14 kbp region with hnf6.
D. A ~20 kbp region with zic1 and zic4.

Ichikawa and Morishita BMC Genomics 2015, 16(Suppl 2):S8
http://www.biomedcentral.com/qc/1471-2164/16/S2/S8

Page 2 of 9



simply not been designed to output regions of lengths
greater than or equal to a given minimum threshold.
To address this problem, we propose a linear time algo-

rithm for calculating a set of non-overlapping regions
such that the set maximizes the score of focal combina-
tions of epigenetic modifications (e.g., K27HMD) and the
length of each region is greater than or equal to a given
minimum threshold (e.g., 4 kb). We define the score of a
focal combination of epigenetic modifications at each
DNA position as the similarity between the vector of
focal epigenetic states and the vector of raw epigenetic
states at the position. We then define the similarity score
of a set of regions as the sum of similarity scores of all
positions in the set. This method solves several issues in
previous heuristic methods because it allows us to set a
minimum region length for detecting ‘long’ regions of
biological importance and guarantees the output of an
optimal set of long regions that maximizes an objective
function.
We implemented the algorithm. We call the program

CSMinfinder (Chromatin State with minimum length fin-
der). With CSMinfinder, we identified large K27HMD
regions in the medaka and human genomes [8,16,17] that
overlapped many developmental genes. CSMinfinder can
be applied to epigenetic data from other vertebrates for
understanding cell development and differentiation.
CSMinfinder runs in time proportional to the size of the

genome, and it can process vertebrate genomes in feasible
amounts of time. Although we applied CSMinfinder speci-
fically to K27HMD, it can be used for the detection of
regions with other types of epigenetic combinations by
defining the vector of focal epigenetic states appropriately.

Methods
To detect long regions of focal epigenetic states, we for-
mulated this as a problem of finding an optimal set of
disjoint (non-overlapping) regions in a sequence that
maximizes the sum of similarity scores in all regions. Our
method calculates a similarity score between a vector of
epigenetic modifications at each position and the feature
vector of a focal epigenetic state, such as K27HMD, and
outputs the set of regions with the highest sum of simi-
larity scores.

Calculating a similarity vector
We need to generate a modification vector at each posi-
tion from epigenomic signal data. For example, to create
benchmark datasets in this study, we binarized the modifi-
cation signal level at each position using BinarizeBed in
ChromHMM [15], which classified the signal at each posi-
tion into 0 or 1 according to a Poisson background model.
Subsequently, we defined a modification vector as the vec-
tor with binary scores of modifications at each position.

Definition 1. Let wl,w2...,wn be non-overlapping win-
dows of the same length (e.g., 200 bp in this study) in a

DNA sequence. Let s1
i , . . . , sk

i be binary or real-valued

signals of k modifications in window i. The modification

vector of wi is defined as Mi = (s1
i , . . . , sk

i ). Let F denote

the feature vector of a focal modification pattern with k
elements. The similarity score of Mi and F is defined as
their inner product minus a given threshold τ.
Example. Suppose that k = 3, τ = 1.3, F = (1,1,0),

M1 = (1,1,0), M2 = (1,0,1) and M3 = (0,0,1). Similarity
scores of F and Mi are 0.7, -0.3, and -1.3 for i = 1,2,3
When the inner product of Mi and F is positive for all

i = 1,...,n, the optimal set of regions that maximizes the
sum of similarity scores in the regions becomes the
entire region, [1,n], which may not be informative. If we
want to select a set of regions whose modification vec-
tors are closer to the feature vector F, we can set the
threshold τ to an appropriate positive value to yield a
negative similarity score for the inner product that is
lower than τ. Positions with negative similarity scores
are less likely to be included in the optimal set of
regions. A higher threshold is likely to divide the entire
genome into smaller regions with a higher precision,
while a lower threshold yields an opposite trend. In this
manner, for a series of windows wl,w2...,wn in a DNA
sequence, we generate a series of similarity scores.

Detecting an optimal set of disjoint regions
To detect regions of focal epigenetic states such as
K27HMD, we present an algorithm for calculating an
optimal set of disjoint regions in a sequence that maxi-
mizes the sum of similarity scores for all regions. In
addition, to identify sufficiently long regions, we define
a minimum length threshold of regions such that each
region is longer than or equal to the minimum length.
The problem can be defined as follows.
Definition 2. Let L = {Li|i = 1,2,...,n} be a series of real

valued weights Li (e.g., similarity scores). Let C be a series of
non-overlapping regions Ij (j = 1,...k) of L such that the
length of each Ij is greater than or equal to a given minimum
threshold m1, and the length of the interval between Ij-1 and
Ij is greater than or equal to another given minimum thresh-
old m0. That is, C is a series of regions of the form{[

a1, b1
]

, · · · [ak, bk
]}

(1 ≤ a1 < b1 < a2 < b2 · · · < ak < bk ≤ n)

such that

1. at + m1 - 1 ≤ bt for t = 1,...,k (the minimum
length constraint on regions),
2. bt-1+m0 <at for t = 2,...,k (the minimum length
constraint on intervals between regions), and
3. a1 = 1 or a1 >m0 (the first region start at position
1 or at position larger than m0).
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Readers may find the last condition strange because it
appears to disallow the situation that the first region
starts at position a1 >m0. We used the condition to sim-
plify the presentation of our linear-time algorithm, which
is described later. To obtain such an optimal series of
regions that the first region starts at a1 >m0, for example,
you can temporarily add m0 negative weights in front of
L, calculate the optimal series, and restore the coordinate.
To calculate a C that maximizes the sum of weights in

C,
∑

i∈I∈C Li , we used a dynamic programming algo-
rithm developed by Csuros [18]. Here, we outline the
algorithm.
Definition 3. We assume that all series meet the con-

ditions given in Definition 2. Let w(C) denote the sum
of weights in C,

∑
i∈I∈C Li . We consider two cases: that

in which the last region of C ends at I and that in
which it does not. When the last region does not end at
i, let C0

i,m denote a series of regions that maximizes w
(C) among all series, such that the last region ends at
position bk ≤ i - m, where m ≥ 1. When the last region
ends at i, let C1

i,m denote a series of regions that maxi-
mizes w(C) among all series, such that the last region is
of length ≥ m (≥1); specifically, ak + m - 1 ≤ i (= bk).
Example. When i = 12, and L = (1,1,-3,1,1,-3,1,1,1,1,-

2,1), we have

C0
12,1 = {[1, 2] , [4.5] , [7, 10]}, C0

12,4 = {[1, 2] , [4, 5] , [7, 8]},
C1

12,7 = {[1, 2] , [4, 12]} , C1
12,12 = {[1, 12]} .

According to this definition, C maximizing w(C) is

either C0
n,1 or C1

n,m1
. For calculating these two series, we

define here w(C0
i,m) and w(C1

i,m) recursively for i = 1,...,n

and m ≥ 1.
Definition 4. We define the following four types of

weight sums, W0
short (i) , W0

long (i) , W1
short (i) , and

W1
long (i) , depending on whether the last region ends at

i or not (denoted as 1 or 0, respectively) and whether
the minimum length constraint is satisfied or not
(denoted as long or short, respectively):

W0
short (1) = 0, W1

short (1) = L1,

W0
short (i) = w

(
C0

i,1

)
, W0

long (i) = w
(
C0

i,m0

)
,

W1
short (i) = w

(
C1

i,1

)
, W1

long (i) = w
(
C1

i,m1

)

Csuros showed that these four types of weight sums
can be calculated recursively as follows [18]:

W0
short (i) = max{W0

short (i − 1) , W1
long (i − 1)} for i ∈ [2, n]

W1
short (i) = Li + max{W0

long (i − 1) , W1
short (i − 1)} for i ∈ [2, n]

W0
long (i) = W0

short (i − m0 + 1) for i ∈ [m0, n]

W1
long (i) = W1

short (i − m1 − 1) +
∑i

j=i−m1+2
Lj for i ∈ [m1, n]

Recall that C maximizing w(C) is either C0
n,1 or C1

n,m1
.

From W1
long (n) , we can build the series of regions,

C1
n,m1

, by tracing back the process of calculating

W1
long (n) . Similarly, from W0

short (n) , we can obtain

C0
n,1 .
We implemented the above idea. We call the program

CSMinfinder.

Results
Data sets
To compare CSMinfinder with other available methods
for detecting large K27HMD, we used real biological
datasets from the medaka-fish and human genomes,
each of which was a set of vectors of DNA methylation
levels at CpG sites, determined by bisulfite sequencing,
and H3K4me3 and H3K27me3 histone modification
Chip-seq data [8]. We set the window size to 200 bp,
normalized the data using a Poisson distribution model,
and set the binarized score of a window to 1 if its prob-
ability was < 0.0001 and to 0 otherwise.

Detecting large K27HMD in medaka epigenomic data
We compared CSMinfinder with ChromHMM [15] and
Nakamura’s method [8].
• Using ChromHMM, we estimated six chromatin

states and divided the given DNA sequence into these six
states. Specifically, ChromHMM asks users to input the
number of epigenetic states beforehand. Thus, we started
with inputting a small number into ChromHMM,
increased the number gradually one by one until we
found a state similar to K27HMD, hypo-methylated
DNA modification and H3K27me3 histone modification,
and called the number sufficient. Inputting a value larger
than the sufficient number into ChromHMM did not
make much sense because it just output a state similar to
K27HMD. The sufficient number was six. Among the six
states, one represented hypomethylated DNA modifica-
tions and the H3K27me3 histone modification. We there-
fore treated the state as K27HMD.
• Nakamura’s method detects a hypomethylated

domain on a DNA sequence that has more than nine
contiguous CpG sites with low methylation (methylation
level <0.4) and no more than four contiguous highly
methylated CpG sites. Parameters are selected heuristi-
cally. A hypomethylated domain is treated as a
K27HMD if it contains H3K27me3 peaks detected by
QuEST [19], such that each peak is more than three
times larger than the average.
• In CSMinfinder, we used two types of minimum

length thresholds, 4 kbp and 8 kbp, to evaluate the
effect of this constraint. We set the minimum length of
any interval between regions to 600 bp.

Ichikawa and Morishita BMC Genomics 2015, 16(Suppl 2):S8
http://www.biomedcentral.com/qc/1471-2164/16/S2/S8

Page 4 of 9



Comparing the performance in detection of large
K27HMD around genes in the medaka genome
Large K27HMD regions of length >4 kbp suppress the
expression of many developmental genes [8]. Thus, we
verified the effectiveness of CSMinfinder for detecting
large K27HMD regions surrounding genes in the
medaka genome. Nakamura’s method could detect 246
large K27HMD regions containing the promoter regions
of developmental genes (e.g., hox clusters) that were
relevant to transcriptional regulation and the develop-
mental process. CSMinfinder detected 911 K27HMD
regions, and of these, 386 regions contained promoter
regions of >4 kbp in size and contained 242 of the 246
regions identified using Nakamura’s method. Indeed,
our regions covered 91% of bases in the entire regions
detected by Nakamura’s method. Specifically, although
the exact boundaries of individual regions estimated by
the two methods were unlikely to be consistent, these
regions largely overlapped each other. These results
demonstrate the high concordance between CSMinfin-
der and Nakamura’s methods as well as the ability of
CSMinfinder to identify more K27HMD regions than
did Nakamura’s method.
We assessed the quality of each K27HMD region in

terms of their low average DNA methylation level
because this property is considered to be essential in
maintaining the suppression of developmental gene
expression in embryonic cells [8]. Indeed, Figure 2 shows
the tendency of the average methylation level in the verti-
cal axis to become lower for a longer K27HDM region,
the length of which is displayed in the horizontal axis.
This trend was also observed with all three methods.

We then compared the performance of the three
methods by examining the length distributions of
K27HMD regions in the medaka genome. Figure 3A
shows the length distributions of large K27HMD regions
(>4 kb in size) estimated by each of the three methods.
Setting the minimum length threshold to 4 kbp in
CSMinfinder detected more regions of length > 6 kbp
but fewer regions of length >7 kbp compared with
Nakamura’s method. CSMinfinder allows us to output
longer regions by setting the minimum length threshold
to a higher value. For example, setting the minimum
length to 8 kbp, CSMinfinder found more regions than
did Nakamura’s method (Figure 3C).

Analysis of large K27HMD regions in human epigenomic
data
We also compared CSMinfinder with the other two for
processing human epigenomic data. For ChromHMM, we
calculated the sufficient number for the human data
according to the procedure described before, and we clas-
sified epigenetic modification data into seven states rather
than six so as to identify a state similar to K27HMD. The
sufficient numbers of epigenetic states in the human and
medaka data differed due to the difference in data quality.
The sufficient number in the medaka data was smaller
than that in the human data presumably because epige-
netic state signals in the medaka data were clearer.
In CSMinfinder, we set the minimum length threshold

to 8 kbp and the interval between regions to 600 bp. We
also searched an ideal value of threshold τ by repeated
trials to detect large continual regions, and we set τ to 1.3
and 1.6 in the respective medaka and human data.

Figure 2 Lengths and average methylation levels of K27HMD regions in the medaka genome. Each dot represents a region that is
identified by CSMinfinder, ChromHMM, and Nakamura’s method in the medaka genome. The x-axis shows the length of a K27HMD region and
the y-axis presents the average methylation level of the region.
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Because the human genome is longer than the medaka
genome, we focused on large K27HMD regions of length
> 8 kbp. Nakamura’s method detected 314 regions, and
CSMinfinder identified 542 regions, including 291 of those
found using Nakamura’s method. Again, there was high
concordance between the results obtained by the two
methods. Figure 4 shows examples of large K27HMD
regions detected around developmental genes. Although

CSMinfinder and Nakamura’s method yielded slightly dif-
ferent regions with distinct boundaries in the output, each
created regions of similar sizes. In contrast, ChromHMM
yielded shorter regions than the other two did. Specifically
we compared the length distribution of large K27HMDre-
gions estimated by each of the three methods (Figure 5).
We found that CSMinfinder and Nakamura’s method
were comparable. Precisely, although the number of

Figure 3 Length distribution of large K27HMD regions in the medaka genome. A-B. Comparison between CSMinfinder (minimum length
threshold of 4 kbp), ChromHMM, and Nakamura’s method. The x-axis shows the minimum length of K27HMD regions, and the y-axis shows the
accumulated number of K27HMD regions longer than or equal to the threshold in the x-axis. Because of the space limitations, the histogram is
divided into two sub-histograms A (threshold is ≤ 10 kbp) and B (threshold ≥ 11 kbp). C. In this case, we set the minimum threshold to 8 kbp
using CSMinfinder.
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Figure 4 Examples of large K27HMD regions around developmental genes in the human genome. A. The figure displays several K27HMD
regions in the human chromosome 11 around pax6, a gene that regulates eye and brain development. CSMinfinder and Nakamura’s method
detected large K27HMD regions of >4 kbp in size and output large regions that largely overlapped; however, ChromHMM divided these regions
into smaller ones. B. These large K27HMD on human chromosome 7 were located around a cluster of hox genes that regulate the body plan of
the head-tail axis. ChromHMM yielded much smaller K27HMD regions as output than did the other two methods.

Figure 5 Length distribution of large K27HMD regions in the human genome. Comparison between CSMinfinder (minimum length
threshold of 8 kbp), ChromHMM, and Nakamura’s method. The x-axis shows the minimum K27HMD region length threshold, and the y-axis
shows the accumulated number of K27HMD regions longer than or equal to the threshold on the x-axis.
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extremely large regions longer than 12 kbp is slightly
smaller than the number found by Nakamura’s method,
CSMinfinder could detect similar numbers of large regions
between 8 kbp to 12 kbp. Later we will discuss the reason
why ChromHMM were inferior to the other two methods.

Computational performance and software availability
We observed the computational performance of CSMin-
finder using Intel Xeon CPU E5-2670 processor with a
clock rate of 2.60 GHz and 66GB of main memory. The
computation time to calculate the optimal series of
regions was negligible. Figure 6 shows that the average
elapsed time was less than 2 seconds when we processed
the epigenetic data of any of human and medaka

chromosomes. Furthermore, Figure 6 also illustrates that
the elapsed time is almost proportional to the size of
each chromosome, thereby confirming experimentally
that the worst-case time complexity of the algorithm is
linear in the input size. CSMinfinder does not consume
a large amount of main memory. CSMinfinder is made
available at the following site: URL: http://mlab.cb.k.u-
tokyo.ac.jp/~ichikawa/Segmentation/

Conclusions and discussion
In this work, we proposed a method that estimates large
K27HMD regions [5-8,12] by calculating the similarity
between the vector of focal epigenetic states and that of
raw epigenetic states at each DNA position. The advan-
tage of this algorithm (CSMinfinder) is the output of an
optimal series of regions while allowing us to set the
minimum length threshold on individual regions. We
estimated large K27HMD in the medaka and human gen-
omes and verified that CSMinfinder was comparable to
Nakamura’s heuristic method [8] designed to detect
K27HMD and was advantageous over ChromHMM in
terms of the lengths of K27HMD regions.
For the medaka genomic data, ChromHMM performed

well and could detect as many long regions as CSMinfinder
did; however, for the human genomic data, ChoromHMM
found a smaller number of large K27HMD regions of
length > 8 kbp than the other two methods did. This was
likely due to the differences in characteristics between the
medaka and human genomic data. In the medaka genome,
the data were collected from an inbred stain in which the
genomic differences between the two alleles were quite
small. Thus, methylation levels were bimodal and were
clearly divided into two states, hypomethylated and hyper-
methylated, making it relatively easy to identify blocks of
hypomethylated domains. In the human genome, however,
the majority of methylation levels were poised because the
human genome is diploid intrinsically and allele-specific
methylation is prevalent, making it more difficult to detect
clear boundaries between hypermethylated and hypo-
methylated domains. Although many DNA methylation
levels are ambiguous in the human genome, ChromHMM
attempts to assign one state to each position. Positions
with vague DNA methylation levels are assigned only a sin-
gle state by ChromHMM. Thus, ChromHMM is likely to
output too many short regions.
One advantage of CSMinfinder is that we can set the

minimum region length for specific purposes. For exam-
ple, in the medaka genome, using an 8-kbp minimum
length threshold merged some of the shorter regions
that were generated using a 4-kbp minimum threshold
into a longer continuous region. Thus, we could obtain
longer regions using a higher minimum length thresh-
old. Similarly, we can also adjust the minimum thresh-
old for defining similarity scores between modification

Figure 6 Average elapsed time of processing human (A) and
medaka (B) chromosomes ten times by using CSMinfinder. The
minimum threshold is set to 8 kbp for handing the human
genome, and 4 kbp for the medaka genome. Each dot represents a
chromosome, the x-axis value shows the size of the chromosome,
and the y-axis value is the average elapsed time.
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vectors and the feature vector for a variety of purposes.
Setting the minimum threshold to a lower value gener-
ates more regions that are less similar to the feature
vector of interest. Having more than one series of
regions that may overlap can be informative. We can
therefore tune CSMinfinder easily to meet various
demands.
In this paper, we demonstrated the advantages of our

algorithm by detecting large K27HMD regions that have
attracted much interest because of their importance in
characterizing the behavior of developmental genes and
confirmed the performance of our algorithm. CSMinfinder
is not limited to the identification of large K27HMD
regions but can be used for the detection of other large
DNA regions that have different types of epigenetic state
combinations associated with regulating gene functions.
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