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ABSTRACT: With the objective to identify novel anticancer leads, herein ruthenium-catalyzed electrochemical homo- and
heterocoupling reactions of terminal alkynes have been developed for the synthesis of the desired products. Among the synthesized
1,3-diynes, some of them were rigorously examined for possible in vitro anticancer activity against HeLa (human cervical cancer) and
L6 normal (rat skeletal muscle) cell lines. Additionally, the docking study was also performed toward 16 ovarian cancer targets with
binding affinity calculations with respect to the standard. To the best of our knowledge, this is the first scientific report on the
ruthenium-catalyzed electrochemical homocoupling reaction between terminal alkynes with its in vitro anticancer and in silico
docking studies.

1. INTRODUCTION
After cardiovascular disease, cancer is considered as the second
deadliest disease over the world. According to the World
Health Organization (WHO) factsheet 2020, an estimated 10
million people have died from cancer. In the same year, the
most common cancers were breast (2.26 million), lung (2.21
million), colon and rectum and prostate (1.93 million) cancers.
In 2018, almost 311,000 women died from life-threatening
cervical cancer.1 Despite the fact, present remedial treatments
of cancer are effective in treating early stages, the survival rates
remain limited. If it happens like this till 2025, new cancer
cases could further rise up to 19.3 million.2 Additionally, for
the treatment of such life-threatening diseases, the develop-
ment of expensive drug resistance has created major havoc. A
review of literature study depicts that, small molecules can be
established as an anticancer analogue through target-based
drug discovery and phenotype-based drug discovery (PDD)
methods.3,4 Among them, PDD is gaining new momentum in
drug discovery schemes with the hope that such approaches
may enliven drug discovery and boost the progress rate of drug
approval to novel drug targets via identification of viable
appropriate drug candidates.5

According to various reports, no anticancer leads are
available with 100% potency without any side effects around
the globe. Therefore, there is a dire need for researchers for the
development of new chemical entities, which can prevent drug
resistance with maximum efficacy to provide a better
therapeutic environment. In this context, small molecules,
like alkynes played an important role in pharmacological and
physiological activities due to their diverse biological
significance. Among them, 1,3-conjugated diyne analogues
exhibited numerous physiological and pharmacological activ-
ities, such as, anti-inflammatory, antibacterial, anti-viral, anti-
cancer, antifungal, and anti-HIV activities.6,7 Many bioactive
compounds like falcarindiol, phosphoiodyns A, placotylene A,
debilisone C and so on bearing the 1,3-conjugated diynes as
their core moieties are isolated from different natural sources
having a wide range of diverse biological efficacy.8−15 In
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addition to their significant biological activities, these 1,3-
diynes are found to have pronounced applications in designing
complex compounds, biomolecules, supramolecular switches,
macrocyclic annulenes, molecular machines, and other carbon-
rich components.16,17

In the organic chemistry domain, alkynes are one of the
most established and suitable building blocks to transform
useful functionalities via nucleophilic substitution and
nucleophilic addition reactions. The coupling of terminal
alkynes could achieve a diyne fragment substituted with
various functionalities attached to both sides resulting in
symmetrical or unsymmetrical 1,3-diynes. The straightforward
synthesis of homocoupled 1,3-diynes was reported by Glaser−
Eglinton−Hay−Cadiot−Chodkiewicz with adequate re-
sults.18−25 In the standard synthesis of 1,3-diynes, copper is
assigned to be an outstanding catalyst.26−34 Apart from that,
some bimetallic metal additives with copper were used for the
preparation of 1,3-diynes from different alkyne sources.35−40 In
addition to that, some nanocomposites,41−45 charge-transfer
catalysts,46 and visible light-induced47,48 reaction media acted
as active catalysts to afford these diyne building blocks.
Likewise, there are numerous methodologies that exist in the
literature for the synthesis of 1,3-diyne moieties.49−52

However, the push for this methodology is still continuing
and under strong consideration by various academia along with
pharmaceutical industries. Some years ago, Stelzer and co-
workers reported a complex ruthenium-catalyzed homocou-
pling reaction for terminal acetylenes.53 But the main
limitations of that pathway were the use of air-sensitive
complicated ruthenium catalysts and formation of oligo or
polymeric byproducts of alkynes during the reaction. In this
regard, we were keen to examine if some mild, cost effective,
and potentially more versatile ruthenium catalysts could exhibit
superior activity to the synthesis of 1,3-diynes.

Moreover, in recent days, electrochemical synthesis achieves
an attractive synthetic protocol with traceless electric current
in the organic chemistry domain.54−58 Such reactions have
generally led to the improvement of numerous oxidant-free
coupling reactions.59−63 Notably, these methodologies com-
prise various divided cells to avert the decomposition of the
used metal catalysts during cathodic deactivation. Among the
metal catalysts, ruthenium is an alluring metal catalyst used for
various bond activation due to its exemplary catalytic reactivity.
In general, ruthenium catalysts are cost effective compared to
Rh and Pd. Recently, Ru-catalyzed organic reactions via
electrochemical pathways have been developed for the
synthesis of diverse heterocyclic analogues including building
blocks.64−68

In an effort to search for new lead molecules having potent
anti-cancer activity, our approach is structural modification to
central moieties of 1,3-diynes. At first, we have primarily
focused on development of a mild and adequate methodology
for the synthesis of 1,3-conjugated diyne moieties and then
exploration of their in vitro anticancer activity. With the results
of anticancer activity of synthesized compounds making us
further examine the molecular interaction docking pattern.
Herein, we have also studied the affinities of these compounds
toward 16 ovarian cancer targets by considering doxorubicin as
the standard drug.

2. RESULTS AND DISCUSSION
2.1. Chemistry. Despite the advancements in Cu-catalyzed

alkyne homocoupling reaction, to the best of our knowledge,

the Ru-catalyzed electrochemical reaction has not been
realized so far. At first, we began our investigation by
optimizing the reaction conditions for the synthesis of
symmetrical 1,3-conjugated diynes electrochemically. An
undivided cell consists of a Pt plate as the cathode and a
reticulated vitreous carbon (RVC) as the anode with 6 mA
constant current at room temperature. Herein, the metal salts
and solvents were served as supporting electrolytes. Initially,
the model reaction was conducted by using phenyl acetylene
1a for its homocoupling product 2a in the absence of solvents;
no product was observed up to 24 h of reaction time (Table 1,

entry 1). Some improved results were found when we used
acetonitrile as the solvent, but the yield percentage of the
desired product was not excessively high for 12−24 h (Table 1,
entry 2). While ensuring the optimization with other solvents
like toluene, ethanol, and dimethylformamide (DMF), the
desired product was formed with an excellent yield of 90%
while DMA was used as a solvent in just 2 h (Table 1, entry 6).
Moreover, even with the addition of more amount of RuCl3
catalyst (10−15 mol %), it did not enhance the yield
percentage (Table 1, entries 7, 8). Afterward, some more
additional optimizations were also performed to enhance the
yield percentage by changing the Ru catalyst (Table 1, entries
9, 10, and 11). Unfortunately, no significant change was
observed during the reaction. Further for optimization of the
reaction by altering the metal catalysts like copper and
palladium with their best compatible solvent system, it
provided slightly lower yields with long reaction time (Table
1, entries 10−16). After all the detailed tuning of the reaction
conditions, 5 mol % of RuCl3 with DMA as the solvent in open
air conditions was selected as the optimized reaction
conditions.

Table 1. Optimization of Reaction Conditions for the
Synthesis of 1,3-Diynesa

entry catalyst (mol %) solvents (mL) time (h) yield (%)b

1 RuCl3·3H2O (5) 24 NRc

2 RuCl3·3H2O (5) CH3CN 12 28, (37)d

3 RuCl3·3H2O (5) toluene 12 41
4 RuCl3·3H2O (5) EtOH 8 44, (51)d

5 RuCl3·3H2O (5) DMF 8 47, (52)d

6 RuCl3·3H2O (5) DMA 2 90
7 RuCl3·3H2O (10) DMA 2 89
8 RuCl3·3H2O (15) DMA 2 86
9 RuCl2·H2O (5) DMF 4 73
10 RuCl2·H2O (10) DMF 4 69
11 [RuCl2(p-cymene)]2 (10) tBuOH 6 77
12 CuCl2·H2O (5) DMF 8 81
13 Cu(OAc)2·H2O (5) DMSO 8 84
14 CuBr (5) CH3CN 8 80
15 PdCl2 (10) H20 12 68
16 Pd(OAc)2 (10) THF 12 72

aReaction conditions: phenyl acetylene 1a (1 mmol), solvents (5
mL). bIsolated yields. cNR: no reaction. dThe reaction time in 12 h.
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After identifying the optimum reaction conditions, we next
set out to broaden the substrate tolerance by using a variety of
substituted terminal alkynes (Table 2). We have tested a wide

range of substituted terminal alkyne-bearing electron-with-
drawing or electron-donating groups to the aromatic rings and
simple aliphatic compounds. The final products were formed
in moderate to excellent yields in the optimum condition. The
substrates having methyl, ethyl, propyl, methoxy, and ethoxy to
the aromatic ring was well tolerable to the desired
homocoupled products (2a−2g) with up to 91% of yields.
The resilience of para-substituted −CF3 and −NH2 to the
phenyl ring with halide functionalities is noticeable to give the
resultant products (2h−2k). Moreover, the heterocycles,
furan-substituted terminal alkyne, were also shown to be very
effective in producing 1,3-diynes 2l in high yields. But, the
indole moiety did not proceed under these optimized
conditions. When 4-ethynylpyridine 1m was used as the
substrate, we did not achieve the desired product 2m. The

reason may be the nitrogen atom attached to the phenyl ring of
the indole may coordinate to the Ru-metal catalyst which
prevents the reaction. In the current study, we have also
evaluated the scope of simple cyclic alkynes 1n and 1o as well
as aliphatic long-chain terminal alkynes. It was fascinating to
see that long-chain aliphatic alkynes and bromo-, hydroxy-,
amine-substituted terminal alkynes exhibited the correspond-
ing homocoupled products in good yields. Conspicuously,
ethyl propiolate 1z functionality and the sterically demanding
substrate (R)-oct-1-yn-3-ol 1w also successfully obtained the
desired product in good yields. Hence, from our study, it was
observed that all the substituted terminal alkynes were well
compatible with our electrolytic homocoupling reaction.

To further explore the applicability of our optimized
reaction environment, we next explored the reaction scope
by varying both coupling substrates to synthesize unsym-
metrical 1,3-diynes (Table 3). Surprisingly, Csp−Csp cross-

coupling products were obtained between phenylacetylene 1a
and alternative electron-deficient moieties of aromatic terminal
alkynes 3. Herein, methoxy, methyl, and halo-substituted to
aryl alkynes and simple cyclic alkynes also resulted in the
desired cross-coupling products (4a−4d) with phenylacetylene
1a in excellent yields. These unsymmetrical 1,3-diyne
functionalities can be effectively suitable for further synthetic
conversions in pharmaceutical or medicinal domains.

Furthermore, we broadened our preliminary systematic
study by examining some control experiments to establish
the correct mechanism (Scheme 1). Because the reactions
were strongly influenced by the solvent, thus few catalytic
systems under optimized reaction conditions were studied by
taking the model reaction. Hence, some other methylene
precursors like dimethylsulfoxide and tetramethylurea were
used to synthesize the desired products. By using these aprotic
solvents, the reaction proceeded sluggishly to obtain resultant
products in lower yields with long reaction times. To gather a
more mechanistic vision into this transformation, we
conducted the reaction in the presence of nitrogen and oxygen
balloon. But, the desired products were formed in 3 h with no
significant change in terms of yield and reaction time.
Markedly, the constant current affected the reaction
adequately, either decreasing or increasing the constant current

Table 2. Substrate Scope for the Synthesis of Symmetrical
1,3-Diynesa,b

aReaction conditions: phenylacetylene 1a (1 mmol), other terminal
alkyne 3 (1 mmol), DMA (5 mL), time: 2 h, room temperature.
bIsolated yields.

Table 3. Substrate Scope for the Synthesis of
Unsymmetrical 1,3-Diynesa,b

aReaction conditions: phenyl acetylene 1a (0.5 mmol), other
substituted alkynes 3 (0.5 mmol), DMA (5 mL), time: 2 h, room
temperature. bIsolated yields.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c03129
ACS Omega 2023, 8, 32635−32642

32637

https://pubs.acs.org/doi/10.1021/acsomega.3c03129?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c03129?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c03129?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c03129?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c03129?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c03129?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c03129?fig=tbl3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c03129?fig=tbl3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c03129?fig=tbl3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c03129?fig=tbl3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c03129?fig=tbl3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c03129?fig=tbl3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c03129?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


resulted in a low amount of yield. Subsequently, we treated this
reaction without the electricity, but afforded 88% of yield in
the presence of TBHP at first. Then, we examined our model
reaction again without any electrochemical input or external
oxidant but it resulted in trace amounts of final products after
long reaction times when we took open air as a blank. Hence,
these results implied that the electric current offered to
regenerate or to active the ruthenium catalyst.

With our above-mentioned control experiments and recently
reported Ru(II)-catalyzed electrolytic reaction,64−69 a plausible
mechanistic pathway is described in Scheme 2. During our
analysis, on the activation of alkynes by electrochemically, we
found that the reaction is presumed to proceed via the metal-
catalyzed reaction. Generally to activate the pi bonds, it
requires external oxidants or transition metals.65,66 However, in
the process of the activation of terminal alkynes, the
electrochemical functionalization turned out to be a mild
approach, without the use of any external oxidants or additives.
Initially, RuCl3 is oxidized to Ru(II) in the anode.
Subsequently, formation of intermediate A by Ru(II)-assisted
metal fission with phenylacetylene.69 With the addition of
DMA, the intermediate generated B with the activated
iminium ion. With subsequent addition of another phenyl-
acetylene in the next step, an elimination of HCl provides C
via metal fission. Finally, release of H+ with the Ru catalyst at
the cathode results in the desired final product 2a.
2.2. Cytotoxicity Assay. The in vitro anticancer activity of

some selected isolated compounds was screened against HeLa

cells (human cervical cancer) and L6 normal cells (rat skeletal
muscle). The results were evaluated by using tetrazolium salt
MTT assays as described previously with minor modifica-
tion.70,71 The effects of the tested compounds on the
proliferation of the cancer cell lines with IC50 values are
shown in Table 4. The results depicted that most of the

compounds exhibited promising anticancer activity against the
human cervical cancer (HeLa) cell lines in different
concentrations at 24 h of duration. Compounds having an
aromatic ring with substituents like dimethoxy 2g and lead
compound 2a showed significant and selective antiproliferative
activity on HeLa cell lines of IC50 = 4.51 ± 1.51 μg/mL and
IC50 = 3.77 ± 1.88 μg/mL in contrast to normal cells, IC50 =
43.14 ± 1.22 μg/mL and IC50 = 30.13 ± 1.72 μg/mL,
respectively. The IC50 in L6 cells are 9.56 (2g) and 7.99 (2a)
fold than HeLa cells. Notably, the 1,3-diynes have an aromatic
ring with propyl 2d, bromo 2k, and amino 2i substituents have
shown good activity against these two cell lines. Products from
ethynylcyclopropane 1o and hydroxyl-substituted alkyne 1u

Scheme 1. Preliminary Mechanistic Studies Scheme 2. Probable Mechanistic Pathway for Synthesis of
1,3-Diynes

Table 4. Growth Inhibition of L6 and HeLa Cell Lines
When Treated with Isolated Compounds at 24 h of
Exposurea,b

sl. no. compounds IC50 (μg/mL)

L6 cellb HeLac

1 2a 30.13 ± 1.72 3.77 ± 1.88
2 2b 3.66 ± 1.24 70.53 ± 3.50
3 2d 67.35 ± 1.47 42.13 ± 2.64
4 2g 43.14 ± 1.22 4.51 ± 1.51
5 2i 166.36 ± 3.49 91.2 ± 3.61
6 2k 18.52 ± 1.77 16.28 ± 1.75
7 2n 152.06 ± 2.33 116.52 ± 2.11
8 2o 25.55 ± 1.98 14.49 ± 4.76
9 2p 145.32 ± 2.52 104.74 ± 1.45
10 2q 31.74 ± 3.25 36.03 ± 3.44
11 2t 12.83 ± 1.78 39.32 ± 2.59
12 2u 24.47 ± 1.21 19.29 ± 3.57
13 2w 2.94 ± 0.45 2.48 ± 0.30
14 2z 3.92 ± 0.16 13.23 ± 3.40
15 doxorubicin 36 ± 2.07 1.71 ± 0.53

aIC50 is shown as mean ± standard deviation. The assays were
performed in three independent experiments in triplicates. bL6
normal rat cell line. cHeLa human cervical cancer cell line.
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and 1w displayed moderate anticancer activity. But, prop-2-yn-
1-ylcyclohexane 1n and substituted aliphatic long chains
containing substrates 1p of 1,3-diyne exhibited poor activity.
However, methyl substituents on aromatic ring 2b, long chain
alkynes 2q, 2t, and 2z were toxic to L6 than HeLa cell lines.
These results implies that most of the resultant compounds
offer promising anticancer activity and has significant potential
in further functionalization of these building blocks for drug
development.
2.3. Docking Study. From the results of in vitro anticancer

activity of synthesized compounds, the molecular docking
analysis has been studied to observe important structural
features of these conjugated 1,3-diyne analogues in hydrogen
bond formation. Molecular docking score analysis for all the
compounds showed that compound 2g, 2d, and 2w were the
most potent candidates for all the ovarian cancer targets.
Further, comparisons showed that compounds 2g and 2w
showed the highest affinity toward c-RAF1 kinase (PDB ID:
1C1Y), which plays an important role in human ovarian cancer
tumors where around 20% of them contain c-RAF mutation
and bromo domain containing protein 4 (PDB ID: 2OOS),
which specifically recognizes the process of epigenetics and is
required for the expression of tumor driving oncogene for
ovarian cancer progression (Figure 1).72,73 Their scorings were
−149.935 (kcal/mol) and −146.823 (kcal/mol) (Table S1).
The former compound targeted Gly13 and Lys16 when
compared with the standard (Table S1). Thus, for most of the
targets considered in our study, compound 2g displayed
potential activity in docking analysis. From the in vitro
anticancer results, compound 2g showed significant and
selective antiproliferative activity on HeLa cell lines. An
outcome we can draw from here is that the structurally flexible
dimethoxy substituent to aromatic alkyne moiety may have
more extension to exhibit interactions through hydrogen
bonding interactions. Hence, the in vitro anticancer results and
docking analysis follow a similar trend. Additionally, with the
appropriate and selective substituents of 1,3-diynes, further
survey toward the improvement of new anticancer agents could
be made.

3. CONCLUSIONS
In the present study, a series of 1,3-diyne derivatives were
synthesized, where electric current can be used to endorse

ruthenium-catalyzed homo- and heterocoupling reactions
between different terminal alkynes via a simple undivided
cell reaction setup. This novel process enabled us to obtain the
desired products from various structurally diverse starting
materials in excellent yields. In addition to that, the synthesized
compounds in vitro anticancer activity against HeLa and L6
normal cell lines were further studied. Moreover, structure-
based in silico molecular docking analysis was also performed
to evaluate the structural features of these compounds with the
hydrogen bond forming affinity. Among the tested compounds,
methoxy substituted to phenyl ring 2g exhibited significant
antiproliferative activity on HeLa and L6 cell lines as well as
the highest binding affinity for maximum targets. Such a target
base study and electrochemical approach showed a great value
to synthesize bioactive diyne derivatives to develop new
anticancer leads.

4. EXPERIMENTAL SECTION
4.1. Materials and Methods. All the chemicals used in

the experiments were purified according to standard
procedures. Glasswares were used after being oven-dried or
flame-dried. NMR was taken at a Bruker Avance II DPX 500
MHz instrument using tetramethylsilane as an internal
standard. Fourier transform infrared (FT-IR) spectra were
obtained from thin films using chloroform by using an Elmer
FT-IR-2000 spectrometer. High-resolution mass spectra data
were recorded by electrospray ionization with a Q-TOF mass
analyzer. Melting points were measured with a Buchi-540
micro melting point apparatus. Reactions were monitored
using pre-coated silica gel 60 F254 sheets (Merck) thin-layer
chromatography (TLC).74 For the MTT assay, cell lines were
displayed and micrographed under an inverted microscope
(Motic-AE30). The absorbance was recorded on an enzyme-
linked immunosorbent assay plate reader (FilterMax F3 Multi-
Mode Microplate Readers, Molecular Devices).71 For the
docking study, 3D structures were generated and optimized in
ChemBio3D Ultra 14 (CambridgeSoft, UK) with RMS
gradient 0.01 of geometry optimization. For each compound,
the minimum energy structure was calculated by using the
(Molecular Mechanics Alligner Force Field 2; MM2) force
field. All the protein preparation were done in Molegro Virtual
Docker (MVD) (6.0, Molegro-a CLC Bio Company, Den-
mark).75

Figure 1. (a) Hydrogen bonding affinity of compound 2g within the c-RAF1 kinase (PDB ID: 1C1Y); (b) hydrogen bonding affinity of compound
2w within the bromo domain containing protein 4 (PDB ID: 2OOS).
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4.2. Electrochemical Analysis Setup. For all electro-
chemical reactions, a homemade flow cell was prepared
together with PowerEase 90 W Power Supply (115 VAC)
from Thermo Fisher Scientific, India (Figure S1). The cell
consists of a working electrode of a Pt plate as the cathode and
a RVC as the anode with 6 mA constant current. The reaction
vial was made up of Borosil glass with two self-made holes in
the cap to put two respective electrodes, as shown in Figure S1.
This results in an undivided electrochemical cell. In the cell,
direct contact between the electrode surface and the reaction
mixture is established.
4.3. General Experimental Procedures. 4.3.1. Exper-

imental Procedure for Synthesis of Synthesis of Symmetrical
1,3-Diynes. The electrolysis was carried out in an undivided
cell consisting of a Pt plate as the cathode and a RVC as the
anode. Substituted alkynes 1a−1z (1 mmol) and RuCl3 (5 mol
%) were dissolved in DMA (5 mL) under an open air
atmosphere. The electrolysis was performed at room temper-
ature with a constant current of 6 mA which was then
maintained for 2 h. The product formation was observed by
TLC. After completion of the reaction, the mixture was
transferred to a clean flask and poured into ice cold water.
Then extracted the organic product with ethyl acetate (2 × 25
mL) and dried over anhydrous Na2SO4. The solvent was
removed under vacuum and the desired product 2 was purified
with automated flash chromatography using hexane and
ethylacetate as the eluent. The RVC anode was cleaned with
acetone (3 × 10 mL) in an ultrasonic bath.
4.3.2. Experimental Procedure for Synthesis of Unsym-

metrical 1,3-Diynes. The electrolysis was carried out in an
undivided cell consisting of a Pt plate as the cathode and a
RVC as the anode. Phenyl acetylene 1a (0.5 mmol), other
substituted alkynes 3 (0.5 mmol), and RuCl3 (5 mol %) were
dissolved in DMA (5 mL) under an open air atmosphere. The
electrolysis was performed at room temperature with a
constant current of 6 mA which was then maintained for 2
h. The product formation was observed by TLC. After
completion of the reaction, the mixture was transferred to a
clean flask and poured into ice cold water. Then extracted the
organic product with ethyl acetate (2 × 25 mL) and dried over
anhydrous Na2SO4. The solvent was removed under vacuum
and purified the desired product 4 with automated flash
chromatography using hexane and ethylacetate as the eluent.
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