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Linear response theory in stock 
markets
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Joaquim Clara‑Rahora4 & F. Javier de las Nieves1

Linear response theory relates the response of a system to a weak external force with its dynamics 
in equilibrium, subjected to fluctuations. Here, this framework is applied to financial markets; in 
particular we study the dynamics of a set of stocks from the NASDAQ during the last 20 years. Because 
unambiguous identification of external forces is not possible, critical events are identified in the series 
of stock prices as sudden changes, and the stock dynamics following an event is taken as the response 
to the external force. Linear response theory is applied with the log‑return as the conjugate variable 
of the force, providing predictions for the average response of the price and return, which agree with 
observations, but fails to describe the volatility because this is expected to be beyond linear response. 
The identification of the conjugate variable allows us to define the perturbation energy for a system of 
stocks, and observe its relaxation after an event.

Linear response theory (LRT)1, allows resolving the response of a system to a weak external perturbation con-
sidering the dynamics of the system at equilibrium subjected to fluctuations. This is a practical extension of 
Onsager’s regression hypothesis, namely, a system relaxes to equilibrium after an external perturbation in a 
similar manner as from  fluctuations2. This powerful tool and the formalism of time correlation functions have 
been applied to study several physical systems, such as soft  matter3–6, spin  glasses7, or  magnetism8, but also it has 
been used to derive a conceptual basis for equilibrium and non-equilibrium  thermodynamics9,10. The drawback 
is that only the first order in the perturbation is retained, which might not be sufficient in some  cases11.

In LRT, a linear perturbation to the equilibrium Hamiltonian of the system is assumed, H = H0 + AF , where 
H0 denotes the Hamiltonian in the equilibrium (non-perturbed) state, and H ′ = AF the perturbation, with F 
the external force, which is conjugate to the variable A. The theory restricts to small forces, and states that the 
change in a variable B(t) due to the application of the force is given  by1,12:

where the after-effect function �BA(s) is set by the correlation function:

which is calculated in the unperturbed (equilibrium) state, with β the inverse thermal energy, and Ȧ denotes 
the time derivative of A. LRT, both in the classical and quantum forms, have been applied mainly to the calcula-
tion of transport coefficients in several systems, such as colloids, charge transport, ferromagnetization or liquid 
 crystals13, but also in other more exotic fields, such as  neurophysiology14 or climate  science15,16. In this paper, we 
aim to apply LRT to a very different field, namely, stock markets.

The application of physical theories and models to financial markets has attracted interest since the work 
of Bachelier in  190017, and in particular in the last three  decades18–21. Most models or applications describe 
financial market dynamics as equilibrium systems subjected to fluctuations, fulfilling the fluctuation–dissi-
pation  theorem22, such as a Brownian particle or  system23–26, while other works try to analyze its entropy or 
 complexity27,28. The non-Gaussianity of fluctuations causing anomalous diffusion has also received attention 
from the early works of  Mandelbrot29,30, where elaborate models to describe such fluctuation distributions have 
been resolved, e.g., by considering truncated Levy  flights31,32, the Tsallis entropy  model33,34, hopping in the free 
energy landscape in  glasses35–37, or extending the continuous-time random walk  model38,39.

(1)��B(t)� =

∫ t

−∞

�BA(t − t ′)F(t ′)dt′

(2)�BA(s) = β�B(s)Ȧ� = −β�Ḃ(s)A�
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Within a Physics scope, regime switching models have been applied to market  dynamics40. Such transi-
tion is straightforward for instance in changes in economic policy, such as the Quantitative Easing policies 
from the European Central Bank (ECB) and the Federal Reserve Board (FED)41,42, or abrupt when unexpected 
events occur, such is the case of the Great Recession from 2008, or the still ongoing crisis due to the spread of 
the COVID-19  pandemics43–45. Such regimes are characterized according to economic and business cycles of 
expansion and  recession46. There, different classes of random walks have been identified, where the nature of 
price changes are resolved not due to the unpredictable nature of incoming news but a direct consequence of 
competition between market forces led by liquidity and market takers and  makers47. Long-range correlated 
market orders and activity lead to diffusive and super-diffusive dynamics, while mean reverting limit orders 
determine sub-diffusive market  conditions36,47. In such framework, the linear response formalism has been 
considered when studying casual relations in markets, where characteristic volatility and stock dynamic regimes 
are identified as influencing the overall market dynamics prior to financial crashes, while individual volatility of 
securities follow collective market behavior after the crash  event48. Moreover, the breakdown of linear response 
has been found in periods of low market liquidity and transaction, where fluctuations become large enough so 
that market dynamics is strongly displaced from equilibrium, and second or larger order energy terms must be 
accounted for in the Hamiltonian of the  system49.

Our aim in this work is to apply LRT to a system of stocks, thus enlarging the applicability of LRT and also 
advancing in the knowledge of the mechanisms governing the stock dynamics. For this purpose, a given finan-
cial market is assumed to be an equilibrium system subjected to fluctuations due to its internal dynamics, and 
perturbed by external forces. Within LRT we attempt to study weak forces, where the effects are linear with 
force strength. LRT can provide then the evolution of the system after the application of the external force. Thus, 
for this analysis the following steps have been followed: (1) measurement of the response of the system after 
the application of an external perturbation, (2) identification of the variable A(t), conjugate to the force, and 
(3) calculation of the response function according to LRT, to finally compare it with the “empirical” function 
obtained in (1). As a final result, in addition to the extension of LRT, the perturbation energy in a stock market 
can be defined. Note that since we do not base the identification of the variable conjugate on a physical model, 
we only rely only on the validity of LRT for stock markets.

A database of 862 stocks has been used, corresponding to the companies in the NASDAQ index from 
03/01/2000 to 30/10/2020. The “Supplementary Information” to this article provides a similar analysis for a set 
of European stocks and the NYSE, yielding similar results.

Results
Consider a charged colloidal particle in water: internal forces are caused by thermal and density fluctuations 
in the solvent and provoke the particle Brownian motion, whereas external forces can be caused by electric or 
gravitational  fields50. Stock prices, on the other hand, are set by brokers or other practitioners, according to supply 
and demand, as well as to their investment strategies and expectations; these can be considered as internal forces. 
However, there are factors that strongly influence market prices, such as political decisions, announcements of 
results, companies acquisition or merger, bankrupts, ... These can be considered as external forces, which, dif-
ferent from the physical counterpart, act onto the stock prices through the same practitioners as the internal 
forces. This ambiguous recognition of external forces poses a major problem on their identification, as well as 
its strength scale, and the conjugate variable A(t), needed for the application of the LRT formalism. In fact, it 
is generally accepted that only a fraction of the motion of stocks can be attributed to fundamental economic 
information that could have had a pronounced impact on cash flow forecasts or discount  rates51,52.

Therefore, we do not make any assumptions concerning external forces, and adopt a phenomenological 
point of view following previous works on  events53: a dramatic event, assumed to be provoked by an external 
force, takes place whenever the absolute value of the one day log-return of a stock surpasses four times the root 
mean square deviation of log-returns of this stock. This threshold for the definition of an event is arbitrary but 
in line with previous  studies54, as it allows the segmentation of events in equilibrium fluctuations or dramatic 
perturbations. In any case, its specific value has little effect on the results presented below, as far as it is well 
above 1. In the following, we assume that the external force starts to act at the event time t∗ , and keeps acting 
indefinitely, or until a new event takes place. Furthermore, we assume that the impact of different forces are well 
separated, i.e. the evolution of a stock price after a force is applied relaxes to equilibrium before a new force acts; 
thus events separated less than 10 days are discarded. With such criteria, ca. 5000 events are identified in the 
whole set ( ∼ 2300 positive events, with positive log-return v(t∗) > 0 , and ∼ 2700 negative ones, with v(t∗) < 0 ). 
Note that very dramatic events, such as the financial crisis in 2008 or the COVID19 pandemic in 2020, provoke 
drastic changes in the price extending over several  days54,55, and are excluded from our analysis according to 
this selection, because LRT is expected to fail for large external forces. The resulting distribution of events per 
day (affecting different stocks) is a decreasing function, with 75% of the events in days with less than five events, 
which guarantees that the events are indeed independent. Fig. 1 analyzes the stock log-price after an event, 
namely the response function of the log-price after an event”.

Figure  1A presents the distribution of the total log-price variations provoked by the event, namely 
�x∞ = x∞ − x(t∗ − 1) , where x(t∗ − 1) is the log-price just before the event, and x∞ is the log-price well after 
the event. The local minimum at �x∞ = 0 is caused by our definition of events, and disappears if a smaller 
threshold is selected. On the other hand, the distribution displays positive deviations from Gaussian behaviour 
for price differences above 0.15x∞ in absolute value. These deviations are typical in finance, and have been the 
topic of intense research and  debate21. To our purpose, the deviation from the Gaussian profile serves to identify 
“small” and “large” events, and therefore determine the expected validity range of LRT. All subsequent analysis 
is restricted to small events. In Fig. 1B the mean normalized log-price evolution around the event in absolute 
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value is presented. This shows an overshoot at t∗ , namely when the event takes place, followed by a decay within 
a few days to reach a steady value ( x∞ is the average log-price between 10 and 20 days after the event). The inset 
shows positive and negative events separatedly.

In addition to the log-price, the dynamics of stocks is also monitored considering the corresponding log-
return and volatility. (The latter represents how fast the price changes, irrespective of the sign of the change, and 
is calculated as v2i (t) ). The average normalized evolution of the one day return and volatility after an event are 
shown in Fig. 2. The average log-return for a positive (negative) event increases (decreases) at the event, and 
decreases (increases) abruptly immediately after it, followed by a slow relaxation to the equilibrium value. The 
figure represents the normalized evolution averaged for positive and negative events. The volatility, on the other 
hand, increases at t∗ and then decreases to the “equilibrium” magnitude at both positive and negative events.

Figures 1 and 2 show that the evolution of the log-price, log-return and volatility is abrupt at the event, and 
then relaxes to a steady value for a few days. From a physical point of view, this indicates that these variables 
display memory, and according to LRT, the correlation functions with variable A(t), conjugate of the force, should 
decay with a time scale of a few days. In order to identify this variable, the log-price, log-return and volatility 
autocorrelation functions (ACF) have been studied (see “Methods”).

They are presented in Fig. 3 and show very different behaviour: whereas the log-return reaches negative values 
within the first day and then relaxes to zero (resembling the velocity ACF in hard spheres), and the volatility 
ACF presents a similar time scale, but a monotonous decay, the time scale of the log-price ACF is ∼ 50 days. For 
the purpose of applying LRT, the log-return is more appropriate due to the similarity with the time scale and 
behaviour of its response function. Therefore, we tentatively identify the log-return, v(t), as the conjugate variable, 

Figure 1.  Analysis of events. Left panel (A) distribution of the relative total log-price variation (circles), with 
a Gaussian fitting to the maximum (red line). Right panel (B) evolution of the log-price before and after small 
events in absolute value (circles). The inset shows positive and negative events separatedly. The lines are the 
prediction from LRT (see text below).

Figure 2.  Evolution of the log-return and the volatility (inset) before and after small positive and negative 
events. The lines show the prediction of linear response theory (see text below).
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A(t), to the external force. The response of the log-return is therefore provided directly by its ACF, assuming that 
the force follows a Heaviside functional form, F(t) = F0θ(t) as discussed above:

Since the strength of the force is unknown, we plot C(v, v) to compare with the normalized response of the 
log-return in Fig. 2 (black line). The prediction from LRT agrees with the empirical response function.

Once the conjugate variable, A(t) in Eq. (1), has been identified as the log-return, the average evolution of 
other variables can be readily obtained using LRT. In particular, for the log-price, the integral of the log-return 
ACF above provides the predicted response, according to LRT:

since ẋ = v . This is included also in the right panel of Fig. 1. Again, good agreement between this prediction 
and the observations is found. Similar comparisons between the predictions from LRT and the evolution of the 
log-price and log-return for a set of European stocks and for the NYSE are presented in Figs. 1 and 3 of the “Sup-
plementary Information”. Note that in any case, LRT predicts the average response of the variable, and cannot 
be used to calculate the evolution of a single stock (or in physical terms, of a single trajectory in phase space).

The volatility, on the other hand, is a second-order variable and it is not expected that it can be described 
within LRT. This is tested in the inset to Fig. 2, where the cross correlation function 〈v2(τ )v(0)〉 is included 
(continuous line), as well as the volatility ACF (broken line). None of them correctly describes the observed 
evolution of the volatility, although the predction from LRT (continuous line), captures qualitatively the slow 
decay of the volatility after the event.

For constant external forces, LRT also provides the coupling constant of the system in the stationary regime 
as the integral of �BA(t) extended to +∞ , i.e., ��B∞� = kF0 . For the case of autocorrelation functions, these 
constants are the transport coefficients associated with the flux induced by the external force, and depict the 
Green–Kubo  relations56. In our case, two coefficients can be calculated:

Note that the correlation function 〈v(τ )v(0)〉 is used here, instead of the normalized C(v, v) used above.
To test these results, we display in Fig. 4 the average total variation of the log-return, ��v∞� = �v∞ − v(0)� 

as a function of the log-price total variation, ��x∞� for small events. The expected linear relationships with 
the force, yield ��v∞� = kv/kx ��x∞� , which is also included in Fig. 4. The data show good agreement with 
the predictions, particularly for small price variations, where the theory is expected to perform better. For the 
volatility, the total variation has been also included in the figure as a function of the log-price variation, but the 
dependence is clearly not linear.

Table 1 presents the results of the coefficients kX and kv for the NYSE and European sets of stocks, studied in 
more detail in the “Supplementary Information”. The concomitant tests of the linearity of ��v∞� vs. ��x∞� are 
also presented there. Note that kx and kv are much larger (in absolute value) for the NASDAQ and NYSE than 
for the European stocks, implying that the European set is less affected by external forces, probably due to its 
heterogeneity.

(3)��v(τ )� = −β

∫ τ

0

F0�v̇(τ
′)v(0)�dτ ′ = −βF0�v(τ )v(0)�

(4)��x(τ )� = −βF0

∫ τ

0

�v(τ ′)v(0)�dτ ′

(5)
kx = −

∫ ∞

0

�v(τ )v(0)�dτ = −1.25× 10−3

kv = �v(0)v(0)� − lim
τ→∞

�v(τ )v(0)� = 1.55× 10−3

Figure 3.  Autocorrelation functions of the log-price (red line and circles), log-return (continuous black line) 
and volatility (broken blue line).
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Once variable A has been identified as the log-return, the perturbation energy can be calculated if the force 
is known. Nevertheless, within the linear regime, the total log-price variation is proportional to the force, 
�x∞ = kxF , and the energy can be calculated as:

The distribution of perturbation energies shows a symmetric bell shape with the expected wings or tails 
for large (positive and negative) values. Since for both positive and negative events the product �x∞�v(τ ) is 
positive at the event, the sign of kx determines if the energy is positive or negative for both types of events. Our 
calculations yield a negative kx , which corresponds to a negative perturbation energy, with respect to the value 
just before the event.

Figure 5 presents this energy for both kinds of events. The energy is near zero before and well after the 
event, when its effect has dissipated, but grows (in absolute value) notably for all events. This effect dissipates 
as equilibrium is recovered. From a physical perspective, this is equivalent to a system where the energy input 
dissipates and the system returns to equilibrium. The time scale for the dissipation is the same as for the decay 

(6)H ′(τ ) =
1

kx
�x∞v(τ )

Figure 4.  Mean log-return and volatility variations as a function of the total log-price variation for small events, 
as labelled. The solid red line indicates the prediction for the log-return.

Table 1.  Values of the coefficients kx and kv for the three sets of stocks considered.

Stock market kx kv

NASDAQ −12.5× 10−4 15.5× 10−4

NYSE −15.3× 10−4 25.7× 10−4

European −3.1× 10−4 3.6× 10−4

Figure 5.  Perturbation energy for positive (black circles) and negative events (red crosses).
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of the log-return ACF, as the force is continuously active for t > t∗ . Interestingly, the figure indicates that the 
perturbation energy is also non-zero for t < t∗ , i.e., before the event. This is beyond our current interpretation 
of the results, where the force can only affect the system for positive times, but could be tackled with a time 
dependent force. Also, such feature could serve as an indicator of an event in the next few days. Nevertheless, it 
must be recalled that our modeling considers averages over many different events in 20 years and a set of ca. 850 
stocks. Thus, predicting events to a single stock is far beyond the purpose of this work.

Discussion
We have resolved Linear Response Theory as an efficient framework to determine the response of a system such 
as the stock market, which is indeed hallmarked by fluctuations. The autocorrelation functions of the log-price, 
log-return, and volatility indicate that the most appropriate variable to be considered conjugate of the external 
force is the log-return, due to its relaxation kinetics. Thus, the predicted response functions for the log-price 
and log-return have been calculated and agree with the results obtained from the empirical analysis of stock 
prices. Both of them show an overshoot at the event, and a slower recovery towards equilibrium within 2–3 days, 
in resemblance with the behaviour of a dissipative system. The identification of the energy in a stock market 
represents a major goal, strikingly supported on a well-established physical ground.

The results presented here have been obtained for the NASDAQ, extending over the last 20 years consider-
ing the stocks that have belonged continuously to the index. Similar results have been also obtained for a set of 
European national floors, although the statistics is much better in the case of the NASDAQ, and New York Stock 
Exchange. These results provide further support of the results and conclusions presented here.

In any case, we stress that there is no physical model supporting this identification of the log-return as con-
jugate to the external force. The results presented here are based on a phenomenological approach, but show 
the compatibility of financial markets with well-established physical theories, as far as an appropriate analogy 
of variables is performed.

Methods
All stocks used for this study have been taken from Yahoo! Finance, with a time resolution of 1 day. The databases 
have been comprised by all stocks that have belonged continuously to the given market. For the NASDAQ (main 
text) and NYSE (“Supplementary Information”), stocks that have been active from 03/01/2000 to 30/10/2020 
were selected, amounting to 862 stocks and 1084, respectively. For the european stocks, the set of stocks is 
constructed with companies that have belonged continuously to the national indices of the UK (FTSE100), Ger-
many (DAX30), France (CAC40), Spain (IBEX35), Switzerland (SMI), Italy (FTSE MIB), Portugal (PSI20), and 
Holland (AEX). This set comprises 240 stocks, corresponding to big and stable European companies, sampled 
every day since 2010–2019.

As usual in financial studies, we consider the logarithm of the price, termed log-price, xi(t) and only 
working days in the analysis, i.e. weekends are not taken into account. The one-day log-return is defined as 
vi(t) = xi(t)− xi(t − 1) and the volatility is calculated as v2i .

A dramatic event, assumed to be provoked by an external force, takes place whenever the absolute value 
of the one day log-return of a stock surpasses four times the root mean square deviation of log-returns of this 
stock, i.e., if:

where  nt is the total number of days in our sample.
The time auto-correlation function between the discrete variables X and Y, {Xi} = {X(ti)} and {Yi} = {Y(ti)} , 

with i = 1, . . .N , is calculated as:

where X̄ and Sx stand for the sample mean and standard deviation, respectively.
The non-normalized correlation function, 〈XY〉 , has also been used to calculate the coefficients kx and kv . 

This is defined as:
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(N − 1)SxSy

�XY� =

∑

XiYi − NX̄Ȳ
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