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Numerous long noncoding RNAs (lncRNAs) have been identified as powerful regulators of
human diseases. The lncRNA FOXD3-AS1 is a novel lncRNA that was recently shown to
exert imperative roles in the initialization and progression of several diseases. Emerging
studies have shown aberrant expression of FOXD3-AS1 and close correlation with
pathophysiological traits of numerous diseases, particularly cancers. More importantly,
FOXD3-AS1 was also found to ubiquitously impact a range of biological functions. This
study aims to summarize the expression, associated clinicopathological features, major
functions and molecular mechanisms of FOXD3-AS1 in human diseases and to explore its
possible clinical applications.
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INTRODUCTION

Based on the in-depth advance of high-throughput sequencing technologies, an emerging number
of long non-coding RNAs (lncRNAs) has been identified over recent decades (1–5). LncRNA is a
novel type of non-coding RNA molecules with over 200 bp (6, 7), accounting for the largest
proportion of non-coding RNAs (ncRNA) (8–10). Due to the continuous investigation of lncRNAs,
it is believed that lncRNAs are closely related to the occurrence and development of tumors and
other diseases (11–15). Several studies have corroborated that lncRNAs are extensively implicated in
a range of cellular processes, such as chromatin and genome modifications, transcription activation
and interference, nuclear transport (16–20), as well as cell growth, differentiation, and apoptosis.
Moreover, lncRNA-based clinical applications have been increasingly explored over the last few
years and several mechanisms for such applications have been identified (21–23).

LncRNA forkhead box D3 antisense 1 (FOXD3-AS1), an antisense transcript of the protein-
coding gene FOXD3, is a recently discovered lncRNA located in chromosome 1p31.3. Growing
evidence reports that FOXD3-AS1 is abnormally expressed in many disease types and its expression
seems to be closely associated with significant clinical features. Functional assays demonstrated that
FOXD3-AS1 is a crucial regulator in a wide range of biological functions in disease. Therefore, these
properties rendered FOXD3-AS1 as a promising biomarker for various applications, including
diagnosis, treatment, and prognosis of specific diseases. In this review, we aim to recapitulate the
abnormal expression, clinical features, biological roles, corresponding mechanisms, and future
clinical applications of FOXD3-AS1 in various human diseases.
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THE ROLE OF lncRNA FOXD3-AS1
IN DISEASES

Increasing evidence has shown that lncRNA FOXD3-AS1 is
abnormally expressed in various human diseases, including
lung cancer (24–28), breast cancer (29, 30), cervical cancer (31,
32), nasopharyngeal carcinoma (33, 34), osteosarcoma (35),
colorectal cancer (36), melanoma (37, 38), liver cancer (39),
thyroid cancer (40), neuroblastoma (41), glioma (42), allergic
rhinitis (43), retinal infection with Toxoplasma gondii-ocular
toxoplasmosis (44), ischemic stroke (45), myocardial ischemia
(46, 47) and acute respiratory distress syndrome (48). Further
studies demonstrated that aberrant expression of FOXD3-AS1 is
closely associated to clinicopathological characteristics, such as
tumor size, tumor grade, distant lymph node metastasis,
differentiation of tumor tissues, overall survival, progression-
free survival, and survival time of patients (Table 1). Moreover,
the specific role and related molecular mechanisms of FOXD3-
AS1 in the occurrence and development of diseases are shown
in Table 1.

In the following section, we recapitulated the role of FOXD3-
AS1 in different disease types, including dysregulated expression,
related clinicopathological features and biological functions.

Cancer
Lung Cancer
Lung cancer is a major public health problem worldwide, while
non-small cell lung cancer (NSCLC) represents about 80–90% of
all cases (49–53). Indeed, NSCLC has a high mortality rate, and
the 5-year survival rate of these patients remain challenging (54–
57). Despite advancements in early detection and treatment of
NSCLC, the identification of molecular markers associated with
patient survival is still necessary (53, 58–60). Multiple studies
have demonstrated that FOXD3-AS1 is overexpressed in NSCLC
tissues and cell lines (H1299, A549 and SPC-A1 cells) (24, 26–
28). In addition, FOXD3-AS1 exerts pro-cancer effects in vitro
and in vivo by regulating cell proliferation, migration, apoptosis
as well as chemo-resistance. Contradictorily, Ji T et al. first
proposed that FOXD3-AS1 was down-regulated in NSCLC
tissues and H1299, NCI-H460, A549 and L9981 cell lines,
while FOXD3-AS1 levels were inversely correlated with
aggressive lymph node metastasis and tumor grade (25). Later,
FOXD3-AS1 was confirmed to play an onco-suppressive role by
inhibiting cell proliferation and invasion of H1299 and A549
cells. It is worth noting that the contradictory effect of FoxD3-
AS1 in this study was only assessed in vitro and may be partly
due to the remarkably heterogeneous properties of lung cancers.
Therefore, further verification of FoxD3-AS1 on animal models
of lung cancer is still required (61–65).

Breast Cancer
Breast cancer has a high incidence and mortality in women (66,
67). Accumulating evidence has suggested that aberrant
expression of lncRNAs is implicated in the tumorigenesis of
breast cancer (68–71). FoxD3-AS1 expression was found to be
significantly upregulated in breast cancer tissues, in addition to
T47D, MCF7, BT549, and MDA-MB-231 cells. Interestingly, its
Frontiers in Oncology | www.frontiersin.org 2
overexpression correlated with survival probability, tumor size,
and distant metastasis. Moreover, FoxD3-AS1 has been proposed
to serve as a novel tumor promoter in the development and
progression of breast cancer by enhancing cell proliferation,
migration, invasion and tamoxifen (TMX) resistance (29, 30).

Cervical Cancer
Although vaccination against HPV and cervical cancer screening
have remarkably reduced cervical cancer incidence and mortality
(30, 72, 73), this cancer is still the most prevalent malignancy in
women, with high mortality rate (74–77). Several studies have
demonstrated that FOXD3-AS1 is markedly upregulated in
cervical cancer tissues and cell lines such as HeLa, SiHa, Caski,
SW756, C33A, ME-180, and HT-3 (31, 32). High levels of
FOXD3-AS1 were linked to poorly differentiated tumors, large
tumors, positive lymph node metastasis, distant metastasis, and
worse International Federation of Gynecology and Obstetrics
stage. FOXD3-AS1 displayed pro-oncogenic capacity by
facilitating cell proliferation, apoptosis, migration and invasion.

Nasopharyngeal Carcinoma
Nasopharyngeal carcinoma is an endemic carcinoma in Southern
China and is often diagnosed at an advanced stage (78–81). Effective
markers for its early diagnosis are urgently needed to improve
patient survival and reduce mortality rates (82–84). The expression
level of FOXD3-AS1 was found to be upregulated in
nasopharyngeal carcinoma tissues and cell lines (C666-1 and HK-
1) and positively associated with tumor node metastasis (TNM)
stage and a more invasive pathological classification. FOXD3-AS1
was shown to regulate cell proliferation, apoptosis, invasion,
migration, cell stemness and tumor growth in a xenograft model
in nude mice (33, 41) (Figure 1).

Colorectal Cancer
Colorectal cancer is the most common cancer in the world,
characterized by elevated incidence and mortality rates (85–87).
Colon adenocarcinoma (COAD) is the most prevalent
pathological subtype of colon cancers, constituting 98% of all
newly diagnosed cases of colon cancers (88–92). Previous
evidence has indicated that FOXD3-AS1 is upregulated in
COAD tissues as well as in HCT116 and SW1116 cells, while
its expression correlates with key clinical features, including:
TNM stage, poor tumor differentiation, lymph node metastasis,
overall survival and progression-free survival (36). A series of
functional experiments in vitro and in vivo have validated the
oncogenic property of FOXD3-AS1 in colon cancer through of
the regulation of cell proliferation, migration, invasion, and
apoptosis. However, Tian Y et al. has also demonstrated that
low expression of FOXD3-AS1 in colon cancer patients is
associated with worse overall survival (93). Therefore, more
research is needed to clarify the specific role of FOXD3-AS1 in
colon cancer.

Melanoma
Melanoma is a highly aggressive and prevalent tumor, which
exhibits a gradual upward trend in both morbidity and mortality
rates (94–96). Thus, the identification of early diagnostic
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yao et al. Function of FOXD3-AS1 in Diseases
TABLE 1 | The expression, clinical characteristics, and mechanisms of FOXD3-AS1 in disease.

Disease type Expression Role Clinical characteristics Cell lines Human samples Functions Related
mechanisms

Refs

non-small cell
lung cancer

upregulated tumor
promoter

/ A549,
H1229,
and SPC-
A1

30 patients from Affiliated
Nanhai Hospital, Southern
Medical University,
40 patients from Hwamei
Hospital,
and 25 patients from
Peking University
Shenzhen Hospital

cell
proliferation,
apoptosis,
invasion, and
chemo-
resistance

miR-135a-5p,
miR-127-3p,
MED28,
ELAVL1,
PI3K, Akt,
and CDK6

34733371,
32742197,
32196603,
34605863

non-small cell
lung cancer

downregulated tumor
suppressor

lymph node metastasis, and
tumor grade

H1299,
NCI-H460,
A549, and
L9981

50 patients from
Shenzhen University
General Hospital

cell
proliferation,
invasion, and
EMT

miR-150, and
SRCIN1

32924985

breast cancer upregulated tumor
promoter

survival probability, tumor size,
and distant metastasis

MDA-MB-
231,
BT549,
T47D and
MCF-7

19 patients from the First
Affiliated Hospital of
Wenzhou Medical
University

cell
proliferation,
invasion,
migration, and
chemo-
resistance

miR-363,
TFF1, PI3K,
and Akt

34424807,
31017311

cervical cancer upregulated tumor
promoter

tumor differentiation, tumor
size, lymph node metastasis,
distant metastasis, overall
survival rate, and International
Federation of Gynecology and
Obstetrics stage

HeLa,
SiHa,
C33A,
SW756,
ME-180,
Caski, and
HT-3

60 patients from the
Hengshui People's
Hospital, and 146 patients
from The First Affiliated
Hospital, Heilongjiang
University of Chinese
Medicine

cell
proliferation,
invasion,
migration, and
apoptosis

miR-128-3p,
miR-296-5p,
LIMK1, SP1,
and HMGA1

33760158,
32959937

nasopharyngeal
carcinoma

upregulated tumor
promoter

TNM stage, and pathological
type

C666-1,
and HK-1

52 patients from the Taihe
Hospital, Hubei University
of Medicine

cell
proliferation,
invasion,
migration,
apoptosis, and
stemness

miR-135a-5p,
microRNA-
185-3p, and
FOXD3

33204001,
33336076

osteosarcoma upregulated tumor
promoter

/ U2OS,
MG-63,
HOS,
SAOS2,
and 143B

52 patients from the First
Affiliated Hospital of
Chongqing Medical
University

cell migration,
invasion, and
EMT

miR-296-5p,
ELF1, and
ZCCHC3

33204608

colon
adenocarcinoma

upregulated tumor
promoter

tumor differentiation, TNM
stage, lymph node metastasis,
poor prognosis, overall survival
rate and progression-free
survival rate

HCT116,
and
SW1116

78 patients from Tongren
Hospital, Shanghai Jiao
Tong University School of
Medicine

cell
proliferation,
invasion,
migration, and
apoptosis

miR-135a-5p,
and SIRT1

32932277,
31058315

melanoma upregulated tumor
promoter

lymphatic metastasis, tumor
size, AJCC stage, and overall
survival

A2058,
SK-MEL-
28, SK-
MEL-1,
SK-MEL-
2, and
A375

47 patients from Weihai
Central Hospital

cell
proliferation,
invasion,
migration, and
apoptosis

miR-127-3p,
miR-325,
FJX1, and
MAP3K2

32354225,
31541886

hepatocellular
carcinoma

upregulated tumor
promoter

poor prognosis Huh7,
Huh6, and
SK-HEP-1

68 patients from Affiliated
Hospital of Hebei
University

cell
proliferation,
invasion, and
migration

miR-335,
RICTOR, and
AKT

32191537

thyroid cancer upregulated tumor
promoter

/ FTC-133,
SW579,
TPC-1,
and
8505C

30 patients from Peking
Union Medical College
Hospital

cell
proliferation,
invasion, and
migration

miR-296-5p,
TGF-b1, and
Smads

31678422

neuroblastoma downregulated tumor
suppressor

tumor differentiation,
International Neuroblastoma
Staging System (INSS) stage,
and MYCN amplification

NB-1643,
SK-N-BE
(2), NB-
1691,
IMR32,

/ cell
proliferation,
invasion,
migration,
differentiation,

CTCF, and
PARP1

29398485

(Continued)
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biomarkers and therapeutic targets remains urgent (97, 98).
Increased expression of FOXD3-AS1 has been observed in
melanoma tissues and cell lines (A2058, SK-MEL-28, SK-MEL-1,
SK-MEL-2, and A375 cells) and positively associated with tumor
size, AJCC stage, lymphatic metastasis and overall survival (37, 38).
Functionally, high levels of FOXD3-AS1 facilitate cell proliferation,
invasion and migration and repress cell apoptosis in A375, SK-
MEL-1 and SK-MEL-2 cells. Moreover, experiments in murine
Frontiers in Oncology | www.frontiersin.org 4
models of xenograft tumor with accelerated tumor growth further
validated the pro-oncogenic role of FOXD3-AS1 in melanoma.

Liver Cancer
Liver cancer is considered the sixth most frequent type of cancer,
while hepatocellular carcinoma (HCC) is the most common type of
liver cancer, consisting of 75–85% of all cases according to
GLOBOCAN 2018 data (87, 99–101). Currently, serum AFP is the
TABLE 1 | Continued

Disease type Expression Role Clinical characteristics Cell lines Human samples Functions Related
mechanisms

Refs

and BE
(2)-C

and chemo-
sensitivity

glioma upregulated tumor
promoter

WHO grade, histologic grade,
poor prognosis, and overall
survival

U87,
A172 and
U251

44 patients from
Changzheng Hospital
(Shanghai, China)

cell
proliferation,
invasion, and
migration

FOXD3 27829996

ischemia stroke upregulated / / N2a / cell apoptosis miR-765, and
BCL2L13

33068927

myocardial
disease

upregulated / / H9C2,
and AC16

/ cell apoptosis NF-kB, iNOS,
and COX2

31632535
,32973515

acute
respiratory
distress
syndrome

upregulated / / A549, and
Beas2B

/ cell apoptosis miR-150, and
p53

28655711

allergic rhinitis downregulated / / NECs 25 patients from The
Second Affiliated Hospital
of Nanchang University

Th2 type
immunoreaction

IL-25 32671514

retinal infection
with
Toxoplasma
gondii-ocular
toxoplasmosis

downregulated / / human
retinal
Müller
cells

/ / / 31547203
February 2022 | V
olume 12 | Art
FIGURE 1 | In nasopharyngeal carcinoma, FOXD3-AS1 promotes cell proliferation, apoptosis, invasion, migration and stemness by restraining the expression of
miR-135a-5p or microRNA-185-3p and elevating the expression of FOXD3. Clearance of miR-30c modulates the expression of CTHRC1 and thus enhances the
proliferative, invasive, and migratory abilities of MDA-MB-468 cells. LINC00707 also interacts with miR-206 to upregulate ER-a expression, which induces the
proliferation and apoptosis of MCF-10AT cells.
icle 848296
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most widely used biomarker for HCC screening, despite its low
sensitivity and a high false-negative rate for early HCC diagnosis.
Therefore, it is crucial to explore novel biomarkers relevant for the
early diagnosis andprognosis ofHCCpatients (102, 103). Indeed, the
levels of FOXD3-AS1 have been shown to be significantly decreased
in HCC tissues as well as in Huh7, Huh6, and SK-HEP-1 cells
compared to health tissues or cells (39). FOXD3-AS1 expression has
also been closely associated with poor prognosis of HCC patients. In
addition, FOXD3-AS1 has been reported to significantly accelerate
malignant processes of cell proliferation, invasion and migration in
Huh6 cells, resulting in the development of HCC.

Osteosarcoma
Osteosarcoma is the most common primary bone tumor in
children and young adults (104–108). However, the overall
survival of patients with osteosarcoma remains unfavorable
despite attempts to improve the efficacy of chemotherapy
(109–111). Recent studies have proposed that targeting
lncRNAs may provide a novel insight into the treatment of
osteosarcoma (112–115). FOXD3-AS1 expression has been
found to be upregulated in both osteosarcoma tissues and cell
lines (U2OS, MG-63, HOS, SAOS2 and 143B cells) (35). In vitro
studies revealed that knockdown of FOXD3-AS1 dramatically
impaired the invasion and migration of osteosarcoma cells. In
vivo nude mice models have further confirmed that FOXD3-AS1
favors the development and progression of osteosarcoma.

Thyroid Cancer
It was reported that FOXD3-AS1 was overexpressed in thyroid
cancer tissues and FTC-133, SW579, TPC-1, 8505C cells (40).
Furthermore, upregulated FOXD3-AS1 expression has been
demonstrated to accelerate thyroid tumor growth in in vivo
xenograft models and intensify the biological processes of cell
proliferation, invasion and migration in FTC-133 cells.

Neuroblastoma
Neuroblastoma is the most common pediatric malignancy,
accounting for 15% of tumor-related deaths in children
(116–119). Although there have been some advancements in
the management of neuroblastoma patients, the 5-year event-
free survival rate for high-risk groups is still poor (120, 121).
Indeed, FOXD3-AS1 was shown to be downregulated in
neuroblastoma tissues and NB-1643, SK-N-BE (2), NB-1691,
IMR32, and BE (2)-C cells, and was regarded as an independent
biomarker for a favorable prognosis (41). Experiments in vitro
indicated that FOXD3-AS1 strongly accelerated neuronal
differentiation and impaired the proliferation and invasiveness
of IMR32 and BE (2)-C cells. Additionally, FOXD3-AS1
expression was inversely correlated with the growth rate of
neuroblastoma in an in vivo xenograft model. In this same
model, FOXD3-AS1 expression was correlated with a longer
survival time of nude mice, corroborating the tumor suppressor
roles of FOXD3-AS1 in neuroblastoma.

Glioma
Previous evidence has shown that FOXD3-AS1 is upregulated in
glioma tissues and U87, A172 and U251 cells. Moreover, a higher
Frontiers in Oncology | www.frontiersin.org 5
FOXD3-AS1 expression was observed in high-grade glioma
tissues when compared to that of low-grade glioma tissues
(42). FOXD3-AS1 expression has been positively correlated to
poorer overall survival and worse tumor grade. More
importantly, FOXD3-AS1 has been proposed as an oncogene,
favoring the proliferation, invasion and migration of U251 and
A172 cells.

Non-Cancer Disease
Ischemic Stroke
Ischemic stroke accounts for one of the most impactful diseases
worldwide, leading to high mortality and disability rates (122–
125). Due to the narrow time window and ischemia-reperfusion
(I/R) injury, the effect of vascular recanalization and reperfusion
treatment has been limited (126–128). Therefore, exploring the
exact molecular pathways underlying I/R injury is a pressing
concern (129–132). Upon I/R injury, FOXD3-AS1 was found to
be overexpressed in vivo and in vitro in oxygen-glucose
deprivation/reoxygenation (OGD/R)-induced neuro-2A (N2a)
cells (45). Furthermore, FOXD3-AS1 knockdown exerted
neuroprotective effects in ischemic stroke by inhibiting
neuronal cell apoptosis and cerebral infarction, in addition to
facilitating neuronal functional recovery.

Myocardial Disease
Myocardial ischemia is the major cause of cardiovascular
morbidity and mortality in the world (133–135). The
pathophysiological process of myocardial I/R injury results in
the deficiency of oxygen supply to myocardial cells and
subsequent development of oxidative stress, which is vital for
energy metabolism, cardiac dysfunction and cell death (136,
137). Therefore, the mitigation of myocardial I/R is needed to
improve the quality of life and reduce the mortality of these
patients (138, 139). High levels of FOXD3-AS1 were found in
H9C2 cells subjected to OGD/R during myocardial I/R injury
and in hypoxic AC16 cells (46, 47). More importantly, FOXD3-
AS1 has been demonstrated to induce cardiomyocyte autophagy
and aggravate the apoptosis of H9C2 cells, contributing to
myocardial I/R injury. Additionally, FOXD3-AS1 knockdown
was shown to protect AC16 cardiomyocytes against I/R injury by
increasing cell survival and inhibiting apoptosis.

Acute Respiratory Distress Syndrome
Acute respiratory distress syndrome (ARDS) is a life-threatening
clinical condition of acute respiratory failure (140–142). Early
diagnosis and prompt initiation of treatment are associated with
favorable clinical outcomes in ARDS patients (143–146).
Considering that this is a highly heterogeneous syndrome,
potential early biological makers are needed to improve the
management of ARDS (146–149). Previous reports have shown
that FOXD3-AS1 is strikingly overexpressed in lung tissues of an in
vivoARDSmodel (HALImodels) as well as in alveolar epithelial cell
line A549, lung bronchial epithelial cells Beas2B andmouse primary
lung epithelial cells after exposure to hyperoxia (48). Similar to its
role in myocardial hypoxic injury, FOXD3-AS1 was revealed to be
involved in the development of oxidative stress upon lung injury by
accelerating the apoptosis of A549 and Beas2B cells (Figure 2).
February 2022 | Volume 12 | Article 848296
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Allergic Rhinitis
Allergic rhinitis (AR) is a common disorder characterized by
nasal itching, sneezing and congestion (150–152). A recent study
reported that FOXD3-AS1 was severely downregulated in the
nasal mucosa of AR patients and nasal epithelial cells (NECs)
after LPS treatment (43). Additionally, FOXD3-AS1 was shown
to participate in the development of AR and to protect patients
from damage induced by Th2 immunoreaction in AR through
the inhibition of IL-25 expression and secretion.

Retinal Infection With Toxoplasma
Gondii-Ocular Toxoplasmosis
Toxoplasmosis is an infection caused by the Toxoplasma gondii
parasite and currently available treatments for toxoplasmosis are
inefficient (153). A better understanding of the pathogenesis of
toxoplasmosis infection is required to develop novel drugs
treatments (154, 155). FOXD3-AS1 was found to be
downregulated in human retinal Müller cells during retinal
infection with Toxoplasma gondii-ocular toxoplasmosis. This
descriptive in vitro study suggests a role for FOXD3-AS1 in
toxoplasmosis infection, however in vivo experiments are still
needed (44).
RELEVANT MECHANISMS REGULATED
BY FOXD3-AS1

FOXD3-AS1 has been proved to regulate a range of biological
processes, including cell proliferation, apoptosis, invasion,
migration, chemoresistance and endoderm differentiation. In
the following section, we will recapitulate the main functions
Frontiers in Oncology | www.frontiersin.org 6
and corresponding mechanisms of FOXD3-AS1 in the
development and progression of diseases.

Cell Proliferation
Uncontrolled cell proliferation is the main characteristic of
cancers (156–158). FOXD3-AS1 has been demonstrated to
promote cell proliferation in NSCLC cells via sponging miR-
135a-5p and further regulating CDK6 level (27, 143). FOXD3-
AS1 was also shown to interact with miR-127-3p and upregulate
the expression of MED28. The overexpression of ELAVL1 and
activation of the PI3K/Akt pathway was also reported to be a
possible pro-proliferative mechanism of FOXD3-AS1 in A549
cells (28). Contrarily, it was found that FOXD3-AS1 suppressed
cell proliferation through the miR-150/SRCIN1 axis in A549 and
H1229 cells (25). In breast cancer T47D and MCF-7 cells,
FOXD3-AS1 cleared the expression of miR-363 and
upregulated TFF1 expression and PI3K/Akt signaling, leading
to cell proliferation (29). In cervical cancer, FOXD3-AS1 directly
interacts with miR-296-5p and elevates HMGA1 levels mediated
by transcription factor SP1, thereby enhancing the proliferative
ability of HeLa and C33A cells (31, 32). In nasopharyngeal
carcinoma C666-1 and HK-1 cells, FOXD3-AS1 acts as a
promoter of cell proliferation via the inverse regulation of
miR-135a-5p (33) or microRNA-185-3p and the upregulation
of its downstream gene, FOXD3 (34). In colon adenocarcinoma,
FOXD3-AS1 was shown to upregulate SIRT1 by clearing miR-
135a-5p in HCT116 and SW1116 cells, which is suggestive of
increased cell. In melanoma A375, SK-MEL-1 and SK-MEL-2
cells, FOXD3-AS1 facilitates cell proliferation through binding to
miR-127-3p and upregulating the expression of FJX1 (37) or by
an interaction with miR-325 (38), which then increases the
expression of MAP3K2. In hepatocellular carcinoma, FOXD3-
FIGURE 2 | In acute respiratory distress syndrome, FOXD3-AS1 accelerates oxidative stress-induced cell apoptosis by suppressing miR-150 and increasing p53 expression.
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AS1 improves the expression of RICTOR and activates AKT
signaling through an interaction with miR-335, thus exerting a
pro-proliferative function in Huh6 cells (39). In thyroid cancer
FTC-133 cells, it was confirmed that FOXD3-AS1 promotes cell
proliferation by functioning as a miRNA sponge of miR-296-5p
and therefore activating the TGF-b1/Smads signaling pathway
(40). Finally, the specific regulatory mechanism of FOXD3-AS1
in glioma has not been thoroughly studied. It is thought that
FOXD3-AS1 may enhance the proliferation of U251 and A172
cells by a partial regulation of FOXD3 expression (42).

Cell Apoptosis
Apoptosis is a type of programed cell death that has been
implicated in the development and occurrence of cancers
(159–163). FOXD3-AS1 was demonstrated to suppress the
apoptosis of NSCLC A549 and H1229 cells through
functioning as a ceRNA for miR-135a-5p and elevating CDK6
expression (24). Similarly, in cervical cancer HeLa and C33A
cells, FOXD3-AS1 acts as an oncogene and competitively binds
to miR-296-5p, which dramatically increases the levels of
HMGA1, thus restraining tumor cells apoptosis (32). FOXD3-
AS1 was also confirmed to weaken cell apoptosis in
nasopharyngeal carcinoma C666-1 and HK-1 cells by
negatively regulating miR-135a-5p (33) or microRNA-185-3p
and upregulating the level of FOXD3 (34). In colon
adenocarcinoma, FOXD3-AS1 was found to protect HCT116
and SW1116 cells from apoptosis via the regulation of miR-135a-
5p/SIRT1 axis (36). Moreover, it was found that FOXD3-AS1
enhanced cell apoptosis of melanoma A375, SK-MEL-1 and SK-
MEL-2 cells through either the miR-325/MAP3K2 axis or the
miR-127-3p/FJX1 axis (37, 38) . More importantly ,
downregulation of FOXD3-AS1 was identified to suppress cell
apoptosis and subsequent cerebral I/R injury in ischemic stroke
N2a cells through inactivating the expression of miR-765 and
facilitating BCL2L13 expression (45). A similar phenomenon has
been observed in myocardial I/R injury H9C2 cells, in which
FOXD3-AS1 promoted cell autophagy and further exacerbated
cell apoptosis through the NF-kB/COX2/iNOS signaling
pathway (46). Another reported pro-apoptosis mechanism of
FOXD3-AS1 in I/R injury of AC16 cardiomyocytes occurs
through the downregulation of miR-150-5p (47). In addition,
FOXD3-AS1 negatively modulates miR-150 and upregulates its
target p53 during oxidative stress in ARDS Beas2B and A549
cells (48).

Cell Invasion and Migration
Metastasis is a complex process, in which malignant cells spread
from the primary tumor to surrounding organs, forming
secondary tumors. Full understanding of mechanisms that
regulate metastasis is essential (164).

FOXD3-AS1 was shown to enhance the invasion and
migration of NSCLC A549 and H1229 cells by interacting with
miR-127-3p and increasing MED28 expression (27). However, in
NSCLC A549 and H1229 cells, FOXD3-As1 repressed epithelial-
mesenchymal transition (EMT) and invasion through the
activation of ELAVL1-mediated PI3K/Akt pathway and the
miR-150/SRCIN1 axis (28). FOXD3-AS1 was also found to
Frontiers in Oncology | www.frontiersin.org 7
attenuate the invasiveness of neuroblastoma IMR32 and BE
(2)-C cells by inhibiting the expression of PARP1 and CTCF
(41). In cervical cancer HeLa and C33A cells, FOXD3-AS1
accelerates invasion and migration by competitively binding to
miR-128-3p and elevating LIMK1 expression (31) as well as
through clearing miR-296-5p and subsequently increasing
HMGA1 levels (32). It was also reported in osteosarcoma MG-
63 and HOS cells that FOXD3-AS1 is able to promote migration
and EMT through the activation of ELF1, which is mediated by
an interaction with miR-296-5p and increased levels of ZCCHC3
(35). In addition, FOXD3-AS1 antagonizes the expression of
miR-135a-5p and upregulates SIRT1 in colon adenocarcinoma
HCT116 and SW1116 cells, thus contributing to cell invasion
and migration (36). Similarly, in melanoma A375, SK-MEL-1
and SK-MEL-2 cells, FOXD3-AS1 facilitated cell migration via
miR-127-3p/FJX1 and/or miR-325/MAP3K2 (37, 38). FOXD3-
AS1 promotes the invasion and migration of hepatocellular
carcinoma Huh6 cells by serving as a miR-335 sponge,
enhancing RICTOR expression and activating the AKT
signaling pathway (39). In thyroid cancer FTC-133 cells,
FOXD3-AS1 positively regulated cell migration and invasion
through the inhibition of miR-296-5p and upregulation of the
TGF-b1/Smads signaling pathway (40). Moreover, it was
demonstrated that FOXD3-AS1 also promotes invasion and
migration of glioma U251 and A172 cells through a partial
modulation of FOXD3 (42).

Cell Chemoresistance
Insensitivity to chemotherapy is a primary cause of treatment
failure and shortens the life expectancy of patients (165, 166).
Therefore, there is an urgent need for thoroughly understanding
its mechanisms in order to develop new strategies to prevent
drug resistance (167, 168).

FOXD3-AS1 was found to promote cisplatin-resistance in
NSCLC A549 and H1299 cells via the repression of miR-127-3p
and subsequently increase of MDM2 (26). Moreover, FOXD3-
AS1 has also been proved to intensify 5-fluorouracil resistance in
NSCLC A549 cells through increasing ELAVL1 expression and
the PI3K/Akt pathway (28). In addition, FOXD3-AS1 has been
reported to enhance tamoxifen (TMX) resistance in breast cancer
T47D and MCF7 cells through the microRNA-363/TFF1/PI3K/
Akt signaling pathway (29). Notably, FOXD3-AS1 enhances the
sensitivity of chemotherapeutic drugs in neuroblastoma IMR32
and BE (2)-C cells through repression of PARP1-mediated
PARylation of CTCF (41) (Figure 3).

Cell Stemness and Differentiation
Accumulating evidence suggests that cells with stem-like
characteristics favor tumor development, such as metastasis
and chemoresistance (169–172). Further investigation
concerning the molecular biology of cancers is expected to
promote the development of alternative therapies targeting the
properties of cell stemness (173–176). FOXD3-AS1 was
implicated in the regulation of stem-like properties of
nasopharyngeal carcinoma C666-1 and HK-1 cells by
inhibiting miR-185-3p expression and consequently increasing
FOXD3 levels (34). FOXD3-AS1 also stimulates differentiation
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induced by all-trans-retinoic-acid (ATRA) on neuroblastoma
IMR32 and BE (2)-C cells through the inhibition of PARP1
and CTCF (41). Additionally, FOXD3-AS1 was first thought to
induce pluripotency and differentiation of human embryonic
stem cell (hESCs), in which undifferentiated hESCs present a
high expression of FOXD3-AS1, while endoderm and mesoderm
differentiation is correlated with low FOXD3-AS1 expression
(177). Downregulation of FOXD3-AS1 results in pluripotency
dysregulation through the inhibition of endoderm pathways.
CLINICAL APPLICATIONS OF FOXD3-AS1

Based abovementioned mechanisms and effects of FOXD3-AS1,
there has been increasing interest in using FOXD3-AS1 as a
promising diagnostic or prognostic biomarker as well as
therapeutic target for disease management.

FOXD3-AS1 as a Diagnostic Biomarker
FOXD3-AS1 is abnormally expressed in multitude diseases,
including NSCLC (24–28), breast cancer (29, 30), cervical
cancer (31, 32), nasopharyngeal carcinoma (33, 34),
osteosarcoma (35), colon adenocarcinoma (36), melanoma (37,
38), hepatocellular carcinoma (39), thyroid cancer (40),
neuroblastoma (41), glioma (42), ischemic stroke (45),
myocardial ischemia (46, 47), acute respiratory distress
syndrome (48), allergic rhinitis (43) and retinal infection with
Frontiers in Oncology | www.frontiersin.org 8
toxoplasma gondii-ocular toxoplasmosis (44). Differential
expression of FOXD3-AS1 on specific tissues is able to
distinguish pathological tissues from adjacent normal ones,
suggesting that FOXD3-AS1 can be a promising diagnostic
marker for the early diagnosis of diseases. However,
monitoring FOXD3-AS1 expression levels in tissues is an
invasive and costly process for clinical practice. Detection of
FOXD3-AS1 expression in body fluids, such as blood and urine
will likely be more convenient for disease diagnosis.

FOXD3-AS1 as a Prognostic Biomarker
Several studies have reported that FOXD3-AS1 is significantly
associated with clinicopathological features, such as tumor size,
tumor grade, TNM stage, poor differentiation of tumor tissues,
lymph node metastasis, distant metastasis, survival probability,
overall survival and progression-free survival. These characteristics
indicate that FOXD3-AS1 can serve as a prognostic biomarker for
clinical application. For example, highexpressionofFOXD3-AS1has
been proved to associate with poor International Federation of
Gynecology and Obstetrics stage of cervical cancer, indicating that
FOXD3-AS1 could be employed as an independent prognostic
biomarker for the prediction of overall survival rates in cervical
cancer (32). In particular, FOXD3-AS1 levels show a significant
associationwith benign differentiation, InternationalNeuroblastoma
Staging System (INSS) stage, and MYCN amplification in
neuroblastoma (41). Taken together, these features render FOXD3-
AS1 the potential to be a reliable candidate for disease prognosis.
FIGURE 3 | The impact of FOXD3-AS1 on chemoresistance. In non-small cell lung cancer A549 or H1299 cells, FOXD3-AS1 promotes cisplatin-resistance via inhibiting
miR-127-3p expression and upregulating MDM2 expression. FOXD3-AS1 also enhances 5-fluorouracil resistance via activating ELAVL1 and the PI3K/Akt pathway. In
breast cancer T47D or MCF7 cells, FOXD3-AS1 intensifies tamoxifen (TMX) resistance via clearing microRNA-363 and strengthening TFF1 and the PI3K/Akt signaling
pathway. In neuroblastoma IMR32 or BE (2)-C cells, FOXD3-AS1 enhances the sensitivity of all-trans-retinoic-acid (ATRA) via repressing PARP1 and CTCF.
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FOXD3-AS1 as a Treatment Target
With recent advances in the understanding of FOXD3-AS1 in
the pathogenesis of diseases, several relevant molecular
mechanisms and signaling pathways may be suitable for
targeted therapy. Substantial studies have shown that FOXD3-
AS1 participates in cell proliferation, apoptosis, metastasis, cell
stemness and chemoresistance of various human diseases.
Especially, the effect of FOXD3-AS1 on drug resistance has
received considerable attention.

Emerging studies have indicated that FOXD3-AS1 induces
resistance to chemotherapy and subsequently accelerates the
development of different types of cancer. For example, FOXD3-
AS1 enhances the resistance of NSCLC cells to chemotherapeutic
drugs cisplatin and 5-fluorouracil (26, 28). Moreover, it has also
been demonstrated that FOXD3-AS1 was able to enhance breast
cancer cells resistance to tamoxifen (29). However, FOXD3-AS1 has
also been reported to enhance neuroblastoma cell sensitivity to
ATRA (41). Strategies aimed at targeting FOXD3-AS1 and
modulating drug resistance are expected to be a new
breakthrough in drug development. However, significant
challenges remain for the safety and efficacy of FOXD3-AS1-
targeted agents due to the lack of sufficient clinical data.
Therefore, more in-depth basic research into the function and
mechanisms of FOXD3-AS1 in diseases is needed.
CONCLUSION

Numerous studies have shown that FOXD3-AS1 is highly
expressed in multiple diseases, including breast cancer, cervical
cancer, nasopharyngeal carcinoma, osteosarcoma, colon
adenocarcinoma, melanoma, hepatocellular carcinoma, thyroid
cancer, glioma, ischemic stroke, congenital heart disease and
acute respiratory distress syndrome. In addition, studies have also
revealed that FOXD3-AS1 is downregulated in neuroblastoma and
allergic rhinitis, suggesting a protective role. Of note, different
reports of FOXD3-AS1 in NSCLC show conflicting results on
expression, which might be attributed to various factors, such as
tumor heterogeneity (178), different study designs and insufficient
Frontiers in Oncology | www.frontiersin.org 9
number of tumor samples. The in-depth understanding of the
differential expression of FOXD3-AS1 between normal and
pathological tissues and cell lines might be expected to enhance
the development of novel strategies for disease diagnosis. Further
research with additional cell lines and animal models are needed to
fully explore these differences. Moreover, the expression levels of
FOXD3-AS1 show a close association with clinicopathological
features, such as tumor size, grade, poor differentiation, lymph
node metastasis, distant metastasis, overall survival and
progression-free survival, which might be available for predicting
the prognosis of patients. Mechanistic studies have reported that
FOXD3-AS1 promotes cell proliferation, apoptosis, invasion,
migration, chemotherapeutic resistance, cell stemness and
differentiation. Functional studies of FOXD3-AS1 in recent years
have broadened our knowledge of its regulatory mechanisms in
disease and brought new perspectives on the clinical applications of
FOXD3-AS1. Compared with conventional chemotherapy,
molecular-targeted FOXD3-AS1 therapy is expected to show
greater specificity and lower systemic toxicity. However, these
therapies are still in early stages. The lack of support from clinical
trials and toxicological experiments remains a major challenge for
the applications of FOXD3-AS1. In addition, the stability and levels
of FOXD3-AS1 in serum or other accessible biological samples have
yet to be validated. Further molecular mechanisms and larger
clinical multicenter studies should be conducted.
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