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Abstract: In order to enhance the tribological performance of YT14 carbide, pure Zr coating was
deposited on the substrate surface using a multi-arc ion plating method. The surface topography,
adhesion strength, thickness, and micro-hardness of the Zr coating were tested. Dry sliding friction
experiments against a 40Cr hardened steel ring were conducted with Zr-coated carbides and
traditional ones. The average coefficients of friction were measured and compared. The wear
characteristics of the samples were examined by scanning electron microscope (SEM) and energy
dispersive X-ray analysis (EDX). The test results indicated that the Zr coating deposited on the carbide
surface exhibited excellent adhesive strength and lower hardness. The average friction coefficient of
Zr coated carbide decreased by 20%–30% in comparison with that of the uncoated one. The Zr coated
carbide could reduce the adhesive wear compared with the uncoated one, and the main tribological
degradation mechanisms of the coating were abrasive wear, coating flaking and delamination.
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1. Introduction

Cemented carbide has been widely applied in engineering productions due to the advantages of
high strength, and excellent anti-wear properties [1]. However, in high-speed cutting and hard cutting,
the carbide exhibits higher friction coefficient, lower wear resistance, and a short lifetime [2]. Coating
on the carbide surface is an economical and effective technique, which includes hard coatings and soft
coatings, to improve the tribological performance and wear resistance, which include hard coatings
and soft coatings.

With higher hardness, better excellent abrasion resistance, and high-temperature stability, hard
coatings are applied to improve wear resistance and enhance the tribological performance of substrate
materials. First generation hard coatings were simple binary composite materials such as TiN,
ZrN, and CrN [3–6]. The successful application of the early generation hard coatings resulted in
the rapid development of the next generation physical vapour deposition (PVD) multi-component
composite coatings and their combinations as multilayers, which provide higher hardness and better
wear resistance. The multi-component composite coatings, such as TiAlN, AlCrN, TiSiN, TiAlSiN,
and CrSiCN, have attracted a lot of research because of the solid solution strengthening [7–17].
The multi-component composite coatings exhibit much higher hardness and better tribological
properties than binary coatings, and the addition of metal during deposition process produces much
more stable substitution solid solutions.

Soft coatings of substrate are considered to be a kind of effectual method for improving friction
performance by forming a layer of lubrication film, and they have been found to significantly improve
tribological characteristics due to the lubricating effect, such as tungsten disulfide (WS2) [18–21],
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molybdenum disulfide (MoS2) [22–25], etc. These sulfides are well-known as dispersants in cutting
coolant, polished coatings, and coatings prepared by physical vapor deposition (PVD) technique, PVD
being a promising method of fabrication of sulfide coatings. To further enhance the wear resistance
and service life of sulfide coatings, the combination of sulfides and metals such as Ti, Cr, or Zr have
been found to significantly promote mechanical properties and tribological performance [26–35], and
have been widely used in industrial productions.

However, the present research mainly focuses on hard coatings and soft coatings with a
combination of metals (e.g., Ti, Cr, Zr). Information about the properties of pure metal-coated
carbide inserts is still very scarce [36,37]. These need to be further studied in order to expand the
application range.

In the present work, pure Zr coating was deposited onto the surface of YT14
(WC + 14%TiC + 6%Co) carbide using multi-arc ion plating technology. The surface morphology,
adhesion strength, thickness, and micro-hardness of the Zr coating were evaluated. Dry sliding friction
experiments of the Zr coated carbides against 40Cr hardened steel ring were conducted by employing
a ring-block method. The friction characteristics of the Zr coated carbides against hardened steel
were investigated.

2. Experimental Details

2.1. Preparation of Pure Zr Coating

YT14 carbide (WC + 14%TiC + 6%Co) was employed as the coated substrate material. Composition
and principal characteristics of YT14 carbide are displayed in Table 1. The surface of the sample was
burnished to a mirror finish, then washed ultrasonically in acetone for 20 min, and lastly dried in a
prevacuum dryer for about 30 min. The pure Zr coating was deposited by multi arc ion plating method
using two Zr targets (99.99%). The coating deposition parameters are shown in Table 2.

Table 1. Mechanical properties of the cemented carbide material.

Composition (wt. %) Density
(g/cm3)

Hardness
(GPa)

Flexural
Strength (MPa)

Young′s
Modulus (GPa)

Thermal Expansion
Coefficient

(10−6/K)

Poisson′s
Ratio

WC + 14%TiC + 6%Co 11.6 15.4 1200 510 6.50 0.25

Table 2. Deposition parameters of the Zr coating.

Substrate Base Pressure
(Pa)

Temperature
(◦C)

Ar Pressure
(Pa)

Zr Current
(A)

Deposition
Temperature (◦C)

Deposition
Time (min)

Cemented carbide 6.5×10−3 220 0.6 90 250 90

The adhesion strength between the Zr coating and YT14 substrate and thickness was measured
with the MT-4000 Material Surface Properties Tester, by scratching the Zr coating′s surface with
a diamond tip with a radius of 200 µm. The adhesion strength tests were implemented with an
applied force of 80 N, with the force increasing at a rate of 80 N/min and a sliding distance of 10 mm.
The measurement of coating thickness were performed with a sliding distance of 6 mm and a testing
time of 60 S. The surface micro-hardness of the coating was measured on the MH-6 micro-hardness
meter with an applied load of 0.2 N. The surface topography of the coating was obtained with a white
light interferometer.

2.2. Sliding Friction Tests

Sliding friction tests were carried out on a MRH-3 high-speed ring-block tribometer. The schematic
of the ring-block tester is indicated in Figure 1. The upper block (15 mm × 15 mm × 4.5 mm) was
Zr-coated carbide. The lower ring sample (Φ50 × Φ35 × 15 mm) was a 40Cr hardened steel ring with
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a surface hardness of HRC 45–48. The Zr-coated sample was mounted in a holder, while the 40Cr ring
was rotated at a speed of 100–400 rpm. The applied normal load was in the range of 20–50 N, and
the sliding time was 5 min. The average friction coefficient was the ratio of tangential force to the
normal force.
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Figure 1. Schematic diagram of the wear testing with ring-block tribometer.

All the tests were carried out three times for average values. To explore the friction performance
and properties of the pure Zr coating, measurements were also executed via SEM (INCA Penta FETXS,
Oxford Instruments, Abingdon, UK) and EDX (D8 ADVANCE, Bruker, Karlsruhe, Germany).

3. Results and Discussion

3.1. Properties of the Zr Coating

Figure 2a exhibits surface micrograph of the pure Zr coating. The EDX spectrum map of Zr element
distribution on the coating surface is illustrated in Figure 2b. Figure 2c,d exhibits the corresponding
EDX spectrum composition analyses of point A and B in Figure 2a, and the element content of the two
points are shown in Table 3. It was demonstrated that the Zr element existed in the surface coating,
and the element was relatively evenly distributed throughout the structure of the coating.

Table 3. Element content analysis of worn surface for the Zr coating.

Element Content (Unit) Point A in Figure 2a (wt. %) Point B in Figure 2a (wt. %)

Zr 100 92.37
W 4.04
Ti 2.51
C 1.08

Total 100.00 100.00

Figure 3 indicates the topography of the Zr coating surface tested via a white-light interferometer.
As indicated, the surface of the Zr coating was quite smooth and compact; and the value of surface
roughness reached about Ra 85 ± 5 nm.
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Figure 2. Scanning electron microscopy (SEM) micrograph and energy dispersive X-ray analysis (EDX)
spectrum element analysis of the Zr coating: (a) surface micrographs; (b) Zr element distribution in (a);
(c) and (d) corresponding composition analysis of point A and B in (a).
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Figure 3. The surface topography of Zr coating detected by a white light interferometer.

The adhesion strength was determined as the signal variations of friction force and acoustics due
to the spalling of coating. The curves of friction force and acoustic signals in scratching tests are plotted
in Figure 4. At the beginning of the scratching test, the frictional force curve was steady and smooth,
and the acoustic signal was so small that it could be ignored. As coating failure began and the coating
scraped off gradually, the fluctuations of friction force and acoustic signal increased significantly. From
Figure 4, the adhesion strength of the Zr coating was considered to be about 60 ± 5 N.
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Figure 4. Adhesion strength of the Zr coating.

Coating thickness was obtained through measuring the difference in height between the coated
and uncoated carbide sample as indicated in Figure 5a. Figure 5b presents the thickness curve
of scratching test with the MT-4000 Tester; and the coating thickness was determined to be about
3.0 ± 0.1 µm.
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Figure 5. Micrograph of coating-substrate interface (a) and thickness curve by scratch test (b).

The surface micro-hardness, adhesion strength, thickness, and surface roughness of the Zr coating
are exhibited in Table 4. It shows that the coating hardness was just 12.0 ± 0.5 GPa, which was reduced
by 22% in comparison with that of the YT14 substrate (15.4 ± 0.5 GPa).

Table 4. Mechanical properties of the Zr coating.

Substrate Coating Micro-Hardness
(GPa)

Thickness
(µm)

Adhesion
Strength (N)

Surface Roughness Ra
(nm)

Cemented carbide Zr 12.0 ± 0.5 3.0 ± 0.1 60 ± 5 85 ± 5

3.2. Tribological Behaviors of Zr Coating

The average friction coefficients of the Zr-coated carbide and the uncoated YT14, against 40Cr
hardened steel under different sliding speeds and loads, are exhibited in Figures 6 and 7 respectively.
It was evident that the friction coefficients of uncoated carbide were 20%–30% higher than those of
the Zr -coated one under the same experimental conditions. In Figure 6, the friction coefficients of
Zr-coated sample stabilized at about 0.35–0.36, and the sliding speed changed from 100 to 400 rpm,
while the friction coefficients of YT14 reached 0.43–0.47. As can be seen in Figure 7, it was found that
the coefficients of friction were reduced along with the increasing load. As the applied load increased
from 20 to 50 N, the friction coefficients of the coated sample were decreased from 0.37 to 0.30, while
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those of YT14 were reduced from 0.47 to 0.38. The test results indicated that the Zr coating can reduce
the friction coefficient of the carbide under the similar test conditions, compared to the ZrN coating
with the friction coefficient of 0.40–0.50 [6].
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The average friction coefficient of friction pairs under elasticity loaded conditions can be expressed
with the formula as follows [38]:

µ = tan β =
Ff
P

=
τc Ar

σb Ar
=

τc

σb
(1)

where β is the friction angle, Ff is frictional force, P is the applied load, Ar is actual contact area, σb is the
compressive yield limit of the substrate materials, and τc is the average shear stress of sample surface.

The compressive yield limit of the YT14 carbide substrate remains basically unchanged [38]. Then
the equation indicates that the decreased average shear stress of the carbide surface contributes to
reduce the friction coefficient. Because the shear stress of the pure Zr coating is lower than that of the
carbide substrate, Zr-coated carbide is propitious to reducing the average friction coefficient, and this
corresponds with the variation curve of friction coefficient illustrated in Figures 6 and 7.

3.3. Wear Surface Studies

To better study the friction and wear features of the tested carbides, SEM and EDX were utilized
to investigate the worn micrograph and element composition on the worn zone. Figure 8 indicates the
surface micrographs and element composition analysis on the worn track of the uncoated carbide after
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5 min sliding duration with the applied load of 20 N and slide speed of 200 rpm. There existed obvious
abrasive wear on the wear surface (Figure 8a), and adhering materials could be observed on the worn
track (Figure 8b). The corresponding element composition analysis (Figure 8c,d) confirmed that there
existed Fe and O elements in addition to the elements of the carbide substrate. These additional
elements were considered to be transferred from the 40Cr ring, owing to the severe friction between
the uncoated carbide and steel sliding pair.
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Figure 8. SEM micrographs and EDX spectrum analysis of the worn surface of uncoated YT15 carbide
after 5 min sliding operation at a speed of 200 rpm and a load of 20 N: (a) worn face; (b) enlarged SEM
corresponding to (a); (c) and (d) EDX spectrum analysis of points A and B in (b).

Figure 9 shows the surface topographies and composition analysis on the worn track of the
Zr-coated sample. Significant abrasive wear was found with the distinctive features of mechanical
plough grooves and scratches. The coating flakes and delamination were also observed as a result
of the brittle fatigue fractures caused by the continuous load (Figure 9b). The corresponding surface
composition measurements on the worn surface are shown in Figure 9c,d. It can be considered that
there existed little adhesive wear owing to the absence of iron element. Therefore, the main wear
mechanisms of the Zr coating were abrasive wear, coating flaking, and delamination. The test results
also identified that the tribological performance and property of the tested samples depended upon
the materials of the friction pairs and the test conditions.
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Figure 9. SEM micrographs and EDX spectrum of the worn surface of Zr coating after 5 min sliding
operation at a speed of 200 rpm and a load of 20 N: (a) worn face; (b) enlarged SEM corresponding to
(a); (c) and (d) EDX spectrum analysis of point A and B in (b).

4. Conclusions

Pure Zr coating was deposited on the surface of a YT14 cemented carbide substrate using a
multi-arc ion plating method. Dry sliding friction tests against a 40Cr hardened steel ring were
implemented with the Zr-coated samples and traditional ones, and the main conclusions were obtained
as below:

1. PVD Zr coating deposited on the carbide surface exhibited excellent adhesive strength.
The coating adhesion strength reached about 60 N. The surface micro-hardness of Zr coating was
about 12 GPa, the coating thickness was about 3.0 µm, and the surface roughness Ra was about
85 nm;

2. The average friction coefficient of Zr coated carbide was 20–30% lower than that of the uncoated
one under the same sliding test conditions. The coefficient of friction decreased with the increasing
applied load, and changed slightly with varying sliding speed;

3. The Zr coated carbide could reduce the adhesive wear compared with the uncoated one, and the
main wear mechanisms of the Zr coating were abrasive wear, coating flaking, and delamination.
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