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Atherosclerosis remains a ubiquitous and serious threat to human health. The initial

formation of the atherosclerotic lesion (atheroma) is driven by pro-inflammatory signaling

involving monocytes and vascular endothelial cells; later stages of the disease involve

rupture of well-established atherosclerotic plaques, thrombosis, and blood vessel

occlusion. While the central role of platelets in thrombosis is undisputed, platelets exhibit

pro-inflammatory activities, and contribute to early-stage atheroma formation. Platelets

also engage components of the complement system, an essential element of innate

immunity that contributes to vascular inflammation. Here we provide an overview of the

complex interplay between platelets and the complement system, with a focus on how

the crosstalk between them may impact on the initiation of atheroma formation.
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INTRODUCTION

Cardio-cerebrovascular diseases are commonly caused by atherosclerosis, an inflammatory
vasculopathy characterized by the formation of atheromatous plaques along the arterial wall. If the
disease progresses, blood flow becomes limited, with resultant tissue injury, and organ dysfunction.
Several pro-inflammatory events lead to plaque formation [reviewed in (1–3)]. Early in the process,
endothelial activation promotes binding of monocytes to the vascular wall. These cells subsequently
migrate into the subendothelial space, where they differentiate into macrophages. They then
phagocytose oxidized low-density lipoproteins (oxLDL) which are deposited within the vascular
wall, resulting in their transformation into lipid-laden foam cells. In parallel, vascular smooth
muscle cells synthesize a fibrous connective tissue cap that surrounds the central lipid-macrophage
core. Long-standing pro-coagulant and pro-inflammatory atherosclerotic plaques are prone to
rupture, resulting in life-threatening thrombosis and ischemia, as is observed during myocardial
infarction, and stroke. Platelets play a central role in thrombus formation secondary to plaque
rupture. However, platelets are also highly immune-competent cells that, with activation of
the complement system, are believed to orchestrate the initial signaling events during vascular
inflammation that are critical for atheroma formation. In this review, we focus on the participation
of platelet-complement crosstalk in early atherogenesis. We begin with a broad overview of the
concepts of platelet activation and how this may trigger atheroma formation via interactions with
leukocytes and endothelial cells [readers are referred to detailed reviews on this topic (4–6)]. This
is followed by a description of the complement cascade and its regulation. We finally focus on
the inter-relationship between platelets and the complement system, highlighting several of the
complex links, how they may impact on atherogenesis, and on the potential clinical utility of
recently uncovered pathways.
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PLATELET SIGNALING PROMOTES
ATHEROGENESIS

Platelet Activation and Secretion
Platelets are 2–4µm diameter cells that circulate in resting
discoid forms at a concentration of 150,000–450,000 cells/µl
of whole blood, and become activated upon stimulation of
their cell surface receptors by corresponding ligands (4). The
role of platelets in thrombosis following plaque rupture in
late-stage atherosclerosis is well-known. However, platelets also
store >30 cytokines and growth factors in granules—alpha (α)-
granules, dense granules, and lysosomes (7). Platelet activation
is typically accompanied by rapid shape change, with fusion of
the granule membranes with the platelet’s plasma membrane,
and the inner membranous network, to form the so-called
open canalicular system (7, 8). Platelet secretion that occurs
with this activation, is characterized by rapid translocation of
P-selectin from the α-granules to the plasma membrane and
extracellular release of soluble cytokines, chemokines, growth
factors, and complement components (9). Activated platelets
also uniquely express multiple receptors on their surface,
and release platelet microparticles (PMPs), which are <1µm
diameter vesicular bodies containing a variety of cytokines,
including for example, interleukin-1β (IL-1β (10). Importantly,
platelet-derived cytokines from activated platelets are believed
to contribute to vascular inflammation at the early stages of
atheroma formation (11). Strong evidence exists that platelets
also promote atherogenesis by acting as lipid-carrying structures
(12), by signaling to vascular endothelium, and by recruiting
leukocytes to the nascent atheroma (13).

Platelet-Endothelial Cell Signaling
Under physiologic conditions, the endothelial cell layer is
separated from circulating platelets and leukocytes by a
proteoglycan-rich layer termed the glycocalyx (14). Endothelial
cells also produce prostacyclin (15), and nitric oxide (16) which
serve to maintain platelets in their quiescent states. However,
activation of the endothelial cell layer promotes atheroma
formation. Activated endothelial cells express platelet-adhesive
molecules including for example, E-selectin (17) and von
Willebrand factor (VWF) (18), and release platelet agonists such
as thromboxane (19). These molecules serve to recruit, activate,
and tether platelets to the vessel wall. The activated platelets in
turn, express P-selectin (20), and release multiple cytokines and
chemokines that further induce endothelial cell activation (21),
with the result being more recruitment and activation of platelets
at the site of the vascular lesion. Unless dampened by natural
or pharmacologic interventions, the process becomes self-
sustaining with progressive vascular damage, and atherogenesis.

Platelet-Derived Chemokines Recruit and
Retain Monocytes at Sites of Vascular
Inflammation
In addition to promoting endothelial cell activation, platelet-
derived chemokines recruit monocytes, thereby propagating
atheroma development. CXCL4/PF4 (platelet factor four),
a major constituent of platelet α-granules (22–25), is one

of several well-characterized monocyte chemoattractants.
CCL5/RANTES (regulated on activation normal T-cell expressed
and secreted) is also a platelet-derived chemokine with monocyte
chemoattractant properties (26, 27).

The pathophysiologic relevance of these and other platelet-
released factors in atheroma formation is supported by
several observations. For example, in vitro analyses revealed
that monocytes preferentially adhere to endothelial cells pre-
incubated with PF4 and/or RANTES (28, 29), while in
vivo studies showed that the size of experimentally-induced
atherosclerotic lesions were significantly reduced in PF4-null
mice (30). Evidence also exists from clinical studies to support the
contribution of PF4 and RANTES in atherosclerosis. In analyses
of 132 carotid atheromatous plaques, PF4 presence directly
correlated with lesion severity, in terms of histological grading
of the lesions, and the history of significant clinical events such
as myocardial infarction (31). RANTES plasma levels in patients
hospitalized with acute coronary syndrome also correlated with
progressive disease (32). That the chemotactic properties of PF4
and RANTES promote vascular disease severity underlines the
importance of understanding how these and other similarly
biologically active factors are released by platelets. Increasing
evidence supports the notion that the complement system plays
an important role.

THE COMPLEMENT SYSTEM

Activation via 3 Pathways
The complement system is a tightly regulated blood borne
proteolytic system, a key component of innate immunity, that
responds rapidly to clear damaged host cells and invading
pathogens, to limit tissue destruction and to effect healing.
This system is intimately involved in platelet function and
the pathogenesis and progression of atherosclerosis. Thus,
a brief review is provided [more extensive reviews can be
found in (33–36)].

Comprising over 30 soluble and membrane bound proteins,
complement activation is triggered by exposure to damage-
associated molecular patterns, initiated via the lectin (LP),
classical (CP), or alternative (AP) pathways (Figure 1). The CP
is triggered by C1q recognition of antibodies or other targets
(e.g., C-reactive protein, apoptotic cells) bound to antigens or
microbial surfaces. C1q circulates in complex with zymogen
forms of serine proteases C1r and C1s. Exposure of C1q to its
target results in activation of C1r and C1s (37), followed by
C1s-mediated cleavage of C4 into C4a (an anaphylatoxin) and
the opsonin C4b. C2 complexes with immobilized C4b, and is
also cleaved by C1s into C2b and C2a. The resultant C4b2a
complex is the CP C3 convertase which cleaves C3 into C3b,
liberating the anaphylatoxin C3a. C3b binds to the surface of
nearby cells/microbes for downstream complement activation.

Similar to the CP, in the LP, mannose binding lectin (MBL),
ficolins, and/or collectin-11 circulate in complex with MBL-
associated zymogens of serine proteases, MASP1/MASP3, and
MASP2 (38). These complexes bind to sugars on micro-
organisms or damaged cells, whereupon MASP1 autoactivates
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FIGURE 1 | Schematic of complement activation and regulation. Complement activation occurs via the classical, lectin, or alternative pathways, triggered by

exposure of C1q, MBL, collectins and ficolins, to danger signals. The alternative pathway is constitutively active, due to spontaneous hydrolysis of C3 to C3(H2O). All

pathways converge to form C3 convertases, with release of C4a, and C3a. As C3b is further generated, C5 convertases C4bBbC3b, and C3bBbC3b are formed,

resulting in release of the potent anaphylatoxin C5a, in concert with C5b. C5b is the initial factor required for assembly of the C5b-9 membrane attack complex which

induces lysis/damage to the cellular target. Tight regulation is achieved at multiple levels by soluble and membrane associated factors (C1-INH, FH, FI, CD55, CD46,

polyphosphate (polyP), CD59, clusterin, and vitronectin). C1-INH, C1 esterase inhibitor; MBL, mannose binding lectin; CRP, C-reactive protein; MASP, MBL

associated serine protease; FH, factor H; FI, factor I; TAFIa, activated thrombin activatable fibrinolysis inhibitor.

and cleaves C2, as well as MASP2, which then cleave C2 and C4,
yielding C4b2a, the LP C3 convertase (39).

In contrast to the CP/LP, the AP is constitutively active via
a “tick-over” mechanism in which small amounts of circulating
C3 spontaneously hydrolyze into C3(H2O) (40). This yields a
binding site for factor B (FB) which is cleaved into Ba and
Bb by factor D. Bb binds to C3(H2O) to form a fluid-phase
C3 convertase, which can cleave C3 to generate C3a and C3b.
Relevant to a relationship between platelets and complement,
surface contact may also trigger hydrolysis of C3 and thus
activation of the AP (41). This is achieved via the release of
properdin by inflammatory leukocytes, which binds to activated
platelets and recruits C3(H2O) to promote formation of cell-
bound C3(H2O)Bb (42). This pathway supports the notion
that platelets cooperate with activated leukocytes to trigger
complement activation via the AP, amplifying generation of C3b,
and formation of a stable C3bBb AP C3 convertase.

As noted above, the three complement pathways converge
with the formation of their respective C3 convertases, and
generation of C3a, and C3b (Figure 1). If activation is sufficient,
excess C3b binds to these convertases, to generate C5 convertases,
which cleave C5 into C5b, and C5a. C5a is the most potent
anaphylatoxin, with a range of pro-inflammatory and pro-
coagulant properties (see below). C5b binds to C6, and assembles
with C7, C8, and multiple C9 molecules, yielding C5b-9,
the so-called membrane attack complex (MAC), which has
pore-forming, lytic properties designed to destroy invading
organisms and damaged/foreign cells (see below) (43).

Regulation of Complement
Complement activation is tightly regulated at multiple levels to
prevent host cell damage and to allow healing to proceed. This
is achieved via the coordinated actions of several membrane
anchored and fluid-phase regulators, some of which will be
discussed [(35); Figure 1]. C1-esterase inhibitor (C1-INH) is
a serine protease inhibitor that dampens the CP and LP by
neutralizing C1r, C1s, MASP-1, and MASP-2, each interaction
variably potentiated by heparan sulfate and polyphosphate
(37, 44, 45). It is synthesized by hepatocytes, but also by
fibroblasts, endothelial cells, monocytes, megakaryocytes, and
platelets. C1-INH also interferes with several pro-coagulant and
pro-inflammatory enzymes, including factors XIa, XIIa, and
kallikrein. Factor H (FH) is the major fluid-phase negative
regulator of the AP (46). Synthesized by hepatocytes, but also
by endothelial cells, platelets, and monocytes (47, 48), FH is a
cofactor for factor I (FI) mediated inactivation of C3b, a decay
accelerating factor of the AP C3 convertase, and a competitor to
FB binding to C3b. A platelet-released kinase (49) can reduce FH
binding to C3b, thereby enhancing the inflammatory response
(50). FH also colocalizes with VWF in Weibel-Palade bodies
and variably modulates ADAMTS13-mediated proteolysis of
ultra large VWF (ULVWF) multimers, thereby impacting on
platelet-vessel wall interactions (51–54), and thus atherogenesis.
Negative regulators of the terminal pathway of complement
activation include CD59, which binds to C8 and C9 and prevents
C9 polymerization (55), clusterin and vitronectin, which reduce
membrane integration of C5b-9 (56, 57), and polyphosphate,
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which destabilizes the C5b,6 complex, reducing C5b-9 insertion
into the membrane (58).

PLATELET-COMPLEMENT CROSS-TALK
SYNERGIZES IN ATHEROMA FORMATION

Considerable evidence supports the notion that complement
and platelets act in concert to orchestrate the early cellular and
molecular events that promote atheroma formation [reviewed
(59, 60)]. Importantly, there exist reciprocal signaling pathways
between platelets and the complement system (61) that impact
on the vascular endothelium, and potentiate or attenuate each
other’s pro-atherogenic properties.

Pro-Atherogenic Properties of
Complement: Targeting the Vascular
Endothelium
The complement system is a major contributor to inflammation
and thrombosis, critical features underlying atheroma formation,
and progression of atherosclerosis. Indeed, many complement
components are found in atheromatous lesions where they
participate in initiating and sustaining inflammation (62, 63).
Endothelial cells express receptors for several complement
components, most notably C1q (64), C3a (65), and C5a (66).
The anaphylatoxins C3a and C5a bind to their cognate G
protein-coupled receptors (C3aR for C3a; C5aR1, and C5L2
for C5a) and trigger pro-inflammatory and pro-thrombotic
activities. Both C3a and C5a induce endothelial cell expression
of pro-inflammatory IL-8, IL-1, and RANTES. They upregulate
expression of key leukocyte adhesion molecules, VCAM-1,
ELAM-1, ICAM-1, and P-selectin (67, 68). They also induce a
pro-thrombotic phenotype through C5a-mediated tissue factor
(TF) expression on neutrophils (69) and endothelial cells, and
VWF secretion from endothelial cells (67). Indeed, C3a and C5a
are pivotal in recruiting and activating monocytes, neutrophils
and macrophages, promoting endothelial permeability (70),
and providing a nidus for clot formation, all of which are
required for the initiation, and expansion of an atherosclerotic
plaque. The terminal pathway complexes, C5b-7, C5b-8, and
C5b-9 also participate by augmenting VCAM-1 expression
by endothelial cells (71), inducing cellular release of pro-
inflammatory mediators, such as IL1-α, that cause leukocyte
recruitment (72), and promote functional expression of TF.
This occurs partly via activation of MAPKinases leading to
its transcriptional upregulation (73), and by inducing its
activation via oxidation of cell surface protein disulfide isomerase
(PDI) (43, 74).

Complement-Platelet Crosstalk
Like endothelial cells, platelets express receptors for C1q (75),
C3a (76), C4 (77), and C5a (59). They also release complement
components upon activation, including C1q, C3, C4, and C5b-
9 (61). These platelet-derived complement factors/complexes
may promote atherogenesis in several ways. Firstly, secreted
platelet-derived complement components can activate other
platelets via autocrine and paracrine signaling. Secondly, as

recognized in the preceding section, complement proteins from
activated platelets propagate vascular inflammation by further
activating the endothelium and/or recruiting leukocytes to
nascent atheroma. Thirdly, and as further discussed, various
complement components retained at the platelet surface can
serve as substrates for continued complement activation,
resulting in a tightly regulated, positive feedback loop of
complement, and platelet activation (78). Several of the following
described complement-platelet interactions that may impact on
atherogenesis are depicted schematically in Figure 2.

The direct correlation of expression levels of receptors
for C3a and C5a with platelet activation in patients with
coronary artery disease supports their potential pathophysiologic
relevance (59). Via their cognate receptors, C3a and C5a trigger
platelet activation and aggregation (79), inducing exposure of
P-selectin and the receptor for C1q (C1qR). P-selectin is a
receptor for C3b, providing a site for assembly of the AP C3
convertase, and ultimately, if not checked by negative regulators,
for formation of the C5b-9 MAC (80). P-selectin is also a
ligand for leukocyte-expressed P-selectin glycoprotein ligand-1
(PSGL-1), which together are strongly implicated in promoting
atherogenesis by enhancing recruitment of leukocytes to sites of
inflammation (81).

C1q binding to C1qR cooperates with chondroitin sulfate
A (CSA) that is released from α-granules of activated platelets
to support C1q-mediated complement activation via the CP
(82, 83). The C1q:C1qR interaction also induces P-selectin
release and platelet activation, adhesion, and aggregation (84).
Interestingly, C1q plays dual and apparently opposing roles in
the inflammatory response, as it also dampens platelet-neutrophil
aggregate formation (85) by interfering with P-selectin-PSGL-1
interactions. This is consistent with platelets possessing multiple
negative regulatory mechanisms to keep inflammation in check,
and to also provide protection to the platelet from complement
mediated destruction. Indeed, the anaphylatoxins C3a and C5a,
acting via their cognate receptors, also trigger platelet release of
FH and C4b binding protein (C4bBP), both of which are negative
regulators of the AP of complement (Figure 2), the latter which
also negatively regulates toll like receptor (TLR)1/2 mediated
pro-inflammatory cytokine production (86, 87).

Evidence from human studies supports the notion that the
C3a/C3aR axis participates in atheroma formation. In a cross-
sectional analysis of >500 individuals, plasma levels of C3a
strongly and positively correlated with carotid artery intima-
media thickness (88). In patients with coronary artery disease,
there was also a strong positive correlation of C3aR expression
on activated platelets with that of GpIIbIIIa, with experimental
evidence that the C3a/C3aR axis regulates platelet function via
activation of the small GTPase Rap1b (59, 76). In thatmanner, the
C3a receptor (C3aR) directly impacts on hemostasis, since mice
lacking C3aR exhibit prolonged bleeding times, with reduced
ADP-triggered platelet aggregation. They are also protected
against C3a-triggered thrombosis, with reduced severity of
experimental stroke and myocardial ischemia (76).

The two structurally homologous but distinct C5a receptors,
C5aR1 (CD88), and C5aR2 (C5L2), have been reported to be
highly expressed in atherosclerotic lesions (6). Blockade or gene
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FIGURE 2 | Complement-platelet interactions that can facilitate an inflammatory response that favors atheroma formation. Selected interactions between complement

and platelets, as described in the manuscript, are highlighted. (a,b) C3a and C5a bind to their cognate receptors to trigger release of factors from α-granules.

P-selectin localizes to the platelet surface and is a receptor for leukocyte expressed PSGL-1 and for C3b, the latter which allows for initiation of the AP and

amplification of C3a-triggered platelet activation. (c) Complement activation on the platelet surface is dampened by α-granule release of cofactors C4bBP, FH and

C1-INH, and δ-granule release of the anti-complement, prothrombotic polyphosphate. Polyphosphate binds to FH and C1-INH, and downregulates complement

activation via the CP and the terminal pathway. (d) By binding to C1qR, C1q also triggers α-granule release of P-selectin and chondroitin sulfate (CSA), the latter

which enhances the C1q-C1qR interaction, initiating the CP but negatively regulates leukoctye recruitment by interfering with P-selectin-PSGL-1 interactions. (e)

Neutrophil-released properdin (P) stabilizes the convertases and is also a receptor for C3(H2O) which complexes with Bb to form the AP C3-convertase, and is a

ligand for leukocyte-expressed CR3, thereby facilitating leukocyte cell migration to the site of inflammation. (f) C4a and C3 can activate platelets via distinct

interactions with PAR1 and PAR4. (g) Activated platelets are also protected against complement-mediated destruction by granule release of negative regulators of

complement, cell surface expressed CD46, CD55, and CD59. (h) Sublytic C5b-9 (sC5b-9) triggers platelet activation with release of VWF, P-selectin and inflammatory

cytokines (e.g., IL1), the latter which further promotes inflammation. (i) Ficolins on the surface of activated platelets are receptors for MASPs which can trigger the LP.

Release of the isomerase ERp57 modifies the ficolin to limit its functional capacity to trigger complement. C, complement activation pathways; AP, alternative

pathway; LP, lectin pathway; CP, classical pathway; PF4, platelet factor 4; C3aR, C3a receptor; C5aR, C5a receptor; C1qR, C1q receptor; P-sel, P-selectin; PSGL-1,

P-selectin glycoprotein ligand-1; sC5b-9, sublytic C5b-9; VWF, von Willebrand factor; α, α-granule; δ, δ-granule; ERp57, endoplasmic reticulum protein 57; PAR,

protease activated receptor; P, properdin; CR3, complement receptor 3; PolyP, polyphosphate; IL1, interleukin 1.

inactivation in mice of either of these, results in protection
against diet-induced atherosclerosis (89), consistent with what is
observed when C5a is blocked (90). Most intriguing, blockade of
both C5aR1 and C5aR2 had added benefit in reducing neointimal
plaque size and inflammation in a wire injury model. Since
the C5a receptors are widely expressed by many cell types, the
specific role of the receptors on platelets was not determined.
Nonetheless, the findings are impressive, and imply that a
multi-modal approach to tackle atherosclerosis will likely yield
improved outcomes.

C4a, generally accepted to be the weakest of the three
anaphylatoxins, has unique properties in terms of crosstalk with
other innate immune pathways to induce platelet activation.
Although a specific receptor for C4a has remained elusive,
recent studies indicate that C4a binds to PAR1 and PAR4
as an untethered agonist, triggering activation of downstream

pro-inflammatory MAPKinases, thereby participating in platelet
activation via alternative routes (91). The pathophysiologic
relevance of this pathway in atherogenesis has not yet
been explored.

C3 itself also plays an important role in platelet function.
C3-deficient mice exhibit delayed hemostasis, based on tail
bleeding times and are protected against atheroma formation
in the atherosclerosis-prone low density lipoprotein receptor-
null (Ldlr−/−) mice (92). Aggregation of the C3-deficient
platelets was significantly dampened in response to the PAR-
4 agonist peptide (93), a defect that was rescued by the
addition of exogenous plasma C3 [(93), Figure 2]. Consistent
with these findings, C3-null platelets stimulated with convulxin
(an agonist for glycoprotein VI, GPVI), respond with reduced
surface exposure of P-selectin, von Willebrand factor (VWF),
and annexin V (94), effects that dampen both inflammation
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and hemostasis/thrombosis. As mentioned previously, C3 is
readily hydrolyzed to C3(H2O) which may bind to the activated
platelet surface in the presence of leukocyte derived properdin,
promoting formation of a platelet surface-bound C3(H2O)Bb
convertase (42). This would thus enable complement activation
to proceed via the AP. When associated with the platelet,
C3(H2O) may also serve as a ligand for leukocyte cell surface
receptor CD11b/CD18 [also referred to as complement receptor
3 (CR3) or integrin αMβ2], facilitating formation of platelet-
leukocyte interactions and recruitment of activated macrophages
to atheroma. Again, the physiologic relevance of each of these
independent interactions remain unclear, but taken together
support the in vivo evidence of a role for C3/C3(H2O) in
atherosclerosis (92).

In contrast to the strong evidence that C3, C3a/C3aR, and
C5a/C5aR are important contributors to platelet activation and
atherogenesis, the role of C5 in modulating platelet function in
health and vascular disease is more controversial. This is in spite
of most studies concluding that C5 participates in promoting
tissue factor mediated fibrin clot formation in vivo. In murine
models, histones trigger aggregation of platelets from wild-type
mice but not from C5-deficient mice (95), suggesting that C5 is
essential for normal platelet function. These findings however,
seem in conflict with the work of others, in which platelets from
C5-deficientmice responded normally to agonist induced platelet
release of P-selectin, vWF, and annexin V, and furthermore, did
not exhibit any hemostatic or vessel wall platelet deposition
defects in vivo (94).Moreover, the development of atherosclerosis
in ApoE(-/-) mice was not affected by genetic deletion of C5 (96).
Such apparent discrepancies in the interpretation of the role of
C5 in platelet function and vascular disease highlight the need
for further study.

The lectin pathway (LP) also participates in platelet activation
and function (97). Ficolins (but not MBL), MASP-1, and MASP-
2, were detected as complexes on the surface of activated
platelets, indicating that the initiating factors can assemble to
trigger cleavage of C4 and C2 (Figure 2). Moreover, ficolins
and MBL were present in the plaques of atherosclerotic lesions
derived from patients undergoing carotid endarterectomy (98).
This pathway appears to be dampened on the cell surface
by the release from activated platelets of C1-INH (Figure 2).
Recent data indicate that the LP can also be attenuated by the
release from activated platelets of the thiol isomerase ERp57,
which interferes with ficolin recognition via disruption of its
multimerization (99). While not proven, these pathways may
reasonably impact on the inflammatory response to injury that
leads to atheroma formation. Further in vivo studies will be
required for validation and to ascertain whether there are
targetable steps for treatment design.

The concept of platelet-released enzymes, as described above
for ERp57, was reported >20 years ago (49), but is now a
re-emerging area of interest. Protein kinases released from
the α-granules of activated platelets in concert with ATP and
divalent cations (Ca2+) from dense granules, have been shown
to phosphorylate plasma proteins, including coagulation factors
XI, Va, and protein S, thereby modifying their functions. In
the context of complement, C3 phosphorylation occurs by this

method, resulting in the C3b cleavage fragment being more
resistant to factor I-mediated inactivation to iC3b. Degradation
of the kinase-modified C3 also generates C3d that binds more
avidly to complement receptor 1 (CR1;CD35), thereby enhancing
opsonin activity (50) and clearance of immune complexes
by phagocytosis. Genetic variations of the CR1 gene have
been linked to the risk of incident coronary artery disease
and inflammation by unknown mechanisms. Although entirely
speculative, it is possible that the kinase-mediated modification
of C3 from activated platelets may contribute.

The terminal pathway of complement also participates in
platelet activation and atherogenesis. Sublytic concentrations
of C5b-9 bind to the platelet surface and induce activation
and α-granule secretion (79, 100). C5b-9 also induces changes
in the orientation of the phospholipid membranes of platelets
that favor binding of factor Va, prothrombinase assembly, and
generation of thrombin (74, 101, 102). Similar to C3a and C5a,
C5b-9 triggers platelet secretion of VWF, P-selectin and pro-
inflammatory cytokines (e.g., IL1) (Figure 2), the expression
of adhesion molecules on platelets (103, 104), and the release
of platelet microparticles (PMPs), any of which may modulate
vascular responses to thrombo-inflammatory stimuli.

Self-Preservation of the Activated Platelet
by Complement Regulators
The profound changes in the structure and the expression
pattern of proteins and glycolipids on the surface of the
activated platelet, would be expected to trigger a host innate
immune response that would destroy the cell, rendering it
unable to complete its prothrombotic/prohemostatic function
in the setting of injury and bleeding. Yet, in spite of the
platelet being activated by several complement factors (e.g.,
C3a, C5a, C5b-9), and providing sites for assembly of the
convertases (e.g., P-selectin, CSA, C1qR), complete formation
and integration of a lytic C5b-9 MAC, is normally held in check,
preserving the integrity of the prothrombotic platelet. This is
achieved through the action of numerous negative regulators of
complement, stored in the platelet and released upon activation.
Thus, platelet α-granules contain C1-INH, FH, CD55, CD59,
CD46, and clusterin, while polyphosphate is housed in dense
granules (105). All can accumulate on the activated platelet
surface and prevent generation of the C5b-9 MAC via the
CP, the LP and/or the terminal pathway (Figure 2). Indeed,
we have shown that polyphosphate directly interacts with C1-
INH, augmenting the serine protease inhibitor’s anticomplement
activity, while retaining the prothrombotic properties of
polyphosphate (106), and thus, presumably, the prothrombotic
function of the platelet (45, 58). Although the physiologic
relevance of the platelet pool of these negative regulators
in atherogenesis, has not been specifically validated, global
blockade via gene inactivation or pharmacologic interventions
have established their importance. Thus, for example, lack of
CD55 or CD59 in atherosclerosis-susceptible ApoE−/− mice,
resulted in worse disease, while CD59 administration reduced
the severity of experimental atherosclerosis by abrogating
MAC formation (107, 108). Similarly, atheroma formation
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in Ldlr−/− mice, was attenuated by administration of C1-
INH (109).

These complement regulatory factors and a soluble form of
C5b-9 also are found in/on PMPs that are released in the setting
of platelet activation. The function of these PMPs is not clear,
as they variably contain other complement activating factors
that are found in and on platelets (60, 78, 110, 111). The PMPs
also contain/express variable amounts of tissue factor, factor
V, other coagulation-related factors, growth factors, cytokines,
lipids, ions, and microRNAs [reviewed in (112)]. Given the
complex nature of PMPs and their variability in composition
under different pathological conditions, it has been challenging
to discern their primary roles in different disease states and
stages. Nonetheless, speculation abounds, including the notion
that PMPs serve to clear sublytic C5b-9 away from the platelet
(60), thereby providing local protection to the platelet.

CONCLUSION

In this brief review, we highlight the complexity of the cross-
talk pathways between platelets and the complement system,
particularly as they pertain to early stages of atherosclerosis.
As is evident, there are multiple apparently opposing factors
and pathways that may promote or prevent inflammation and
atheroma formation. In the delicate balance that maintains
immune and vascular homeostasis in the face of multiple stresses,
this is as expected.When this balance is unfavorably tipped due to
genetic, epigenetic and/or environmental factors, inflammation,
and atherogenesis may proceed. By understanding which factors
are tipping that balance and how they function, more effective
preventative and therapeutic strategies may be designed.

Notably, and in spite of promising data that complement
activation directly correlates with atheroma formation and
atherosclerosis, and that interfering with the complement
cascade may be beneficial, at least in preclinical models, anti-
complement therapies have not entered the clinic. This may be
because the mouse model does not fully recapitulate the human
condition. It may reflect the current high cost of the very few
anti-complement drugs that are available for clinical use (e.g.,
eculizumab). Or it may be that appropriate trials have yet to
be performed. From the complement cascade, it is evident that
there are multiple potential steps at which interventions might
be envisaged, that could potentially dampen feed-forward loops
in/on the platelet that drive inflammation and atherogenesis.
Indeed, strategic initiatives by industry and academia that aim
to target the complement system to treat a range of vascular
and inflammatory diseases abound. A full discussion of drugs at
various stages of development is beyond the scope of this brief

report. However, several of the opportunities and challenges are
well-addressed in recent reviews (113–117). From the relatively
simple scheme that we offer in Figure 2, treatments could
include, for example, agents that interfere with C1q interactions
with C1qR and/or CSA to dampen activation of the CP and
reduce monocyte adhesion to endothelial cells. Antibodies
against C1s are being used successfully to suppress CP-triggered
cold-agglutinin disease (118) and might reasonably have efficacy
in preventing atheroma formation. Cp40 is a cyclic peptide and
analog of compstatin that inhibits C3-mediated activation of
endothelial cells to reduce leukoctye adhesion (119). Rapamycin
upregulates expression of CD55 by inducing protein kinase Cα,
AMP-activated kinase, and CREB-dependent pathways, thereby
dampening allograft vasculopathy, a benefit that synergizes with
statin therapy (120). With experimental evidence of a role for the
LP in atherogenesis, MASP-2 inhibitors that are currently being
evaluated for hereditary angioedema and other disorders (121),
could also be considered to intervene in the platelet-complement
crosstalk driving atherogenesis.

Indeed, the near future will likely see many complement-
targeted therapies enter the clinic for various innate
immune/inflammatory disorders. The challenges will be how to
select which ones are best for intervening in atheroma formation,
whether multiple pathways should be targeted, how to select
when to administer, how long, how much, and how to monitor
(122). No matter which anti-complement interventions are
used, effective treatments will undoubtedly require maneuvers
to mitigate against the critical dietary, environmental and
epi/genetic triggers that drive the disease (123).
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