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Kernel methods, such as kernel PCA, kernel PLS, and support vector machines, are widely known machine learning techniques in
biology, medicine, chemistry, andmaterial science. Based on nonlinear mapping and Coulomb function, two 3D kernel approaches
were improved and applied to predictions of the four protein tertiary structural classes of domains (all-𝛼, all-𝛽, 𝛼/𝛽, and 𝛼+𝛽) and
five membrane protein types with satisfactory results. In a benchmark test, the performances of improved 3D kernel approach were
compared with those of neural networks, support vectormachines, and ensemble algorithm. Demonstration through leave-one-out
cross-validation onworking datasets constructed by investigators indicated that new kernel approaches outperformed other predic-
tors. It has not escaped our notice that 3D kernel approaches may hold a high potential for improving the quality in predicting the
other protein features as well. Or at the very least, it will play a complementary role tomany of the existing algorithms in this regard.

1. Introduction

Due to the rapid development of genome and protein science,
the biological information has expanded dramatically.There-
fore, it is very important and highly desirable for computers to
manage, organize, and interpret the information. As a part of
biochemistry, study of protein structure classes has become
a hot topic, because of experimental and theoretical pur-
poses. Artificial neural networks, support vector machines,
kernel methods, and ensemble algorithms are widely known
machine learning techniques in biology,medicine, chemistry,
and material science [1–10]. In this work, two classification
problems, protein’s tertiary structure classes of domains
and membrane protein types, were researched with some
machine learning techniques.

Several motifs pack together to form compact, local,
and semiindependent units called domains. The details of
proteins domains structures are extremely complicated and
irregular. But their overall structural frames are simple,
regular, and truly elegant [11–13].Many protein domains often

have similar or identical folding patterns even if they are quite
different according to their sequences [14–16]. The overall
3D structure of the polypeptide chain is referred to as the
protein’s tertiary structure. Levitt and Chothia proposed to
classify protein tertiary structures into the following four
structural classes based on the secondary structural content
of the domains. (1)All-𝛼: it is formed essentially by 𝛼-helices.
This class is dominated by small folds, many of which form a
simple bundle with helices running up and down. (2) All-𝛽:
this class has a core composed of antiparallel𝛽-sheets, usually
two sheets pack against each other. (3) 𝛼/𝛽: this class contains
both 𝛼-helices and 𝛽-strands that are largely interspersed in
forming mainly parallel 𝛽-sheet; (4) 𝛼 + 𝛽: this class also
contains both of the two secondary structure elements that,
however, are largely segregated in formingmainly antiparallel
𝛽-sheets.

This concept of structural class has ever since been widely
used as an important attribute for characterizing the overall
folding type of proteins domains. Lots of methods have been
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Figure 1: Five types of membrane proteins.

made to predict the structural classes based on the knowledge
of protein sequences [17].

The research of membrane protein type is also important
because of the special biological functions.The biomembrane
usually contains some specific proteins and lipid components
that enable it to perform its unique roles in the cell and
organelle.

Furthermore, several studies show that many membrane
proteins are also the key targets of drug discovery, particularly
membrane channel proteins [18–20]. Membrane proteins can
be further classified into the five types [21–23]: (a) type
A membrane protein is single-pass transmembrane protein
which has an extracellular (or luminal) N-terminus and cyto-
plasmic C-terminus for a cell (or organelle) membrane; (b)
type B membrane protein is single-pass transmembrane pro-
tein which has an extracellular (or luminal) C-terminus and
cytoplasmic N-terminus for a cell (or organelle) membrane;
(c) type C is multipass transmembrane protein: the polypep-
tide crosses the lipid bilayer multiple times; (d) type D mem-
brane proteins are lipid chain-anchored membrane proteins:
they are bound to the membrane by one or more covalently
attached fatty acid chains or other types of lipid chains
called prenyl groups; (e) type E is GPI-anchored membrane
protein which is bound to the membrane by a glycosylphos-
phatidylinositol (GPI) anchor.

Researchers have applied classification algorithm to pre-
dict the types of membrane proteins based on their amino
acid composition [24, 25]. Figure 1 shows the forms and the
locations of different membrane proteins.

The first goal of this paper is to illustrate the application
of 3D kernel approach as a relatively new tool in proteins
domains field for classification purposes. And the second goal
is to show that the new approach can be applied to analysis of
membrane protein types.

2. Materials and Methods

2.1. Kernel Function. Kernel function was originally a kind
of functions used in integral operator research. However,

Vapnik implemented this function in his newly invented
SVMs method [26]. The use of kernel function makes SVMs
able to treat nonlinear data processing problems by using
linear algorithms. The basic idea of kernel function is to
map the data X into a higher-dimensional feature space F
via a nonlinear mapping Φ and then to do classification and
regression in this space.There are four commonly used kernel
functions:

linear kernel

𝐾(x, y) = ⟨x ⋅ y⟩ + 𝜃. (1)

polynomial kernel

𝐾(x, y) = (⟨x ⋅ y⟩ + 𝜃)𝑑. (2)

Gaussian (RBF) kernel

𝐾(x, y) = exp(
−




x − y



2

𝜎
2

) . (3)

sigmoid kernel

𝐾(x, y) = tanh (V ⟨x ⋅ y⟩ + 𝑟) . (4)

The elegance of using kernel function lied in the fact that
one can deal with feature spaces of arbitrary dimensionality
without having to compute the map Φ(x). Any function that
satisfies Mercer’s condition can be used as kernel function.

2.2. Kernel PCA. Principal component analysis (PCA) is a
versatile and easy-to-use multivariate mathematical-statis-
tical method in multivariate data analysis and the extraction
of maximal information [27, 28]. It is a linear transforma-
tion approach that compresses high-dimensional data with
minimum loss of data information. PCA is performed in the
original sample space, whereas kernel PCA (KPCA) applies
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Figure 2: The mapping Φ embeds the data points in a feature space.

kernel functions in the input space to achieve the same effect
of the expensive nonlinear mapping.

From Figure 2, it is found that the basic idea of KPCA
is to map the original dataset into some higher dimensional
feature space. In this complex space, PCA can be applied to
establish a linear relationship which is nonlinear in the origi-
nal input space [29, 30]. For the special case in whichΦ(x) =
x, KPCA is equivalent to linear PCA. From this viewpoint,
KPCA can be regarded as a generalized version of linear PCA.

For PCA, with data X = [𝑥1, 𝑥2, . . . , 𝑥𝑛]
𝑇
∈ 𝑅
𝑝, one can

first compute the covariance matrix C:

C =

1

𝑛

XTX. (5)

A principal component v is computed by solving the
following eigenvalue problem:

𝜆v = Cv = 1

𝑛

XTXv. (6)

Thus, the eigenvectors can be written as (𝛼 =

[𝛼1, . . . , 𝛼𝑛]
𝑇
)

v =
𝑛

∑

𝑖=1

𝛼𝑖𝑥𝑖 = XT
𝛼. (7)

Then, the eigen value problem can be represented by the
following simple form:

𝜆𝛼 =
1

𝑛

K𝛼, (8)

where K = XXT
∈ 𝑅
𝑛×𝑛 is a linear kernel matrix. To derive

KPCA, one firstly needs tomap the dataX into a feature space
F (i.e., M = [Φ(x1), Φ(x2), . . . , Φ(x𝑛)]

𝑇
). Hence, a nonlinear

kernel matrix K (K = MMT
∈ 𝑅
𝑛×𝑛

) can be directly
generated by means of specific kernel function ((1), (2), (3),
and (4)). For extracting features of a new sample 𝑥 with
KPCA, one simply projects themapped sampleΦ(x) onto the
first 𝑘 projections V𝑘,

V𝑘 ⋅ Φ (x) =
𝑛

∑

𝑖=1

𝛼
𝑘

𝑖
⟨Φ (x𝑖) , Φ (x)⟩ . (9)

KPCA is to map the original data (in the input space)
with nonlinear features into kernel feature space in which the
linear PCA algorithm is then performed. Therefore, KPCA,
being suitable to describe the nonlinear structure of data set,
can be regarded as a generalized version of linear PCA.
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2.3. GDA. Generalized discriminant analysis (GDA) is a
method designed for nonlinear classification [31–33]. It is a
nonlinear extension of linear discriminant analysis (LDA)
based on a kernel function Φ which transforms the original
space X to a new high dimensional feature space F. The
within-class (or total) scatter (WΦ) and between-class scatter
(BΦ) matrixes of the nonlinearly mapped data are as follows:

WΦ =
𝐶

∑

𝑐=1

∑

x∈X
𝑐

Φ (x) Φ (x)𝑇, (10)

BΦ =
𝐶

∑

𝑐=1

𝑀𝑐m
Φ

𝑐
(mΦ
𝑐
)

𝑇

. (11)

In (11),m𝑐 is themean of classX𝑐 and𝑀𝑐 is the number of
samples belonging to X𝑐. The aim of the GDA is to find such
projection matrix UΦ that maximizes the following Fisher
criterion:

UΦopt = argmax








(UΦ)
𝑇

BΦUΦ














(UΦ)𝑇WΦUΦ







= [uΦ
1
, . . . , uΦ

𝑁
] . (12)

From the theory of reproducing kernels, any solution
uΦ ∈ Fmust lie in the span of all training samples in F:

uΦ =
𝐶

∑

𝑐=1

𝑀
𝑐

∑

𝑖=1

𝛼𝑐𝑖Φ(x𝑐𝑖) , (13)

where 𝛼𝑐𝑖 are some real weights and 𝑥𝑐𝑖 is the 𝑖th sample of
the class 𝑐. The solution is obtained by solving (𝛼 = [𝛼𝑐], 𝑐 =
1, 2, . . . , 𝐶; 𝛼𝑐 = [𝛼𝑐𝑖], 𝑖 = 1, 2, . . . ,𝑀𝑐):

𝜆 =
𝛼
𝑇KDK𝛼
𝛼𝑇KK𝛼

. (14)

K is the 𝑛 × 𝑛 kernel matrix composed of the dot products of
nonlinearly mapped data. And D = diag(D1, . . . ,D𝑐), where
D𝑖 is a 𝑛𝑖 × 𝑛𝑖 matrix with entries all equal to 1/𝑛𝑖.

2.4. New Improved 3D Kernel Approach: 3D KPCA and 3D
GDA. Traditional KPCA and GDA are typical multivariate
two-dimension statistical methods. In this work, KPCA and
GDA are improved with three-dimensional projection and
the concept of electric field intensity.

Firstly, the data of training samples are projected onto
three-dimensional space by KPCA or GDA algorithm with
satisfactory classification effect. The three-dimensional coor-
dinate axes are, respectively, the first kernel principal com-
ponent, second kernel principal component, and third kernel
principal component or the direction vectors of generalized
discriminant analysis.

Secondly, we need to estimate the class (unknown) of
new projection points, such as membrane protein types of
test sample data. There are two estimation methods in this
work: K-Nearest Neighbor algorithm (KNN) [34] and class
intensity model.
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Figure 3: IEFP with different classes in 3D kernel space.

KNN algorithm estimation: new projection point (test
sample) is classified by a majority vote of its neighbors
(training samples in kernel three-dimensional space).

Class intensity model estimation: the projection point of
one training data can be considered as point charge. The
species of charge is related to the class of sample. And the
Electric Quantity of Point Charge (EQPC) is related to the
number of samples (𝑛𝐶) which belongs to some class:

EQPC𝐶 =
1

𝑛𝐶

. (15)

The value of EQPC is negative related with the sample
amount of same class. Based on theCoulomb law and formula
of intensity of electric field, the Intensity of Electric Field of
one Point (IEFP) in 3D space is

IEFP𝐶 =
𝑛
𝐶

∑

𝑖=1

EQPC𝐶
𝑟
2

𝑖

, (16)

where 𝑟 is distance between point charge and the space point.
Therefore, in class intensity model, IEFP is a criterion of

classification. For example, there are four classes in training
data: class 1, class 2, class 3, and class 4 in Figure 3. After pro-
jectingwith kernelmethods, all projection class charge points
of training data can form a space electric field.The test sample
can be projected onto this space with the same kernel meth-
ods. Figure 3 illustrates the relationship between point charge
of different class and corresponding IEFP. To project position
of test sample, if there exist IEFP1 > IEFP2, IEFP1 > IEFP3
and IEFP1 > IEFP4, test sample should belong to class 1.

3. Results and Discussion

3.1. System and Software Used for Data Analysis. The calcula-
tions were carried out using the Intel(R) Core(TM)DuoCPU
T5870GHz computer running Windows XP operating sys-
tem. All the learning input data were range-scaled to [0∼1] in
this work. The improved 3D kernel approach software pack-
age including 3D kernel PCA and 3D GDAwas programmed
in our laboratory referring to the literature [29, 31] based on
statistical pattern recognition toolbox for MATLAB [35].

3.2. Application of Improved 3D Kernel Approach to Protein’s
Tertiary Structure Classes of Domains. The protein datasets



BioMed Research International 5

Table 1: LOOCV success rates by component-coupled, neural network, SVMs, AdaBoost, and improved 3D kernel approach.

Dataset Algorithm All-𝛼 All-𝛽 𝛼/𝛽 𝛼 + 𝛽 Overall

Dataset A (277 domains)

Component-coupled 84.3% 82.0% 81.5% 67.7% 79.1%
Neural networks 68.6% 85.2% 86.4% 56.9% 74.7%

SVMs 74.3% 82.0% 87.7% 72.3% 79.4%
AdaBoost 87.1% 95.1% 98.7% 81.5% 90.9%
3D kernel 88.6% 85.3% 93.8% 77.0% 86.6%

Dataset B (498 domains)

Component-coupled 93.5% 88.9% 90.4% 84.5% 89.2%
Neural networks 86.0% 96.0% 88.2% 86.0% 89.2%

SVMs 88.8% 95.2% 96.3% 91.5% 93.2%
AdaBoost 96.2% 92.1% 98.5% 89.9% 94.2%
3D kernel 91.6% 95.3% 99.3% 92.3% 95.0%
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Figure 4: Distribution of different protein’s tertiary structure classes
data in 3D kernel space.

studied here were taken from Niu and his coworkers [17]. In
dataset A, there are 277 protein domains, of which 70 are all-
𝛼 domains, 61 all-𝛽, 81 𝛼/𝛽, and 65 𝛼 + 𝛽. In dataset B, there
are 498 protein domains, of which 107 are all-𝛼 domains, 126
all-𝛽, 136𝛼/𝛽, and 129𝛼+𝛽.The amino acid compositionwas
used to represent the sample of a protein domain.

To demonstrate the power of 3D kernel methods, com-
putations were performed by the Leave-One-Out Cross-
Validation (LOOCV), which are widely used by more and
more investigators in testing the power of various predictors.
As such, the data set of 𝑛 sampleswas divided into twodisjoint
subsets including a training data set (𝑛−1 samples) and a test
data set (only 1 sample). After developing each model based
on the training set, the omitted data was predicted and the
difference between experimental value and predicted value
was calculated [36–38].

Based on dataset A, it was found that the projection with
Gaussian (see (3), 𝜎 = 0.5) kernel function and KNN (𝐾 = 3)
algorithmestimationwas suitable for building 3Dkernel PCA
model with the better success rates.

Based on dataset B, it was found that the projection with
polynomial (see (2), 𝑑 = 4, 𝜃 = 1.5) kernel function and
class intensity model estimation was suitable for building 3D
GDA model with the better success rates. Figure 4 illustrates

the protein domains classes distribution of dataset B (498
samples) in 3D kernel space with GDA model. It can be seen
that the data points, which belong to all-𝛼 domains, all-𝛽
domains, 𝛼/𝛽 domains, and 𝛼 + 𝛽 domains respectively, are
located in different regions with a correct classification result.

The success rates thus obtained are given in Table 1,
where, for facilitating comparison, the corresponding rates
obtained by component-coupled algorithm, neural networks,
support vector machines (SVMs), and AdaBoost Learner [17]
are also listed.

As it can be seen from Table 1, the performance of
improved 3D kernelmodel outperforms those of component-
coupled, neural networks, SVMs models but was a little
worse than that of AdaBoost model for the dataset A (277
domains) available in LOOCV test. Based on dataset B (498
domains), improved 3D kernel learner is superior to all the
other predictors in identifying the structural classification.

3.3. Application of Improved 3D Kernel Approach to Clas-
sification of Membrane Proteins. The membrane proteins
dataset studied here was collected from the literature [25].
The dataset contains 2059 prokaryotic proteins (type A
membrane proteins: 435; type B membrane proteins: 152;
type CMulti-pass transmembrane proteins: 1311; type D lipid
chain-anchoredmembrane proteins: 51; type EGPI-anchored
membrane proteins: 110). The amino acid composition was
selected as the input of the classification algorithm, and
the computations were performed by LOOCV to test the
power of various predictors. Based on dataset of membrane
proteins, the classification flow chart (Figure 5) was obtained
as follows.

From Figure 5, there are two steps in building classifi-
cation model. Firstly, the 3D KPCA model with projection
through polynomial (see (2), 𝑑 = 2, 𝜃 = 0.1) kernel function
and KNN (𝐾 = 5) algorithm estimation was built to classify
themultipass transmembrane proteins (type C) and the other
membrane proteins (type A, type B, type D, and type E).
Figure 6 illustrates the data distribution of type C and other
membrane proteins in 3D kernel space with KPCA model.

Secondly, the 3D GDAmodel with Gaussian (see (3), 𝜎 =
5) kernel function and class intensity model estimation was
built to classify type A, type B, type D, and type E membrane
proteins.
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Table 2: LOOCV success rates by covariant discriminant, neural network, SVM, bagging, and improved 3D kernel approach.

Algorithm Rate of correct prediction for each class Overall rate of correct prediction
Type A Type B Type C Type D Type E

Covariant discriminant 74.0% 52.0% 83.7% 49% 45.4% 76.4%
Neural network 75.63% 30.92% 88.86% 50.98% 30.91% 77.76%
SVMs 77.7% 28.3% 92.5% 52.9% 35.5% 80.9%
Bagging 79.80% 48.68% 93.21% 49.02% 60.91% 84.18%
3D kernel 78.11% 31.02% 94.36% 52.63% 45.46% 84.50%
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Figure 7 illustrates the data distribution of the type A,
type B, type D, and type E membrane proteins in 3D kernel
space with GDA model. 3D kernel method was compared
with other machine learning classification methods: the
covariant discriminant algorithm [23], neural networks,
support vector machines, and Bagging [25], as is shown in
Table 2.

As we can see from Table 2, correct classification rate of
the LOOCV test applied 3D kernel algorithm outperformed
other algorithms. It also means that 3D kernel method has
learned very well through the membrane proteins training
process.

4. Conclusions

The 3D kernel approach is very useful machine learning
classifier. It has remarkably outperformed the powerful
neural network, SVM classifiers, in predicting the protein
domain structural classes for the two datasets constructed
andmembrane protein types for the same dataset constructed
by previous investigators. It is thus anticipated that the 3D
Kernel classifier can also be used to predict other protein
attributes, such as sub-cellular localization [39–41], enzyme
family and subfamily classes [42], and active sites of enzyme.
The concepts of EQPC and IEFP can be easily extended to
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many-dimensional space and could be improved to use four
or more dimensions.

It could be concluded that 3D kernel approach is a
robust and highly accurate classification technique that can
be successfully applied to derive statistical models with
statistical qualities and predictive capabilities for the protein
location and function. The 3D kernel algorithm should be
a complementary tool to the existing pattern recognition in
chemometrics and bioinformatics.
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