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Background: Mathematical models of biological networks can provide important predictions and insights into
complex disease. Constraint-based models of cellular metabolism and probabilistic models of gene regulatory
networks are two distinct areas that have progressed rapidly in parallel over the past decade. In principle, gene
regulatory networks and metabolic networks underly the same complex phenotypes and diseases. However,
systematic integration of these two model systems remains a fundamental challenge.

Results: In this work, we address this challenge by fusing probabilistic models of gene regulatory networks into
constraint-based models of metabolism. The novel approach utilizes probabilistic reasoning in BN models of
regulatory networks serves as the “glue” that enables a natural interface between the two systems. Probabilistic
reasoning is used to predict and quantify system-wide effects of perturbation to the regulatory network in the form of
constraints for flux variability analysis. In this setting, both regulatory and metabolic networks inherently account for
uncertainty. Applications leverage constraint-based metabolic models of brain metabolism and gene regulatory
networks parameterized by gene expression data from the hippocampus to investigate the role of the HIF-1 pathway
in Alzheimer’s disease. Integrated models support HIF-1A as effective target to reduce the effects of hypoxia in
Alzheimer’s disease. However, HIF-1A activation is far less effective in shifting metabolism when compared to brain

Conclusions: The direct integration of probabilistic regulatory networks into constraint-based models of metabolism
provides novel insights into how perturbations in the regulatory network may influence metabolic states. Predictive
modeling of enzymatic activity can be facilitated using probabilistic reasoning, thereby extending the predictive
capacity of the network. This framework for model integration is generalizable to other systems.
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Background

Advances in high-throughput technologies have made
large-scale measurements of molecular traits possible.
Mathematical and probabilistic models of networks have
become instrumental in elucidating complex relationships
among molecular traits from high-throughput data, e.g.,
[1-4]. However, networks often target specific domains
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of biological variables such as protein-protein interaction
networks, metabolic networks and genetic networks. Data
integration remains a major challenge for systems biology,
especially at the network level, thereby limiting our ability
to take full advantage of the wealth of post-genomics data.

This work describes a novel approach to network
integration that aims to understand how gene regula-
tory networks influence metabolism. Our approach inter-
faces two network-based approaches that have evolved
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largely in parallel: (1) constraint-based models of cellu-
lar metabolism [5] and (2) Probabilistic Graphical Mod-
els (PGMs) of a gene regulatory networks [6]. These
approaches have unique and complementary characteri-
zations and predictive capabilities. Metabolic models do
not reflect the individual variation in the fluxes that result
from allelic variation of enzymes, or from regulation at
the transcriptional level. On the other hand, methods for
fitting PGMs often ignore all prior information about the
biological pathway [7, 8]. Bridging these modeling strate-
gies is a novel pursuit that may lead to more accurate
physiological representations of cellular metabolism that
account for genetic variability and differential regulation
of the biochemical reactions. To authors knowledge, the
integration of these two modeling paradigms has not been
examined yet. Computational models of this nature are of
fundamental importance for the prevention and treatment
of disease.

Gene regulatory networks play an important role in
fundamental processes such as cell cycle, differentiation
and signal transduction and metabolism [8]. Understand-
ing of the networks and the impact of their dysregula-
tion can provide insights into processes and mechanisms
underlying disease. In many cases, the structure of gene
networks is not well understood, and a broad range of
methods have been proposed to infer (aka reverse engi-
neer) network structures from data (e.g., genomic, gene-
expression and clinical phenotypes) [7-13]. Graphical
models can be directed or undirected [11, 14, 15], indicat-
ing causality or association, respectively [16]. For example,
directed networks have been used for time-series omics
data, and also in genotype-phenotype network modeling
[10, 17-23]. The appropriateness of a directed graphi-
cal model for causal interpretations depends on the data
and experiment at hand [24]. Recently, Moharil et al.
[25] described an approach to propagating information
through a directed gene network as a way to predict
the system-wide response of the network to genetic per-
turbations. The approach utilized belief prorogation in
Bayesian Networks (BNs), and to our knowledge, is the
first to shift focus from network structural inference, to
the problem of post-hoc network analysis and in silico
prediction. In this work, we leverage the belief propaga-
tion in BNs to provide an interface between genetic and
metabolic networks.

Constraint-based modeling has been widely used in
systems biology as a computational tool to provide
insights into cellular metabolism [26, 27]. The under-
lying metabolic models describe a complex network of
biochemical reactions governed by stoichiometry, laws of
mass balance, environmental and regulatory constraints
and do not rely on the specification of kinetic param-
eters [28, 29]. Several metabolic reconstructions have
been published [27, 30], e.g., pathogens [31, 32], model
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organisms [33-35], and human [36], among others. The
COnstraint-Based Reconstruction and Analysis (COBRA)
toolbox [37] has become instrumental in organizing an
extensive collection of genome-scale models and analysis
tools accessible, and has proven to be a valuable resource
to the community [38]. Flux Balance Analysis (FBA)
[39, 40] and Flux Variability Analysis (FVA) [41, 42] are
two related constraint based modeling approaches for
inferring optimal reaction flux rates, or feasible ranges
of flux rates, respectively. These approaches rely on an
objective function with constraints that enforce network
stoichiometry and bounds on the individual fluxes, see
[40] for an overview.

There have been several attempts to merge constraint-
based models with regulatory constraints. Regulatory
FBA (rFBA) [43, 44] and Steady-state Regulatory FBA
(SR-FBA) [45] are among the earliest to encode regula-
tory constraints into FBA using Boolean logic. Integrated
FBA (iFBA) [44] and Dynamic FBA (DFBA) [46] connects
the FBA framework with kinetic models of metabolism
described by ordinary differential equations. Probabilis-
tic Regulation of Metabolism (PROM) utilizes conditional
probabilities of gene states (on and off) to model tran-
scriptional regulation [47]. These probabilities are esti-
mated by the frequencies of co-occurrence within the
samples, e.g., P(A = on | B = off) is an estimate of the
number of samples such the target gene A is on given
transcription factor B is off. The effect of a knock out at
the genome scale can then be assessed by building the
probabilities associated with the target genes into upper
bounds for FVA. PROM requires massive sample sizes
to stably estimate the probabilities between target regu-
lator pair interactions, and underlying these estimates is
the need to discretize the gene expression into on and off
states. Transcriptional Regulated FBA (TRFBA) [48] also
integrates regulatory and metabolic networks by adding
different levels of constraints to bound the rate of reaction
supported by a gene, correlation between target and reg-
ulating genes to limit associated reaction of a given gene,
and finally a set of binary variables is added to prevent
overlapping or conflicting constraints. Other approaches
have utilized object-oriented modeling, most commonly
applied in automotive and process industries, to integrate
metabolic and regulatory systems [49-51].

Transcriptional abundance has also been utilized to
derive context-specific metabolic models [52, 53]. The
underlying rationale is that not all biochemical reactions
in a genome-scale reconstruction are active in a given
cell type or condition, and refining the model and flux
estimation accordingly, will lead to more precise in silico
predictions. Methods such as Gene Inactivity Moderated
by Metabolism and Expression (GIMME) [54], integra-
tive Metabolic Analysis Tool (iMAT) [55] and Metabolic
Adjustment by Differential Expression (MADE) [56] seek
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to derive context-specific models that are more con-
sistent with measured transcriptional abundance. These
approaches rely on thresholding to discretize gene states
as active/inactive for high/low expression levels, respec-
tively. E-flux derives maximum flux constraints for FBA
from gene expression data with the underlying assump-
tion that mRNA can be used as an estimate of the maxi-
mum available protein [57]. Machado et al. evaluated the
above approaches to context-specific metabolic modeling
on three datasets, and concluded that each approach is
relatively comparable in terms of performance, and that
there is often no significant gain over standard models of
FBA that do not incorporate transcriptomics data [53].
Recently, Least squares with equalities and inequalities
Flux Balance Analysis (Lesi-FBA) [58] was developed to
predict changes in flux distributions from gene expres-
sion changes between diseased and normal brain tissues.
Notably, many of the existing methods for predicting
fluxes utilizing gene expression are most effective when
large changes gene expression changes are observed. In
contrast, Lesi-FBA utilizes fold changes in the inequal-
ity constraints for the optimization in order to confine
the region of feasible fluxes for FVA, and thus does not
require discretization. Consequently, Lesi-FBA is more
sensitive to subtle changes in gene expression, which alter-
native methods relying on discretization are too crude to
capture.

In this work, we aim to integrate a gene regulatory net-
work into a constraint-based metabolic networks model
using probabilistic reasoning as the “glue” that binds
these two systems. Specifically, probabilistic reasoning
provides an underlying framework for predictions of the
system-wide effects of genetic (node) perturbations in a
regulatory network [25]. These predicted effects can be
quantified and embedded into FVA constraints, thereby
constraining the metabolic network with predictions from
the gene regulatory network. Both modeling paradigms
inherently account for uncertainty in the data and mod-
eling. Our novel approach has the following advantages.
The approach (1) does not require discretization of gene
expression data, (2) does not require data from more
than one experimental condition (e.g., treatment effects,
disease/non-disease or knock out), (3) directly accounts
for the structure of the gene regulatory network, (4) quan-
tifies and embeds the probabilistic constraints derived
from a BN that is parameterized by gene expression data,
(5) predicts a range of metabolic states that is within the
support of the expression data. This approach is applied
to a model of brain metabolism to explore perturbations
in the HIF-1 (Hypoxia-Inducible Factor 1) signaling path-
way, which has been shown to have protective effects in
neurodegenerative disorders [59, 60]. Specifically, HIF-1 is
a protein complex that is critical in regulating the body’s
response to low oxygen concentrations and hypoxia. Our
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approach characterizes the effectiveness of perturbations
within this pathway on the metabolic state in healthy
patients, and those with Alzheimer’s Disease (AD). Our
results support HIF-1A as a effective target to reduce the
effects of hypoxia, a hallmark of AD. However, the path-
way as a target is far less effective in shifting metabolism
than in control (healthy) patients. Integrative models pre-
dict that HIF-1 activation increases flux through anaero-
bic glycolysis and ATP production in normal brains. How-
ever, this effect was observed to be considerably weaker in
AD patients.

Methods
Probabilistic modeling: Bayesian networks and
probabilisitic reasoning
PGMs are a flexible class of models that encode prob-
ability distributions between a set of random variables,
X = {X1,X3,...X,}, in the graph that nodes (aka vertices)
represent random variables [16, 61]. In our case, nodes
represent measured biological variables from an experi-
ment, such as gene expression. BNs are a special class of
directed PGMs that are used to describe the direct and
indirect dependencies between a set of random variables,
and have shown tremendous value in biological applica-
tions e.g., [17, 23, 62—66]. In this work, we rely on BNs
to model the relationships in a known signaling pathway.
There are two major advantages in using BNs in this con-
text: (1) there is a unique mapping between the network
and the probability distribution, and (2) exact inference
for probabilistic reasoning can be performed.

Briefly we provide an overview of BN, see [16, 61] for
a more comprehensive treatment of the topic. BNs fol-
low the Markov condition, which states that each variable,
Xi, is independent of its ancestors, given its parents in
graph, G. The conditional independencies between vari-
ables (nodes) is depicted in G, and can be used to express
joint distribution in compact factored form. Under these
assumptions, a BN encodes conditional independence
relationships:

n
P (X1, Xp, ..., Xy) = [ [P (X: | paX), ©)),
i=1

where pa(X;) are the parent nodes of child node, X;, and
©®; denotes the parameters of the local probability distri-
bution. The conditional probability of a child node given
its parents, P (X; | pa(X;), ®;), is often referred to as a
local distribution. In our applications, these local models
are Gaussian and are parameterized using gene expression
data via local regressions on parent nodes [61].
Probabilistic reasoning in a BN utilizes evidence about
nodes in the network in order to reason (query) infor-
mation about other nodes in the network [61]. In our
settings, this evidence relates to changes in an upstream



Yu and Blair BMC Bioinformatics (2019) 20:386

transcription factor. The probabilistic reasoning paradigm
can be leveraged to predict updated probabilities and
states of nodes in the network after taking new evidence
into account. Probabilistic reasoning can be viewed as a
tool to predict comprehensive system-wide responses of
the network to new evidence, which is akin to an in sil-
ico experiment. Belief Propagation (BP) algorithms enable
the absorption and propagation of evidence through a net-
work [67]. BP in a BN is computed on a junction tree
or elimination tree, see [25, 61, 68, 69] for a detailed
description.

This work utilizes the BP procedure in the
BayesNetBP package, which implements the algorithms
described in [69]. The outputs of belief propagation are
the predicted parameters for the local distributions in a
BN after the absorption and propagation of new evidence
into node(s) in the network. Nodes that are d-connected
to absorbed node(s) will exhibit changes in their parame-
ters. Comparison of these parameter changes can be used
to quantify system-wide effects in the network after evi-
dence is entered, e.g., via fold-changes of mean estimates
or Kullback-Leibler divergence [25].

Constraint-based models of metabolism

Cellular metabolism can be modeled using the principals
of mass balance [70] as a system of Ordinary Differential
Equations (ODEs):

dac

dt
where C denotes the concentration of metabolites, E €
R " is the sparse stoichiometric matrix and ® € R"™*!
contains the flux rates for the reactions in the model.
When the system is at steady state the system of ODEs
simplifies to a linear system, which is our underlying
assumption. The addition of constraints can serve many
purposes, e.g., to impose the irreversibility of certain
reactions, to add a priori knowledge about flux rates
or linear combinations of flux rates. Mathematically, the
addition of constraints shapes the solution space for the
flux estimation [40]. An objective function can also be
used to maximize fluxes or linear combinations of fluxes
related to optimal growth conditions, ATP production or
a biomass production rate [39, 40].

The objective of FVA is to estimate feasible solutions to

the constrained optimization problem [41, 42], which can
be described mathematically as follows:

E.- o,

max To
)
subjectto E® =f, (1)
GO > h,

where E"*" is the stoichiometric matrix with rows rep-
resenting m metabolites and columns for # fluxes, and
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® is a vector of fluxes. The concentrations of metabo-
lites does not change under the steady state assumption.
External metabolites participate in uptake or release to
the extracellular environment, or are not fully accounted
for in the model. Therefore, the net fluxes for these exter-
nal metabolites can be non-zero. The inequality constraint
G® > h can be used to impose irreversibility of certain
reactions as well as the capacity constraints that provide
the upper limit of fluxes. The objective function, JTo,
is a linear combination of the fluxes that are to be opti-
mized. In our applications, we seek the maximization of
net ATP production in the feasible space of ®, because the
brain has a very high requirement on energy production,
which is critical for bioenergetics, function and neurode-
generation [71]. This objective function was also used in
the model developed by Gavai et al. [58]. Equality con-
straints can be used to encode uncertainty in the fluxes,
which can be leveraged in sampling, or when additional
constraints are present, such that no solution to the linear
system exists. Let b represent the measured fluxes and €
be the measurement errors, then the observation model is
given as:

Ed=b+e, (2)

while still satisfying the constrains in Equation 1.

Computational model of the brain

Model of brain metabolism: A core metabolic model for
normal human brain was constructed using 89 metabo-
lites, 71 biochemical reactions from core pathways,
including the glycolytic pathway, Pentose Phosphate Path-
way (PPP), the TriCarboxylic Acid (TCA) cycle, malate-
aspartate shuttle, the glutamate and GABA shunt and
oxidative phosphorylation. The model spans the extracel-
lular space, cytosol and mitochondria. This core model
was originally used to investigate the low oxygen to car-
bohydrate ratio in the brain during extreme endurance
sports [72], and later used to examine to characterize
the metabolic changes in Alzheimer’s patients [58]. These
investigations, including our own, utilize flux estimation
of the metabolic model at steady state. A full description
of the models biochemical reactions is given in Additional
file 2: Table S1.

Bayesian Network of the HIF-1 signaling pathway:
The structure of the BN is constructed from the HIF-1
signaling pathway in the KEGG database [73]. The R pack-
ages graphite [74] and pcalg [75] were used to create
the network and transform it into a directed acyclic graph.
Specifically, the cyclic structure and bidirectional edges
were eliminated through the construction of a partially
oriented graph, see [76] for details. This method directs
the undirected edges without creating cycles in the graph.
This is critical because cycles (aka feedback loops) in the
graph are prohibited in order to make the factorization of
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the likelihood tractable [61]. This approach also does not
induce additional v-structures A —> C <— B, which
would create additional independencies in the graph. The
full network consists of 86 nodes and can be viewed
in Additional file 1: Figure S1. In order to connect the
probabilistic (genetic) to the constraint-based (metabolic)
models, member of the genes in the HIF-1A pathway were
mapped to the enzymes in the metabolic model. A total
of 15 genes mapped to enzymes in the metabolic model
(Additional file 2: Table S1) and they are concentrated in
the glycolysis pathway.

Two BNs were constructed with the identical structure
of the signaling pathway (Additional file 1: Figure S1).
However, these networks were parameterized differently
by using data from brain gene expression data from
healthy and Alzhiemers Disease (AD) patients brains.
The microarray data used in this study was taken from
the Gene Expression Omnibus with the accession ID
GSE5281 [77, 78]. This dataset contains gene expres-
sion measurements from laser captured micro dissected
neurons from healthy and AD subjects. For the present
analysis, only the hippocampus region is utilized, which
is the region most affected during the early stages of
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the disease. These parameterized models were used to
investigate the effects of up-regulated HIF-1A on the
expression of other genes using probabilistic reasoning via
belief propagation on the HIF-1 pathway. Evidence for the
HIF-1A transcription factor was absorbed at six different
values of transcript abundance levels over the range of
8 to 13. Therefore, the belief propagation algorithm was
applied six times, once for each absorbed piece of evi-
dence. This was performed for both the control and AD
models. For each absorbed evidence, the fold-changes of
d-connected nodes were estimated. For the calculation of
the predicted fold-changes, the mean expression level of
the gene of interest in the original data set was used as the
denominator, while the mean expression level after HIF-
1A perturbation, as obtained through BP, was used as the
numerator.

Interfacing the metabolic and signaling models: The
AD metabolic model at HIF-1A basal level is obtained
using Lesi-FBA [58]. The interface between the metabolic
model and the BN representation of the signaling pathway
is created through the use of BP-based constraints on the
metabolic model (Fig. 1). Different sets of constraints were
formed using information from the respective instance of
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BP in the two BNs. Each BP procedure produces a set of
estimated fold changes, which can be embedded into the
the constraints (Equation 2). Specifically, BP results are
used to predict fold changes of enzymes in the biochem-
ical reactions, and the fluxes from the initial model are
scaled by the fold-changes. The predicted constraints for
the fluxes are embedded into b in Equation 2. In cases
where multiple enzymes mapped to a single reaction, the
average fold-change across these genes was used to con-
strain the corresponding flux. This enable us to capture
the fold-change of an enzyme even if their abundance
is small, which can be important in regulating a reac-
tion. The implicit and simplifying assumption of these
derived constraints is that the reaction rates change in
a way that is proportional to the enzymatic changes in
the model reflected by mRNA expression. This approach
has also been adopted by Gavai et al. [58]. Note that
the variance for the local distributions for the BN mod-
els after BP is not directly amenable to the constraints in
the metabolic model. Variance estimates for the enzyme
constraints were estimated from the model with no use
of gene-expression data, using the methods of [58] that
are based on measured uptake and release rates [79]. The
estimates were used as input into the metabolic model
and FBA was performed to estimate the variances of e.
Thus, no gene expression data was used in the variance
estimation.

Another constraint was formed using knowledge about
the pyruvate dehydrogenase (PDH) regulation, which is a
connection between glycolysis and the TCA cycle. Pyru-
vate dehydrogenase kinase 1 (PDK1) is a known down-
stream target of HIF-1 regulation, which can inactivate
PDH through phosphorylation [80], a post-translational
modification. Therefore, in addition to its expression fold-
change, the activity of PDH further depends on PDK1
expression. Since PDH is a key enzyme of TCA cycle, we
took this effect into account by further multiplying the
predicted fold-change of PDH by 1/«, where « is the pre-
dicted fold change of PDK1 from belief propagations with
different values of HIF-1A.

Taken together, ten constraints were added to the
model. The system of equations is overdetermined, and
thus the solution is not unique. The least square solu-
tions of Ax = b + ¢ was computed using the Isei
(Least Squares or quadratic programming problems under
Equality/Inequality constraints) routine in the R LIM
package [81, 82]. FVA was then performed in R using
the mirror algorithm that is implemented in the xsample
function [83]. The function xsample implements Markov
Chain Monte Carlo (MCMC) sampling to uniformly
sample the feasible region of the constrained optimiza-
tion problem. The mirror algorithm for MCMC takes
advantage of reflections that are guided by the inequality
constraints, which improves acceptance rates and mixing
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for the chain when compared to hit-and-run samplers
[83]. FVA models were fit for each value of HIF-1A that
was absorbed into the signaling network in order to gener-
ate a new set of constraints. In total, six sets of constraints
were generated for each condition, and 12 FBA models
were fit. This analysis was performed for both the con-
trol and AD datasets. The convergence of the MCMC
was assessed using the approaches of Gelman [84] and
Geweke [85]. Specifically, the Geweke statistic is based
on a test for equality of the means of the first and last
part of a Markov chain (the first 10% and the last 50%). If
the samples are drawn from the stationary distribution of
the chain, the two means are equal and Geweke’s statis-
tic has an asymptotically standard normal distribution.
The Gelman diagnostic compares the pooled variance of
multiple chains with the variances of each chain and will
approach one if the Markov chain converges. The code for
this analysis was written in the R programming language,
and is available at code https://github.com/hyu-ub/prob_
reg_net.

Results

The integrated model consists of a signaling pathway rep-
resented by a BN and a constraint-based model of cellular
metabolism in the brain. These models are interfaced
through belief propagation (Fig. 1), which enables pre-
diction for the network under perturbation, and is used
to constrain the FVA for the steady state estimation of
fluxes in the metabolic model. A model for the HIF-1
signaling pathway was constructed using a BN approach,
and parameterized using AD and control data (Fig. 2 &
Additional file 1: Figure S1). The BN for the pathway
was parameterized with gene-expression data from con-
trol and AD patients. In the gene expression data, the
mean abundance level of HIF-1A is 9.29 in control group
and 9.65 in the AD group.

Enzyme abundance levels were estimated for control
and AD models when ranging HIF-1A between low (8)
and high (13) levels. These estimated abundance levels
were subsequently utilized to derive fold changes between
estimated basal and repressed/activated levels of HIF-1A
for control and AD models. The predicted fold changes
for the lowest (Fig. 3a) and highest (Fig. 3b) levels, indicate
large changes with high HIF-1A abundance, particularly
in control samples. This suggests that the metabolism
in the control model will be more sensitive to HIF-1A
perturbations when compared to the AD model.

Estimated fold-change constraints were derived from
belief propagation for both the control and AD models.
These constraints were utilized for the inequality con-
straints for the FVA. Taken together, this leads to a total
of 12 FBA models that correspond to six different lev-
els of HIF-1A in control and AD BNs. For each of these
models, MCMC was run for 100,000 iterations and the
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Fig. 2 Schematic of select nodes in the HIF-1A sub-pathway. The sub-pathway includes the enzymes in the metabolic model and their ancestors

A simplified schematic of the flux rates for the core
energy metabolism is shown for control data (Fig. 4a)
and AD data (Fig. 4b). The BP-based estimate of rel-
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activated (HIF-1A expression = 13) are given in Addi- groups for each reaction is also indicated. Overall, HIF-
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the AD model was far less sensitive to changes in HIF-1A'  TCA cycle. However, this increase considerably larger
levels. in control samples. Our estimates also suggest that the

first 2000 were disregarded as burn in. MCMC diagnostics
indicated convergence (Additional file 1: Figure S2). The
estimated fluxes for all reactions in the model when HIF-
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majority flux changes were smaller in the AD model when
compared to the control model (Fig. 3), this is more appar-
ent as the level of HIF-1A is increased (Fig. 4 & Additional
file 2: Table S1). The majority of these reactions belong to
the glycolysis pathway, including the rate-limiting reaction
facilitated by phosphofructokinase (R_PFK: PYR— CIT).
The changes in flux distributions also showed a major
impact on the predicted rate of net ATP production
(Fig. 5). When HIF-1A expression was increased from 8 to
13, ATP production also increases, but to a lesser degree
in the model using AD samples. Therefore, ATP produc-
tion was shown to be more sensitive to HIF-1 pathway
activation in control models. Consequently, this suggests
that the activation of HIF-1 pathway is less efficient in
terms of remedying ATP reduction in AD brains.

HIF-1 activation in control model enhanced the energy
production through anaerobic glycolysis by more than
8-fold, while that from TCA cycle increased only by
30%. Although the oxygen consumption also showed an

increase, the overall trend of shifting flux from TCA cycle
to anaerobic glycolysis is consistent with the known func-
tion of HIF-1 pathway. One the other hand, such effect is
much weaker in AD models.

Discussion

In this work, we developed an approach to integrate prob-
abilistic graphical models of gene regulatory networks
into constraint-based models of metabolism. An in sil-
ico model of this type can provide novel insights into
potential therapeutic targets that may be otherwise costly,
time-consuming or experimentally prohibitive. Utilizing
a BN framework enables parameterizations using gene
expression data, and probabilistic queries to the network
to derive constraints for flux estimation in the metabolic
model. In this context, probabilistic reasoning via belief
propagation actually re-casts the BN as a computational
model that can be used to derive constraints for the FVA.
To the authors knowledge, this is the first approach to
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of 9.5. (B) Histograms of predicted ATP production for the model for the control group (blue) and the model for the AD group (orange) when HIF-1A

integrating gene regulatory networks parameterized by
gene expression into steady state models of metabolism
that does not require boolean logic, thresholding, massive
sample size or classic treatment/control type experiments.
Our approach is comparable to lesi-FBA, which utilizes
fold-changes from the gene expression in the FVA con-
straints [58]. In fact, the AD metabolic model (Fig. 1) was
estimated using this approach, and reproduces the results
in Gavai et al. at basal level [58]. However, in contrast
to lesi-FBA, our approach leverages the BN as a com-
putational model for probabilistic reasoning in order to
generate predicted fold-changes for various perturbations
and conditions. Thus, our approach can perform in sil-
ico predictions of how the metabolic state shifts under
perturbation to the gene regulatory network.

AD is a neurodegenerative disorder characterized
by severe memory and cognitive function impairment.
Although the underlying molecular mechanisms are not
fully understood, hypoxia has been implicated in the
pathogenesis and progression of AD [86, 87]. Hypoxia-
inducible transcriptional factor-1 (HIF-1) is a major
controller of the hypoxic responses associated with neu-
rodegenerative disorders [88]. However, conflicting evi-
dence regarding its role in AD exist, and manipulation of
the hypoxic pathways can have different outcomes [60].
There has been some positive evidence surrounding HIF-
1 activation as a strategy to slow the progression of AD
[59, 89, 90]. For example, HIF-1 target gene EPO has also
been shown to have protective effects and has been con-
sidered for potential AD treatment [91, 92]. Our novel
approach was utilized to predict the metabolic states over
a range of HIF-1 levels in a constrain-based model of
brain metabolism. HIF-1 is known to promote cellular

responses to reduced glucose supply, low oxygen levels
and oxidative stress. Specifically, activation of HIF-1 path-
way has been known to increase glucose uptake, glycol-
ysis, and the conversion of pyruvate to lactate, by which
ATP production is maintained even in oxygen deprivation.

Prediction from the model estimate an 8-fold increase
in anaerobic glycolysis in control brain cells when HIF-
1A level is increased to 13 from 8, which is consistent to
the known HIF-1 function. However, this effect is much
weaker in AD brains. Under the same conditions, the
increase in fluxes in glycolysis pathway and TCA cycle
are only around 10%. This result suggests HIF-1 in AD is
less efficient in modulating energy production by directly
regulating enzyme activities. This could be due to the
fact that in AD the anaerobic glycolysis level is already
high at HIF-1 basal level. On the other hand, HIF-1 may
still remedy energy depletion through other mechanisms,
such as erythropoiesis and angiogenesis, which can not be
quantified by our models. Taken together, our results are
physiological and support HIF-1A as a potential target for
AD patients. However, our models suggest that the target
will not elicit the same degree of metabolic response that
would be present in a control (healthy) brain. Considering
the side effects of HIF-1 activation, and its lower efficiency
in rescuing deficient energy production, HIF-1 pathway is
perhaps not an ideal therapeutic target for AD patients.
Therefore, the therapeutic benefit of HIF-1 activator in
AD patients is probably not through directly modulating
intracellular energy metabolism. If data becomes avail-
able, it would be informative to reproduce this in silico
experiment to characterize AD brains in early and late
stage AD patients, as it is expected that the metabolic
shift from healthy patients is more subtle in early-stage
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[93-95]. Thus, we hypothesize that HIF-1A may be most eff
ective in early-stage patients.

There are several limitations in this approach that are
inherited from the underlying representations of the gene
regulatory and metabolic networks. Notably, the gene reg-
ulatory network is integrated into a metabolic network,
and the modeling framework does not allow for other
way around. Thus, the one-way integration of networks
describes the impact of the genetics on metabolism [96],
but will not capture metabolism effects on gene regu-
lation [97]. Furthermore, BN does not have cycles, and
thus do not provide the flexibility that an undirected
graph with cycles (Markov Network) would provide for
modeling gene regulatory networks [61]. Despite this
limitation, in many cases, directed acyclic graphs have
been shown to capture nonlinear and feedback behav-
iors reasonably well [65]. Moreover, undirected graphs
do not provide an infrastructure for exact inference, and
thus do not lend themselves to reliable predictions for
the estimated fold constraints that are embedded into
the FVA.

Limitations outlined in Blazier et al. [52] that arise from
connecting gene expression to the metabolic model, are
also inherent in our models. For example, crude summa-
rizations via averaging of the enzyme activity were utilized
when multiple enzymes and/or isoforms regulated a reac-
tion in the metabolic model. BNs were also parameterized
using only transcriptional gene expression data from bulk
tissue samples from the hippocampus [78], which does
not capture critical activities such as protein degradation
or post-translational modification. It has also been shown
that the degree of correlation between gene expression
and protein data is rather weak [98]. Taken together, these
data are limiting and likely a poor surrogate for neuronal
activity. At present, to the authors knowledge, there are no
publicly available protein datasets or single cell datasets,
from human AD and control brains. However, the model
can and will be easily modified as additional protein and
single cell data sources become available.

In conclusion, the integration of probabilistic graphical
models of gene regulatory networks into constraint-based
models of metabolism networks provides a unique oppor-
tunity to assess the impact of in silico genetic perturba-
tions to downstream metabolism. Moreover, leveraging
probabilistic reasoning facilitates predictive modeling of
enzymatic activity that extends beyond the gene expres-
sion data. Future work will be extending this paradigm
to genome-scale models [99]. In order to achieve this,
an undirected PGM could be leveraged in place of a BN.
However, as described above, the probabilistic reasoning
via belief propagation is only approximate in this case,
whereas it is exact for BNs [61]. Properly accounting for
this approximate inference in a scalable manner will be an
area of future research.
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