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Background: To optimize [18F] 9-fluoropropyl-(+)-dihydrotetrabenazine

(18F-FP-(+)-DTBZ) purification via solid-phase extraction (SPE) with combined cartridges

to facilitate its widespread clinical application.

Methods: A modified SPE purification method, employing Sep-Pak PS-2 and Sep-Pak

C18 cartridges, was used for the preparation of 18F-FP-(+)-DTBZ. This method was

compared to the purification method of high-pressure liquid chromatography (HPLC) and

SPE with one cartridge, following quality control test and positron emission tomography

(PET) imaging in healthy volunteers and patients with parkinsn’s disease (PD).

Results: A SPE purification method integrating Sep-Pak PS-2 and Sep-Pak C18

cartridges was implemented successfully. The retention time of 18F-FP-(+)-DTBZ purified

by HPLC, SPE with Sep-Pak PS-2, SPE with Sep-Pak C18, and SPE with combined

use of Sep-Pak PS-2 and Sep-Pak C18 cartridges was 8.7, 8.8, 8.7, and 8.9min,

respectively. Fewest impurity peak was detected in 18F-FP-(+)-DTBZ purified by the

SPE with combined use of Sep-Pak PS-2 and Sep-Pak C18 cartridges. This modified

SPE purification method provided a satisfactory radiochemical yield of 29 ± 1.8% with

radiochemical purity >99% and shortened synthesis time to 27min. The brain uptake of
18F-FP-(+)-DTBZ purified by the modified SPE was comparable to that purified by HPLC

in both healthy volunteers and PD patients.

Conclusions: A SPEmethod integrating Sep-Pak PS-2 and Sep-Pak C18 cartridges for

purification of 18F-FP-(+)-DTBZ may be highly suited to automatic synthesis for routine

clinical applications, as it provides excellent radiochemical purity, high yield as well as

operational simplicity.

Keywords: 18F-FP-(+)-DTBZ, 18F-FDG, PET/CT, solid phase extraction, Parkinson disease

INTRODUCTION

Vesicular monoamine transporter type 2 (VMAT2) plays critical role in the mechanism of
packaging and transporting neurotransmitters from the cytosol into synaptic vesicle, verifying
its status as an objective marker of nigrostriatal terminal integrity (1, 2). VMAT2 located on
vesicle membranes in neurons and its activity largely affects the scale of dopamine release (3). The
activity of the presynaptic monoaminergic binding site is less likely influenced by the medication
or compensatory mechanisms, as it is active only when VMAT2-containing neurons are active
(4). Therefore, it is a reliable and objective biomarker for exploring neurological and psychiatric
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disorders such as Parkinson disease (PD) (5), Alzheimer’s disease
and dementia with Lewy bodies (6), as well as endocrine system
disease such as diabetes (7–9).

The imaging of VMAT2 has potential advantages such as
better image quality and quantification, shorter time between
tracer administration and scanning, shorter scan duration, and
no requirement for prior blockade of the thyroid to prevent
radioactive iodine uptake (10–15). To date, different kinds of
agents for VMAT2 have been investigated to map VMAT2
distribution, and some of them have been tested in humans and
achieved favorable results (16–18). For example, as early as in
1996, Frey et al. (19) found that PD patients had reduction in
specific [11C]dihydrotetrabenazine (DTBZ) distribution volume
in the putamen (−61%) and in the caudate nucleus (−43%).
Similarly, regional specific uptake ratio of [18F] 9-fluoropropyl-
(+)- DTBZ (18F-FP-(+)-DTBZ) of caudate, putamen, substantia
nigra, and globus pallidus in the moderate and advanced PD
patients were significantly lower than those in the healthy
human subjects (16). More encouragingly, Li et al. (8) provided
evidence that dysfunction of streptozotocin-diabetic retinas was
detected by 18F-FP-(+)-DTBZ imaging at least 4 weeks earlier
than other examinations such as electroretinogram, color fundus
photography, and angiography. Generally, widespread use of
this agent could facilitate the disease diagnosis and monitoring
treatment response.

However, the published methods of purification of this agent
cost a long preparation time, which limits its routine application
for VMAT2 tracing. High-pressure liquid chromatography
(HPLC) is a conventional method used for purification of 11C-
labeled or 18F-labeled DTBZ to eliminate the pseudo-carrier. The
procedure of this purification method was relatively complex,
and the preparation of clinically useful radiotracer using HPLC
lasted over 1 h. Subsequently, solid phase extraction (SPE) were
adopted and the shortest synthesis time for 18F-FP-(+)-DTBZ
using SPEwas 40min in the published studies (20, 21). Therefore,
purification of 18F-FP-(+)-DTBZ is in need to improve in order
to increase the application of this tracer. In the present study,
we employed a SPE method with combined use of Sep-Pak PS-
2 and Sep-Pak C18 cartridges to purify 18F-FP-(+)-DTBZ to
maximize the final yield and simplify the purification process.
With this method, 18F-FP-(+)-DTBZ can be expanded into the
clinical setting to test the usefulness of 18F-FP-(+)-DTBZ in the
diagnosis and monitoring of diseases.

MATERIALS AND METHODS

Chemicals and Reagents
All reagents were commercially acquired and utilized without
further purification unless otherwise stated. 4,7,13,16,21,24-
Hexaoxa-1,10-diazabicyclo [8.8.8] hexacosane (K222, 98.0 %)
was purchased from ABX (Germany). Anhydrous acetonitrile
and potassium carbonate (K2CO3) were purchased from Sigma
(America). All SPE cartridges were purchased from Waters
Corporation (USA). To activate Sep-Pak QMA, Sep-Pak C18,
and Sep-Pak PS-2, we flushed them with 5mL absolute ethanol
followed by 10 mL water.

Radiosynthesis of 18F-FP-(+)-DTBZ
Precursor of 18F-FP-(+)-DTBZ was synthesized in the College
of Chemistry, Jilin University (Figure 1). 18F was produced in a
cyclotron by 18O (p, n)18F nuclear reaction. 18F was passed into
the CFN-MPS200multi-functional synthesis module through the
target transmission system and captured by the Sep-Pak QMA
anion exchange column. The residual liquid was put into the
oxygen water recovery unit. QMA was eluted with a 0.9mL
K2.2.2 / K2CO3 mixture. Then, 18F was rinsed into the reaction
bottle. The eluent was dried through successive evaporation with
nitrogen (N2) flow (30 ml/min) at 100◦C for 3min to remove
water and acetonitrile. Next, the residue was redried under the
same N2 flow at 110◦C for 2min. A total of 1.0mg TsOP-(+)-
DTBZ precursor solution in anhydrous was introduced into the
reaction tube. Then, radiofluorination was performed in the
reaction bottle at 120◦C for 12min and cooled to 40◦C. We
transferred the mixture from the reaction bottle to the transfer
bottle. The reaction bottle was cleaned using 5mL 5% ethanol
solution, which was then poured into the transfer bottle. The
crude product solution purification by HPLC or SPE and the
final solution in the collection bottle was passed through a Millex
GV for sterilization and diluted to 10mL with saline in a sterile
bottle. The synthesis route and diagram of the automated system
of 18F-FP-(+)-DTBZ are outlined in Figure 2.

HPLC Purification of 18F-FP-(+)-DTBZ
After radiofluorination, we transferred the crude product
to preparative HPLC (mobile phase of acetonitrile: 50mM
ammonium acetate = 57:43; flow 4 ml/min, velocity; 280 nm,
ultraviolet absorption wavelength; ultraviolet absorption peak
in 12 + 2min, plus or minus 2min 14 radiation peak, collect
radiation peak), and then absorbed on C18 column after dilution
with saline solution. Exactly 1.5ml of ethanol was to elute the C18
column. Ethanol was diluted to 10% concentration using 0.9%
sodium chloride. The final products of 18F-FP-(+)-DTBZ were
obtained following aseptic filtration.

SPE Purification of 18F-FP-(+)-DTBZ
The crude product solution was passed through the small column
of Sep-Pak PS-2 and/or Sep-Pak C18 to eliminate unreacted
[18F] fluoride and water-soluble impurities, which finally was
channeled to the waste liquid bottle. To determine the optimum
concentration of elusion ethanol, we used 10mL ethanol with
different concentrations from 5 to 70% to wash out the
impurities, and found that the lost rate was in acceptable range
when the ethanol concentration was below 30% (Figure 3A).
Similarly, to determine the optimum volume of elusion ethanol,
we used 30% ethanol with different volumes from 4 to 20mL
of ethanol to wash out impurities, and found the loss rate was
in acceptable range when using 10mL ethanol or below 10mL.
The best final condition for elution ethanol was as follows: for
the first time, 7mL 5% ethanol solution was used to wash out
impurities to the waste vial; for the second time, 8mL 5% ethanol
solution was used to wash out excess impurities to the waste vial;
for the third time, 8mL 30% ethanol solution was used for further
removal of impurities to the waste vial. Then, the final product
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FIGURE 1 | Synthesis route of 18F-FP-(+)-DTBZ.

FIGURE 2 | Diagram of the automated system of radiosynthesis of 18F-FP-(+)-DTBZ.

FIGURE 3 | Loss rate of 18F-FP-(+)-DTBZ using Sep-Pak PS-2 cartridge and/or Sep-Pak C18 cartridges under different concentration of 10mL ethanol elusion (A)

and different volume of 30% ethanol elusion (B).
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was eluted with 3mL 70% ethanol solution to the product vial as
70% ethanol was enough to elute the all product (Figure 3B).

Quality Control of 18F-FP-(+)-DTBZ
Visual Inspection
The 18F-FP-(+)-DTBZ product solution was visually examined
in the labeling hot cell through the leading glass window under
bright light.

pH
We employed the pH indicator paper (pH 2–9) referring to the
attached indicator chart to estimate the pH value of the purified
18F-FP-(+)-DTBZ product.

Radiochemical Purity
Before purity analysis, a reference substance solution (non-
radioactive FP-(+)-DTBZ; 20 µl, 2.7 mmol/L) was injected into
the analytical HPLC system. The chemical purity of 18F-FP-
(+)-DTBZ after purification was determined by HPLC with UV
detection at 280 nm and radiation purity of the product was
monitored by HPLC with radiation detector. Simultaneously,
thin layer chromatography (TLC) was also applied to the
determine the radiation purity.

Bacterial Endotoxin Test
Limulus Amebocyte Lysate (LAL) assay was applied to test for
bacterial endotoxins.

Imaging Quality
Two healthy volunteers and two PD patients underwent PET/CT
scan to test the imaging quality of 18F-FP-(+)-DTBZ fromHPLC
and SPE with combined use of Sep-Pak PS-2 and Sep-Pak C18
cartridges. This study was approved by the Ethics Committee of
the First Hospital of Jilin University (20K070-001) and conducted
in accordance with the 1964 Declaration of Helsinki and its
later amendments or comparable ethical standards. Patients were
recruited for enrollment in this study from December 2020
through January 2021 at our institute, with agreement from the
oncologists and on determination of the patients’ eligibility.

RESULTS

The loss rate of SPE with combined use of Sep-Pak PS-2 and Sep-
Pak C18 cartridges was lower than that of SPE with one cartridge
at the same concentration of ethanol and same volume of ethanol
elusion (Figure 3).

The identity of 18F- FP-(+)-DTBZ was confirmed by
comparing the retention time of the radioactive product with
that of FP-(+)-DTB. The retention time of 18F- FP-(+)-DTBZ
purified byHPLC, SPEwith Sep-Pak PS-2, SPEwith Sep-Pak C18,
and SPE with combined use of Sep-Pak PS-2 and Sep-Pak C18
cartridges was 8.7, 8.8, 8.7, and 8.9min, respectively. Either 18F-
FP-(+)-DTBZ purified by HPLC or SPE matched well with that
of FP-(+)-DTBZ within an admissible error. Fewest impurity
peak was detected in 18F-FP-(+)-DTBZ purified by SPE with

combined use of Sep-Pak PS-2 and Sep-Pak C18 cartridges in all
purification methods (Figure 4).

Comparison of HPLC and SPE purification method of 18F-
FP-(+)-DTBZ is presented in Table 1. The radiochemical purity
exceeded 99%, and the product was radiochemically stable for at
least 3 h for the tracers purified by HPLC and SPE with combined
use of Sep-Pak PS-2 and Sep-Pak C18 cartridges. The synthesis
time of 18F-FP-(+)-DTBZ with SPE purification was significantly
shorter than that with HPLC purification. Brain uptake of 18F-
FP-(+)-DTBZ purified by SPE with combined use of Sep-Pak
PS-2 and Sep-Pak C18 cartridges was comparable to that purified
by HPLC in both healthy volunteers and PD patients (Figure 5).
In healthy volunteers, a symmetric distribution pattern of 18F-
FP-(+)-DTBZ was shown in caudate, putamen, globus pallidus,
substantia nigra. In PD patients, 18F-FP-(+)-DTBZ avidity in
nigrostriatal regions reduced obviously (Figure 5).

DISCUSSION

In this study, we optimized SPE purification of 18F-FP-(+)-DTBZ
via combining Sep-Pak PS-2 and Sep-Pak C18 cartridges. The
radiochemical purity from thismodified SPE purificationmethod
was much more ideal for clinical use than those purified by
HPLC or SPE with one cartridge. By testing the imaging quality
of 18F-FP-(+)-DTBZ in healthy volunteers and PD patients,
we further elucidated that the imaging quality of 18F-FP-(+)-
DTBZ from the modified SPE was comparable to that from
HPLC. Additionally, the preparation time of 18F-FP-(+)-DTBZ
synthesis was shortened to 27 minutes via use of the modified
SPE purification.

In the early 1990s, 11C labeled tetrabenazine (TBZ),
dihydrotetrabenazine (DTBZ), and methoxytetrabenazine
(MTBZ) were continuously investigated as tracers for imaging
of VMAT2 (22, 23). At that time, silica gel semi-preparative
HPLC was mainly adopted in the purification of different
kinds of tracers. 11C-TBZOMe was purified using a silica gel
semi-preparative HPLC column, by passing the HPLC solvent
(CH2CI2: hexane: (isopropanol: diethylamine 24:l) 37:62:1; 6
mL/min) through the extraction column and onto the HPLC
column (24). Similarly, in the preparation of 11C-TBZ and 11C-
DTBZ, the radiotracer was also purified using semipreparative
silica gel chromatography and prepared for injection by
evaporation of the HPLC solvent (23, 25). Considering the
half time of radionuclide, 18F-labeled DTBZ analogs (T1/2 =

110min) will be more practical to increase the application in
clinics equipped with PET scanners but not with sufficient
resources to make 11C (T1/2 = 20min) (26, 27). Radiosynthesis
of 18F-FP-(+)-DTBZ was firstly reported in 2006 (26). It is
prepared with 18F fluoride as a substitute for the O-tosylate
leaving group of precursors, catalyzed by K222/K2CO3 following
the purification of the reaction mixture via semipreparative
HPLC column. The preparation of 18F labeled compound took
about 50–55min at the end of synthesis.

Since HPLC is a long and laborious process, accompanied
by considerable loss of radioactive product, multiple sequential
solid-phase cartridges were, therefore, adopted to optimize
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FIGURE 4 | HPLC and TLC analysis of radiochemical purity of 18F-FP-(+)-DTBZ purified by HPLC (A), SPE with Sep-Pak PS-2 (B), SPE with Sep-Pak C18 (C) SPE

with combined use of Sep-Pak PS-2 and Sep-Pak C18 (D), and radiochemical purity of FP-(+)-DTBZ (E).
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TABLE 1 | Comparison between HPLC and SPE purification of 18F-FP-(+)-DTBZ.

HPLC SPE

Column YMC-Pack

ODS-AM

Sep-Pak C18 Sep-Pak PS-2 Sep-Pak C18,

Sep-Pak PS-2

Precusor (mg) 1 1 1 1

Procedure synthesis time (min) 65 27 26 27

Synthesis times 3 3 3 5

Yield (GBq) 4.6 ± 5.7% 4.8 ± 8.3% 5.0 ± 10.2% 5.1 ± 7.9%

Yield rate 11 ± 2.3% 25 ± 2.3 27 ± 2.1 29 ± 1.8 %

Activity concentration at the end of

synthesis (MBq/mL)

2.3 × 103 1.5 × 103 1.7 × 103 1.7 × 103

Appearance (visual inspection) Clear, transparent,

free of impurities

Clear, transparent,

free of impurities

Clear, transparent,

free of impurities

Clear, transparent,

free of impurities

PH 6–7 6–7 6–7 6–7

Radiochemical purity (radio-HPLC) 99.2% 98.5% 98.0% 99.0%

Radiochemical purity (radio-HPLC)

after 3 half time

96.3% 95.6% 95.1% 96.0%

Bacterial endotoxin test (EU/ml) <15 <15 <15 <15

K2.2.2 comparing to standard

reference

less than standard

K2.2.2 spots

less than standard

K2.2.2 spots

lessthan standard

K2.2.2 spots

less than standard

K2.2.2 spots

Retention time (min) 8.7 8.8 8.7 8.9

HPLC, high pressure liquid chromatography; SPE, solid-phase extraction.

FIGURE 5 | PET/CT performance of HPLC- and SPE- purified 18F-FP-(+)-DTBZ in healthy volunteers (A), and PD patients (B).
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the preparation of different radiotracers in the early 2010s
(20, 21, 28). It is worth noting that the preparation time
distinguishes HPLC- from SPE-purified 18F-FP-(+)-DTBZ. For
instance, in 2010, Zhu et al. employed different precursors (-
OTs or -Br as the leaving group at the 9-propoxy position),
reagents [K222/K(2)CO(3) vs. tributylammonium bicarbonate]
and solvents (acetonitrile vs. DMSO), reaction temperature,
reaction time, and purification method with SPE (Oasis HLB)
to improve 18F-FP-(+)-DTBZ radiosynthesis. This method
generated a satisfactory radiochemical yield of 21–41% (n = 10)
with radiochemical purity > 95% and shortened the synthesis
time to 40min (20). In 2014, a new 11C-labeled radiotracer,
10-(11) C-dihydrotetrabenazine (10-11C-DTBZ) was successfully
synthesized and purified by SPE using an alumina Sep-Pak
cartridge, the final 10-11C-DTBZ product was obtained. The
overall synthesis time was only 20min from bombardment to
release of the product for quality control (29). In 2019, SPE with
Sep-Pak C18 cartridge was implemented into the purification
of the 18F-FP-(+)-DTBZ (30). In this study, they have tested
purification effect of SPE equipped with different cartridges
including Sep-Pak Oasis, tC2, C8, tC18, CN, Chromafix C18
Hydrox, Chromafix C18, and Chromfix C4, and finally focused
on the Sep-Pak tC18 with suitable ethanol-water elution as this
system showed the smallest loss in activity. The desired product
was obtained in 35min. In 2020, Zhao et al. (31) successfully
obtained a radiolabeling method of 18F-FP-(+)-DTBZ under the
optimized conditions (P/K2CO3 = 1:8, heating at 120◦C for
3min in dimethyl sulfoxide). The automated synthesis gave a
high activity yield of 30–55% in about 40min with a >99.0%
radiochemical purity. Taken together, using SPE instead of HPLC
for purification is the trend for different kinds of radiotracers.

Herein, we modified the SPE purification equipped with
two different cartridges to obtain four goals: eliminate the
residual chemical impurities, achieve excellent radiochemical
purity, maximize the final product, and simplified purification
method. In the previous studies, SPE with one cartridge was used
for the purification of 18F-FP-(+)-DTBZ. However, SPE with
two cartridges have not been reported. In our study, we have
compared the loss rate and radiochemical purity of 18F-FP-(+)-
DTBZ from SPE with two cartridges to those from SPE with one
cartridge. Of note, SPE with two cartridges showed lower loss
rate than SPE with one cartridge under the same concentration
or same volume of ethanal elution. Whereas, under the same
elution condition, although radiation purity of product from
SPE with one cartridge was comparable to that from SPE with
combined cartridges in the analysis of analytic HPLC with
radiation detector, both HPLC analysis with UV detector and

TLC analysis showed fewer impurity peaks in 18F-FP-(+)-DTBZ
from SPE with two cartridges comparing to that from SPE with

one cartridge. Therefore, considering the loss rate, radiochemical
purity and final yield, 18F-FP-(+)-DTBZ from SPE with two
cartridges was more likely to obtain favorable products than SPE
with one cartridge. In addition, we have compared radiochemical
purity, final yield, imaging quality and synthesis time of products
purified from SPE with two cartridges to those from HPLC.
Radiochemical purity, final yield and imaging quality of SPE
with two cartridges were comparable to those from HPLC, while
synthesis time of radiotracer from SPE with two cartridges was
much shorter than that from HPLC, which indicated that the
modified SPE purification was suitable for the clinic use.

In conclusion, the present study demonstrated an improved
purification approach for 18F-FP-(+)-DTBZ, using SPE with two
different cartridges (Sep-Pak PS-2 and Sep-Pak C18). The desired
product was prepared in 27min with a 29± 1.8% yield rate. This
SPE purification method is highly suited to automatic synthesis
for routine clinical applications.
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