
REVIEW

Potential Role of Zinc in the COVID-19 Disease Process
and its Probable Impact on Reproduction

Ramya Sethuram1
& David Bai1 & Husam M. Abu-Soud1,2,3

Received: 18 August 2020 /Accepted: 16 November 2020
# Society for Reproductive Investigation 2021

Abstract
COVID-19 (coronavirus disease 2019) is the current world health crisis, producing extensive morbidity and mortality across all
age groups. Given the established roles of zinc in combating oxidative damage and viral infections, zinc is being trialed as a
treatment modality against COVID-19. Zinc also has confirmed roles in both male and female reproduction. The possible
depletion of zinc with the oxidative events of COVID-19 is especially relevant to the fertility of affected couples. This review
aims to present the pathophysiology of COVID-19, especially in relation to reproductive function; the role of zinc in the COVID-
19 disease process; and how zinc depletion in concert with cytokine storm and reactive oxygen species production could affect
reproduction. It also highlights research areas to better the understanding of COVID-19 and its impact on fertility and potential
ways to mitigate the impact.
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Zinc Deficiency and COVID-19

The association between zinc deficiency and worse outcomes
of respiratory viral infections has been established [1]. Hence,
zinc is being trialed as a nutritional supplement that is being
used either as a stand-alone intervention or in conjunction
with other nutrients for the prophylaxis and the treatment of
the coronavirus disease 2019 (COVID-19) infection [2]. The

well-documented roles of zinc in preventing cell damage and
its anti-viral properties are helpful in explaining the potential
role of zinc in COVID-19 management [3]. Furthermore,
there is a degree of overlap between the symptomatology of
COVID-19 and that of zinc deficiency.

Like the multiorgan damage and dysfunction characteristic
of severe COVID-19 progression, zinc deficiency has far-
reaching impacts, affecting the nervous, cardiovascular, thy-
mic, immune, and endocrine systems [4]. Acute effects of zinc
deficiency include hair loss, diarrhea, delayed sexual matura-
tion, impotence, hypogonadism in males, and skin lesions [5].
Also, zinc deficiency has been associated with a higher risk of
atherosclerosis, diabetes, rheumatoid arthritis, neurodegener-
ative disease, and obesity secondary to unrestrained chronic
inflammation [6–8]. These pathologies, in turn, have been
correlated with increased risk for COVID-19 related compli-
cations. To a certain degree, patients with these conditions are
also likely to have fertility-related and pregnancy-associated
complications. Pregnant women infected with COVID-19
have been documented to have poorer outcomes resulting in
miscarriages, preterm births, cesarean sections, and perinatal
deaths [9, 10]. Hence, reproduction at the time of COVID-19
is fraught with risks and the epigenetic changes on the male
and female reproductive organs secondary to COVID-19 ex-
posure is unknown. Reports indicating adverse effects of
COVID-19 on male and female gametogenesis are emerging
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[11]. The potential impacts of SARS CoV-2 on the sperm and
the oocyte and consequentially the embryo quality remains to
be fully investigated.

Cytokine Storm, Reactive Oxygen Species,
and Zinc

In COVID−19 infections, acute phase response and the resul-
tant cytokine storm are causative factors for multiorgan dam-
age. The deluge of inflammatory markers secondary to the
cytokine storm results in the formation of unlimited quantities
of reactive oxygen species (ROS) produced through activation
of the mitochondrial respiratory chain, cytochrome P450 en-
zymes, peroxisomal fatty acid metabolism, and flavoprotein
oxidases. In addition, COVID-19 infection is associated with
the generation of interleukins, such as IL-6, and tumor necrosis
factor (TNF α), which increase neutrophil myeloperoxidase
(MPO) activity [12]. ExcessiveMPO activity can generate free
iron through hemoprotein heme destruction, and free iron can
in turn mediate the Fenton reaction to further produce ROS,
including the highly reactive hydroxyl radical (•OH) [13, 14].
Importantly, overproduction of each of the inflammatory
markers and ROS, separately or collectively, has various de-
grees of impact on the male and the female reproductive sys-
tem. For example, in the oocytes and embryos, even short-
lived ROS such as •OH (t1/2 = 10−9 s), superoxide (O2

•−)
(t1/2 = 5 s), and peroxynitrite (ONOO

−) (t1/2 = 10 ~ 20ms) have
been shown to produce instant and irreversible effects by
disimpacting the oocyte spindle and altering the chromosomal
alignment [14, 15]. Similarly, mammalian oocytes exposed to
IL-6 have a dose-dependent deterioration in microtubule and
chromosomal alignment [16]. However, H2O2 and
hypochlorous acid (HOCl) generated by the neutrophil MPO-
H2O2 system are longer-lived signaling molecules that cause
oocyte damage in a dose-dependent fashion [17, 18]. Also,
sperm oxidative stress and resultant ROS are strongly associ-
ated with a significant reduction in fertilization rates and IVF/
ICSI outcomes in mammals [19].

Another possible factor for the observed pathophysiology
in critical cases of COVID-19 is a decline in nitric oxide (NO),
a key mediator of vasodilation and also an important regulator
of oocyte quality and aging [20] (Fig. 1). Nitric oxide bioavail-
ability can decline in the presence of O2

•− resulting in the
generation of ONOO− which results in cell damage. ROS
overproduction and its detrimental effects on NO are also
induced by intracellular zinc depletion, which consequentially
causes dysfunction of zinc-dependent antioxidant proteins
such as superoxide dismutase (SOD), catalases and glutathi-
one (GSH), NO synthase dimer assembly, and the dysfunction
of a number of zinc finger proteins, thereby resulting in mito-
chondrial damage, which further accentuates oxidative stress
[21, 22]. Zinc also serves to inhibit NADPH oxidase and

antagonizes redox activity of the transition metals iron and
copper, thereby decreasing ROS production [23]. Thus, zinc
deficiency has potential impacts to all organ systems during
the COVID-19 disease process and could also leave enduring
impacts on the oocyte and sperm quality. Hence, supplemen-
tation of zinc to women seeking fertility, especially at the time
of the COVID-19 pandemic could be valuable in improving
oocyte, sperm, and embryo quality.

Zinc Supplementation and COVID-19

Zinc deficiency places the individual at an increased risk of
infections and secondary complications, delayed recovery, de-
creased wound healing, and increased vulnerability to cell
damage from the acute phase response [24]. There is a con-
siderable overlap between the symptomatology of SARS
CoV-2 infection and zinc deficiency. Some of the unusual
COVID-19 symptoms such as loss of smell and taste are sec-
ondary to the enhancement of oxidative stress-mediated by
ROS and neutrophil MPO activity and this has been well
established in conjunction with zinc deficiency [25]. A com-
prehensive epidemiological study of childhood mortality
identified zinc deficiency as one of the major causes of diar-
rhea and pneumonia in children [26]. This could also help
explain how zinc supplement might help improve outcomes
in patients infected with SARS CoV-2. Zinc supplementation
in COVID-19 patients could limit the disease process not only
by eliminating ROS but also by improving the immune re-
sponse to the infection. Zinc has anti-inflammatory activity
and inhibits NF-KB signaling and regulates T cell function
to limit the cytokine storm. In vitro experiments have demon-
strated that zinc possesses anti-viral properties through inhibi-
tion of SARS-CoV RNA polymerase. Indirect evidence has
also established that zinc may decrease the activity of
angiotensin-converting enzyme 2 (ACE2) which is a receptor
for SARS COV-2 [27]. It also enhances the resistance of the
cell to apoptosis by inhibiting caspase-3,-6,-9 [28]. Anti-viral
properties of zinc are also related to the metallothioneins
(MTs), zinc-binding proteins, the function of which is to store
and transport zinc. The presence of reactive compounds or
oxidative stress results in modification of the cysteine sulfur
ligands of MTs, thereby releasing zinc ions, which in turn
leads to increased intracellular free zinc concentrations. An
overexpression ofMTs has been established in patients infect-
ed with flaviviruses (e.g., yellow fever, HCV) and
alphaviruses (Venezuela equine encephalitis virus). MTs
may sequester zinc away from the viral metalloproteins, there-
by facilitating anti-viral signaling [29]. Also, the zinc finger
anti-viral protein (ZAP), a key component in interferon-
mediated immune response, binds to the CpG dinucleotides
in the viral genomes [30]. Subsequently, ZAP inhibits viral
replication and mediates viral genome degradation [31].
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Therefore, zinc has a clearly established role in the immune
response to viral infections [32]. Studies show positive effects
of therapeutic zinc treatment on viral replication or infection-
related symptoms of viruses and viral diseases such as
rhinovirus-associated cold symptoms, herpesviruses,
picornaviridae, flaviviridae, togaviridae, retroviridae: HIV,
and papillomaviridae [33].

Current literature on zinc supplementation in COVID
−19 is limited to a very small retrospective study in hospi-
talized patients that did not demonstrate a causal associa-
tion between zinc supplements and improved prognosis
and survival [34]. While larger and more comprehensive
studies are urgently needed to inform this discussion, zinc
could indeed be of limited value once the patient is sick
enough to be hospitalized. After the patient experiences the
cytokine storm, the resultant proinflammatory response
causes extensive oxidative damage and ROS production.
This would deplete intracellular zinc, more rapidly so in
zinc-deficient individuals. Hence, the enzymes that help
with the clearing up of the ROS elements become nonfunc-
tional, paving way for acute irreversible cell damage. Zinc
supplementation, especially by itself, may be insufficient
to reverse the process once widespread acute and oxidative
cell damage has occurred. However, if administered to
COVID-19 infected individuals in the pre-cytokine storm
phase, repletion of zinc in the body might help ameliorate
COVID-19 progression in the mild and early phases by
both suppressing viral replication as well as by preventing
cell damage by acting as a pro-antioxidant.

Zinc and Reproduction

Zinc is an essential element for the functioning of both the
male and the female reproductive organs and for completion
of meiosis and creating good quality blastocysts. With our
current understanding of zinc in the reproductive process, its
critical role in determining the sperm, the oocyte, and the
embryo quality is well established in mouse and human model
[35, 36] (Table 1). Zinc chelation in mouse oocytes and em-
bryos has been demonstrated to decrease intra-oocyte zinc
concentration, increased intracellular ROS levels, and changes
to the oocyte spindle morphology with poorer quality spindles
noted at decreasing intracellular zinc levels [37]. Zinc is the
key regulator of meiosis in the oocyte. Zinc spark is the phe-
nomenon whereby the post-fertilization concentration of zinc
in the zona pellucida increases by 300%. Zinc spark has direct
biological consequence as this results in hardening of the zona
pellucida which consequentially blocks polyspermy and is
associated with better blastocyst and embryo quality [38,
39]. Hence, maternal zinc deficiency in mammals produces
effects ranging from infertility, embryo/fetal death, prematu-
rity, decreased postpartum immunity, impaired wound
healing, and an increased risk of neurobehavioral abnormali-
ties [40–43]. Zinc deficiency is associated with teratogenesis
and intrauterine growth restriction during pregnancy [44–47].

Zinc is also a crucial modulator of male reproductive func-
tion. It is a vital anti-inflammatory factor involved in the ox-
idative metabolism of the sperm. Its other roles include sperm
membrane stabilization, capacitation, and acrosomal reaction

Fig. 1 The relationships between NOS, zinc, ROS, and related
pathophysiologies. Zinc is involved in attenuating oxidative events and
is also required for NOS dimerization. Zinc deficiency not only directly

leads to oxidative stress through increased presence of ROS but also
uncouples NOS, causing it to generate superoxide to further compound
ROS elevation. These manifest as numerous detrimental conditions
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[48, 49]. In the testis, zinc is vital for the production and
secretion of testosterone from the Leydig cells, maintaining
genomic integrity of the sperm and sperm assembly [50].
Accordingly, zinc deficiency is also associated with low se-
rum testosterone concentrations, primary testicular failure,
lessening function of the luteinizing hormone receptor, de-
creased steroid synthesis, and Leydig cell damage due to ox-
idative stress [51, 52]. Inflammatory process associated with
various disorders and higher body temperature induces ROS
and also leads to testicular malfunction and altered sperm
production [53]. In smokers and infertile men, increased
ROS levels in the seminal plasma result in seminal fluid zinc
deficiency which sequentially produces abnormal sperm pa-
rameters [54]. We believe that the SARS CoV-2 induced cy-
tokine storm, like cytokine storm in other conditions, would
similarly increase ROS in the gametogenic cells and deplete
intracellular zinc, potentially resulting in oocyte and sperm
damage. Zinc deficiency further showed that it can mediate
the ROS overproduction and potentiate oocyte and sperm
damage through the same mechanism. Hence, zinc depletion
and ROS appear to have a bidirectional relationship resulting
in a vicious cycle with one aggravating the effects of another.

Zinc Supplementation in COVID-19 Patients
Desiring Fertility

Although zinc supplementation in COVID-19 patients has
been implemented and analyzed to an extent, data regarding
the effects of zinc supplementation on the fertility of couples
with COVID-19 exposure remains scarce. The effects of zinc
supplementation on the oocyte quality are difficult to recipro-
cate in vivo, as obtaining and analyzing the oocyte is an inva-
sive procedure. However, zinc deficiency has been established
to cause disruption of the post-implantation fetal and placental
development in mice [55]. Also, the only available literature
of in vitro testing on mouse metaphase 2 oocytes has
established that zinc deficiency causes oocyte deterioration
and embryo damage through a mechanism involving

overproduction of ROS [56]. The study of zinc supplementa-
tion on sperm quality has been undertaken and has been prov-
en to be of value. Zinc supplementation has been demonstrat-
ed to protect against chemotherapy-induced testicular dam-
age, with better sperm counts noted in the group of patients
treated with zinc supplementation [57]. Also, supplementation
of zinc alongside folic acid significantly improved sperm pa-
rameters in subjects post varicocelectomy [58]. In our opinion,
supplementation of zinc to both male and female partners
seeking fertility during the COVID−19 pandemic could help
protect against gametogenic damage, possibly improving em-
bryo quality, and potentially lessening some of the pregnancy
complications.

Conclusions

With the initial advent of the SARS CoV-2 virus infection in
March 2020, the American Society of Reproductive Medicine
(ASRM) noted the highly infectious nature of the disease and
the potential complications associated with pregnancies, and
advised suspension of all new treatment cycles and cessation
of embryo transfers (https://www.asrm.org/globalassets/asrm/
a s rm-con t en t / news - and -pub l i c a t i on s / cov id -19 /
covidtaskforce.pdf). However, the current widespread recent
resurgence of SARS COV-2 transmission that has currently
exceeded 12 million cases in the USA alone, reaffirms the
need to practice reproductive health in a COVID-19 environ-
ment for the foreseeable future. Given the crucial roles of zinc
in reproduction and its beneficial effects as an anti-oxidant and
anti-inflammatory agent, a policy of zinc supplementation to
men and women aiming to conceive either through natural or
through assisted reproduction may prevent mitochondrial
damage and avoid the accumulation of ROS in the oocyte
and spermatogonia. It may also enhance immunity against
the virus, which could in turn improve pregnancy outcomes.
In the general population, zinc supplementation could be ben-
eficial in both enhancing immunity and in fighting against the
viral disease process. Though higher doses of zinc have been

Table 1 Functions of zinc inmale
and female reproduction Functions of zinc in male reproduction Functions of zinc in female reproduction

Oxygen intake of spermatozoa Sexual maturation

Nuclear chromatin condensation Development of the breast and genitalia

Acrosomal reaction Estrous production

Acrosin activity Oocyte maturation

Sperm chromatin stabilization Cumulus expansion

Testicular steroidogenesis Gene expression in vitro

Testosterone synthesis Maintenance of pregnancy

Testicular development Fetal growth—teratogenesis/IUGR in deficiency

Conversion of testosterone to dihydrotestosterone (DHT) Postpartum immunity and emotional well being
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used in current COVID-19 clinical trials, until we have robust
data, all adults could be supplemented with up to a maximum
of 50 mg/day without significant toxic side-effects. Presently,
there are multiple studies registered with the WHO that aim to
look at the value of zinc, either in the oral or in the intravenous
form in patients affected with COVID-19 (https://www.who.
int/ictrp/search/en/). The results of these studies, when
available, will further elucidate the value of zinc in the
setting of COVID-19, especially in the reproductive age
group.
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