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Abstract

The allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs) and is directly linked to
pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions.
One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular
communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS)
that couples elastic network models with linear response theory (LRT) to predict key residues in allosteric transitions of the
two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain). With PRS, we first identify the residues that give
the highest mean square fluctuation response upon perturbing the binding sites. Strikingly, we observe that the residues
with the highest mean square fluctuation response agree with experimentally determined residues involved in allosteric
transitions. Second, we construct the allosteric pathways by linking the residues giving the same directional response upon
perturbation of the binding sites. The predicted intramolecular communication pathways reveal that PSD-95 and hPTP1E
have different pathways through the dynamic coupling of different residue pairs. Moreover, our analysis provides a
molecular understanding of experimentally observed hidden allostery of PSD-95. We show that removing the distal third
alpha helix from the binding site alters the allosteric pathway and decreases the binding affinity. Overall, these results
indicate that (i) dynamics plays a key role in allosteric regulations of PDZs, (ii) the local changes in the residue interactions
can lead to significant changes in the dynamics of allosteric regulations, and (iii) this might be the mechanism that each PDZ
uses to tailor their binding specificities regulation.
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Introduction

Allosteric regulation orchestrates functional behaviors in

biological networks through appropriate switches. From a

biochemical perspective, allostery can be described as a perturba-

tion at one place in a protein structure, such as the binding of a

ligand that alters the binding affinity of a distant site or enzymatic

activity [1]. Several models have been suggested for explaining the

‘allosteric mechanism’. Models of conformational transition

between co-existing states such as the MWC model of Monod

[2], and the ‘induced fit’ KNF model of Koshland [3] were the

first views among them. They described allostery as a binding

event that causes conformational change via a single propagation

pathway [4]. A new view of allosteric transitions supported from

NMR studies, referred to as the ‘population shift’ model, has

replaced the MWC and KNF models [5–8]. The population shift

models claim that a protein in the unliganded form exhibits an

ensemble of conformational states and ligand binding leads to a

redistribution of the population of these states. In this view, it is

important to explore how protein dynamics might contribute to

allostery and make communication possible within a protein.

Unlike the classical allostery models, the population shift-models

also suggest that allostery can be mediated without any significant

conformational change [9–15] but rather from changes in

dynamics.

Moreover, recent experimental and theoretical evidences

indicate that allostery is not limited to multi-domain proteins or

complexes [5] and it may even be a fundamental property of all

proteins, even single domain proteins. In single domain proteins, it

is evident that residues that are energetically connected through

structural rearrangements and dynamics lead to allosteric

regulation [6,11,15–17]. More importantly, studies on single

domain protein PDZ (post-synaptic density-95/discs large/zonula

occludens-1) have indicated that allostery can arise not only from

large conformational changes, but also from changes in dynamics

[12,14].

Indeed, PDZ domain proteins (PDZs) are the most studied

system for understanding single domain allostery [11,16,18–25]. PDZs

are small protein-protein interaction modules and typically

recognize specific amino acids in the C-terminal end of peptide

motifs or proteins [26–28]. Various studies on several PDZs,

including statistical coupling analysis (i.e. sites that have correlated
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mutation based on evolutionary information) [16,29,30], molec-

ular dynamics [11,22,31–33], normal mode analysis [34,35],

NMR relaxation methods and site directed mutational analysis

[12,18–20,25,36] have shown that several PDZs exhibit allosteric

behavior that appears to connect incoming signals, notably

binding to recognition motifs present on an upstream partner, to

downstream partners [11,16,18–25]. In many different cellular

contexts, PDZs function to transduce these binding events into

favorable domain-domain assembly of complexes [14]. Thus, it is

critical to understand the residues involved in these allosteric

pathways in order to modulate the PDZ mediated interaction in

cell regulation especially those in disease pathways. Moreover, a

recent experimental study by Petit et al. [12], has confirmed yet

another strong allosteric power of one of the PDZs: the hidden

dynamic allostery. The removal of the non-canonical third helix

(a3) in PSD-95 (PDZ3), which lies outside of the binding pocket,

reduces the binding affinity drastically due to a change in side

chain dynamics upon truncation, indicating the role of entropy

and dynamics in allosteric regulation. More interestingly, further

investigation has shown that the removal of this distal a3 disrupts

the communication between PDZ3 and SH3-GK, which modu-

lates the binding of Disc large protein (Dlg) to the localization

protein GukHolder [37]. Therefore, the hidden dynamic allostery

related with a3 is indeed a regulatory module within the context of

larger interdomain interactions.

In summary, PDZs do not solely act as simple scaffold proteins.

On the contrary through dynamics, they propagate signals to

functionally important distant sites for intramolecular and

intermolecular interactions [16]. They all have the same conserved

structure and similar sequences [16], yet different PDZs have

evolved different dynamics properties tailored to mediate different

functions in the cell [14]. Thus, it would be very important to

understand how signals are passed from one residue to another

within the network of PDZs and how the sequential and structural

variations alter the allosteric pathways for those allosteric PDZs

[11,18,20–24]. Here we would like to tackle this problem with our

new method called perturbation response scanning (PRS) [38,39].

PRS treats the protein as an elastic network and uses linear

response theory (LRT) to obtain residue fluctuations upon external

perturbation. By sequentially exerting directed random forces on

single residues along the chain of the unbound form and recording

the resulting relative changes in the residue coordinates using

LRT, we can successfully reproduce the residue displacements

from the experimental structures of bound and unbound forms.

The method is well established and tested for 25 proteins that

display a variety of conformational motions upon ligand binding,

including shear, hinge, allosteric, and partial refolding as well as

more complex protein motions [39].

In the present study, we investigate the allosteric transitions by

analyzing response fluctuation profiles upon perturbation on

binding site residues by PRS. We focus on two widely studied

PDZs: the third PDZ from the post-synaptic-density-95 (PSD-95

PDZ3) and the second PDZ from the human tyrosine phosphates

1E (hPTP1E PDZ2). The results from our computationally

inexpensive and effective approach successfully identify the

dynamically linked allosteric residues obtained from experiments

(NMR or mutagenesis techniques) [12,18–20,25,36] as well as

evolutionarily coupled residues from sequence-based statistical

approaches [16,29,30] and key residues predicted from molecular

dynamics, normal mode analysis and protein energy-based

networks [11,22,31–35,40]. As a further test, we construct the

communication pathway between these residues that might be

responsible in transmitting allosteric signals. We achieve this

through linking residues that show similar directionality of motion

upon perturbation of binding sites. Interestingly, the constructed

allosteric pathway indicates a strong structural residue coupling

network. Moreover, we observe that the two PDZs, PSD-95 and

hPTP1E, have distinct allosteric pathways despite their structural

similarity, indicating the role of dynamic coupling in these

domains [14,35,41]. The residues in the allosteric pathway of

PSD-95 are homogenously distributed along the secondary

structural motifs while the allosteric pathway of hPTP1E shows

more localization around in regions of b1–b2 loop, b2 and b3

strands and the region of b5 strand and the a2 helix, missing the

region of the a1 helix. The differences in the allosteric pathways of

these two PDZs indicate the critical of role of dynamic coupling in

PDZ domains and that differences in residue sequences within the

same fold can lead to different dynamic coupling. Indeed, PDZs

master this to mediate different cellular functions in different parts

of the cell [14]. In addition to that, our PRS analysis indicates that

the allosteric pathway of PSD-95 significantly alters upon removal

of the distal third helix (a3 helix). This indicates that local changes

in the network alter the directionalities of correlated motion,

which may lead to a change in binding affinity [35,42]. Strikingly,

when we incorporate the change in backbone dynamics into the

docking computation through generating multiple conformations

by PRS, we also observe an increase in binding energies upon

removal of the third helix.

Results/Discussion

Our objective is to apply a computational approach, perturba-

tion response scanning (PRS), to identify the network of

dynamically important residues and propose a possible pathway

responsible for intramolecular signaling. As we mentioned earlier,

PRS combines the elastic network model with linear response

theory to compute the residue fluctuation profile of an unbound

conformation upon exerting a random external force on a residue,

and it is shown to be very successful in capturing binding-induced

conformational changes [39]. When a ligand approaches a

receptor, it exerts forces around binding pockets, inducing certain

dynamical changes. Here, we utilize PRS to mimic the nature of a

Author Summary

PDZ domain proteins (PDZs) act as adapters in organizing
functional protein complexes. Through dynamic interac-
tions, PDZs play a key role in mediating key cellular
functions in the cell, and they are linked to currently
challenging diseases including Alzheimer’s, Parkinson’s
and cancer. Moreover, they are associated with allosteric
regulations in mediating signaling. Therefore, it is critical
to have knowledge of how the allosteric transition occurs
in PDZs. We investigate the allosteric response of the two
most studied PDZs, PSD-95 and hPTP1E, using the
perturbation response scanning (PRS) approach. The
method treats the protein as an elastic network and uses
linear response theory (LRT) to obtain residue fluctuations
upon exerting directed random forces on selected
residues. With this efficient and fast approach, we identify
the key residues that mediate long-range communication
and find the allosteric pathways. Although the structures
of PSD-95 and hPTP1E are very similar, our analysis
predicts that their allosteric pathways are different. We
also observe a significant change in allosteric pathways
and a decrease in binding affinity upon removal of the
distal a3 helix of PSD-95. This approach enables us to
understand how dynamic interactions play an important
role in allosteric regulations.

Change in Allosteric Network for PDZ Domains
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binding event by exerting forces on the binding sites of an

unbound conformation. Thus, we analyze the residue response

fluctuation profile upon exerting random forces on binding sites of

unbound conformations and identify the residues showing

distinctive responses (i.e. higher fluctuation than the average

fluctuation response) upon perturbing the residues at the binding

sites. (See Materials and Methods for details.)

Elastic network models (ENMs) are utilized to explore allosteric

behaviors in proteins [43–51]. ENMs are based on a purely

mechanical approach, viewing a protein structure as an intercon-

nected series of springs between interacting residue pairs. They

provide information on equilibrium fluctuations and the various

contributions to those fluctuations from different modes of motion.

Moreover, by introducing a specific perturbation to the system and

measuring its dynamic response, ENMs can provide detailed

information about the energy landscapes, beyond the correlations

between equilibrium fluctuations. To this aim, there are new

modified ENMs developed whereby perturbations are introduced

through modifying effective force constants [49,50], distances

between contacting pairs [52], or both [45–46]. Most of these

analyses are focused on changes in the most functionally related

mode (i.e. usually the slowest modes) upon perturbations.

Although an ENM approach itself, our PRS model differs in

two aspects. First, we introduce perturbations by inserting random

external forces on the nodes of unbound conformations, (i.e. a-

carbons) instead of modifying the distances between pairs of nodes

or spring constants. This enables us to exert external forces on the

binding sites (i.e., random Brownian kicks) and analyze the

residues affected by the perturbation on the binding sites similar to

the natural allosteric regulations where an approaching ligand

induces certain dynamical changes in distal parts of the protein.

Second, PRS uses the entire Hessian matrix to compute the

residue displacement response upon exerting random forces on the

selected residues. The allosteric regulation in small domain

proteins like PDZs can arise through changes in dynamics

[11,14], unlike large conformational changes observed in large

systems such as GroEL [47,50] and myosin [53]. Therefore, more

than one normal mode can contribute to allosteric regulations. In

that respect, the advantage of using the full Hessian matrix in PRS

can induce several related modes upon perturbation at the binding

site.

Identification of critical residues in allosteric regulation of
PDZ interactions

Mutagenesis and NMR relaxation methods demonstrated that a

network of residues exists that has a dynamic response upon ligand

binding in both hPTP1E PDZ2 and PSD-95 PDZ3

[12,19,20,25,36]. Thus, we applied our approach to the unbound

structures of two PDZ domain proteins: hPTP1E (PDB entry:

3LNX) and PSD-95 (PDB entry: 1BFE) and computed the

allosteric response ratio xj for each residue, which is the

normalized average mean square fluctuation response of residue

j upon perturbing only the binding site residues over the mean

square average response of the same residue j obtained by

perturbations on all residues. Thus, the index of allosteric response

ratio x enables us to identify residues that are more sensitive to

perturbation around the binding pocket. Figure 1 presents the

allosteric response ratio profiles of (A) hPTP1E and (C) PSD-95

and the corresponding color-coded ribbon diagrams of these two

proteins. Experimentally identified residues are marked with red

dots. The ribbon diagrams of (B) hPTP1E and (D) PSD-95 are

colored based on the allosteric response ratio, xj, using a spectrum

of red (the highest mean square fluctuation response) to orange,

yellow, green, cyan and blue (the lowest response). The residues

with the highest allosteric response ratio (xj.1.00) are shown as

stick representations. Particularly, those in agreement with the

experimental analysis are labeled. Overall, there is a good

agreement with experimentally identified allosteric residues and

those predicted by our approach. Using xj.1.00 as a threshold

value for the allosteric response ratio, we predicted 6 out of 10

experimentally identified allosteric residues for hPTP1E [25] and

similarly 8 out of 11 for PSD-95 [19] (i.e. the predicted residues

correspond to the peaks in the allosteric response ratio profiles).

We would like to note that we also tested our approach in another

allosteric PDZ domain, SAP97 (PDB entry: 2AWX) which shows

slight conformational change upon binding [18]. Using the same

threshold value for xj.1.00, we were able to distinguish not only

the residues near canonical binding sites but also those distant

from the binding site (Table S1), indicating the predictive power of

PRS in identifying allosteric residues.

To our knowledge, all of previous computational studies

including all-atom molecular dynamics [31,32] and the rotameri-

cally induced perturbation method (RIP) [11] identified certain

critical residues using the previous NMR structure of hPTP1E (See

Table S2 for predictions based on the previous NMR structure by

different methods). Here, we apply our computational approach to

the recently reported high-resolution crystal structure of hPTP1E

PDZ2 [25], indicating that new bound and unbound structures

deviate from previously determined NMR structures of hPTP1E

and there are very minor structural changes in PDZ2 upon peptide

binding.

The previous study of the RA-GEF2 peptide binding to

hPTP1E PDZ2 using NMR relaxation technique identified

residues that have significant changes in their side-chain dynamics

upon peptide binding [20,36]. This study also revealed that there

are two distal surfaces physically linked to the peptide-binding site:

(i) ‘‘distal surface 1 (DS1)’’, which contains residues in the N

terminal of b6 and the anti-parallel b strand formed by b4 and b5

(Val61, Val64, Leu66, Ala69, Thr81, and Val85), and (ii)’’distal

surface 2 (DS2)’’, located next to helix a1, consisting of residues

Ala39 and Val40. In the recent study Zhang et al. [25] identified

10 residues (Ile6, Ile20, Val22, Val26, Val30, Ile41, Val61, Val64,

Val78, Val85) that have significant changes in side-chain dynamics

upon binding both RA-GEF2 and APC peptides to PDZ2. These

identified residues overlap with the findings of their previous study

and they are located in the region of the binding site (Ile20, Val22,

Val26 in the b2 strand, and Leu78 in helix a2), DS1 (Val61, Val64

and Val85), and in DS2 (Ile41). The highest allosteric response

ratios obtained by PRS are also observed for the same residues

except Val26 and Val64 (Figure 1A). Other residues that give high

mean square fluctuation response (xj.1.0) are summarized in

more detail in Table 1, and those which agree with the

experimentally identified ones [25] are highlighted in boldface.

We also construct a two-way contingency table that presents the

pattern matching between the experimentally identified residues

and our prediction by PRS using a Fisher’s exact test. The

resulting p-value of hPTP1E, 2.9E-2, from the test indicates that

there is a statistically significant matching between experiment and

our method (Table S4).

In addition, the residues critical in allosteric pathways are

characterized via statistical coupling analysis (SCA) of an

evolutionary network using a large and diverse multiple sequence

alignment of the PDZ domain family. Using the SCA method,

Lockless and Ranganathan [16] predicted a set of residues within

the family of PDZ domains that communicate signals through the

protein core. When we compare our predictions with those

obtained from SCA, nine residues (Ser17, Ile20, Gly24, Gly25,

Gly34, Ala46, Val61, His71 and Val85) emerge as the residues

Change in Allosteric Network for PDZ Domains
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with high allosteric response ratio (xi) that are in agreement with

the evolutionary network residues of hPTP1E [16,30,54]. The

Fisher’ exact test based on our method and SCA provides a p-

value of 5.0E-4, indicating a high level of agreement. (Table S4).

The residues identified with high allosteric response ratios for

PSD-95 PDZ3 are also in good agreement with double mutant

cycle analysis [19]. The two-way contingency table based on

experiment and method resulted in a high level of pattern

matching, with a Fisher’s exact test p-value of 1.5E-3 (Table S4).

The mutational study of Chi et al. [19] indicates that the three

positions Gly329, Val362, and Ala376 yield significant energetic

coupling interactions with His372. In fact, among these coupling

interactions the interaction between His372 and Val362 show

long-range energetic coupling in the PSD-95 PDZ3 domain. As

shown in Figure 1B, PRS analysis also captures the importance

of the long-range energetic coupling interaction between His372

and Val362 of the PSD-95 PDZ3 domain. In this context, it is

worth noting that studies based on a non-equilibrium perturba-

tion-based molecular dynamics technique, called anisotropic

thermal diffusion (ATD) [22], and the rotamerically induced

perturbation method (RIP) [11,41], also reported a complete

signaling pathway of PDZs including PSD-95. ATD analysis

Figure 1. The allosteric response ratio profiles and ribbon diagrams of hPTP1E and PSD-95. The allosteric response ratio plots as a
function of residue index for (A) hPTP1E PDZ2 (PDB entry: 3LNX) and (C) PSD-95 PDZ3 (PDB entry: 1BFE) along with the ribbon diagrams colored with
respect to allosteric response ratio profiles (B and D). The key residues obtained from recent experimental studies are illustrated with red dots in these
plots. The residues that give the highest mean square fluctuation response upon perturbation of binding pocket residues from PRS are displayed in
the corresponding ribbon diagrams. The residues whose perturbation leads to a high response (xi.1.00 for hPTP1E and PSD-95) are red, whereas
residues with a low response are shown in blue within a color spectrum of red-orange-yellow-green-cyan and blue. The residues that match with
experimentally determined ones are shown in stick representation. In hPTP1E PDZ2, distal surface 1 (DS1) contains residues in the N terminal of b6
and the anti-parallel b strand formed by b4 and b5 (Val61, Val64 and Val85) and distal surface 2 (DS2) located next to helix a1 consists of residues
Val40 and Ile41. The figures were drawn using PYMOL [67].
doi:10.1371/journal.pcbi.1002154.g001
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proposed a signaling pathway between His372 and Ile335 that

passed through Ile327 and Phe325 [22]. RIP analysis has also

shown that some PDZs have more dynamic responses than the

others and this was highly coupled with evolutionary SCA analysis

[11]. The general pattern derived from both perturbation based

MD analyses agreed with that obtained from PRS (See details for

Table S4). The list of residues identified as allosteric residues with

these different methods for these two PDZs is presented in Tables

S2 and S3.

Furthermore, the energetic coupling residues (Gly329, Leu323,

Ile327, His372, Ala376, Gln384) in PSD-95 were also successfully

identified using an ENM-based structural perturbation (SPM)

method [33,47,49,55] based on exploring the propagation of the

response of a local perturbation at a given residue to all other

residues in a given structure. As we mentioned earlier, the basic

premise behind SPM and PRS methods is similar except the

harmonic springs connected to residues are changed by a small

amount in SPM whereas the force is directly applied to residues in

PRS. In addition to that, SPM focuses on changes in the single

mode upon perturbation. It is usually the 1st slowest mode in large

proteins [52]. However, in the case of the small domain protein of

PSD-95, rather than the 1st mode, the 13th and 20th slowest modes

significantly overlap with binding induced fluctuations [33]. On

the other hand, PRS does not use the bound structure. PRS uses

the Hessian of the whole unbound conformation and it

automatically includes the modes that induce a response vector

upon exerting forces on the binding site residues.

Allosteric pathways may differ between different PDZs
due to local changes

By linking the residues involved in allosteric regulations with respect

to their response behavior, we can construct the allosteric pathways

with PRS. PRS enables us to measure the relative directionality

between the responses of a pair of neighboring residues to a

perturbation. (i.e. the alignment of their response vectors). If the

residues collectively move in line, their directionality should be

parallel. After obtaining the directionality of different pairs of residues,

we carry out a systematic analysis of the residues with the highest

allosteric response ratio. For these residues, we search all possible

interactions with a window size of 3 and identify residue pairs that

collectively move in line together. A pathway is constructed by linking

the sequential pairs showing similar directional response upon

perturbation. Each constructed pathway is weighted based on

alignment angles (i.e. directional similarity) between linking residues.

Then we select the pathway with maximum total weight.

By this analysis, the allosteric pathway constructed for hPTP1E
PDZ2 follows through the connections Ser 17 R Val22 R Gly25

R Arg31 R Ile35 R Val61 R Leu64 R Thr70 R Ala74 R

Leu78 R Thr81 R Leu88 (Figure 2A). Interestingly, the residues

Val22, Val61, and Leu78 are located at the critical regions

determined by the mutational analysis [25]. Since the model in the

present study is low-resolution, we identify the residue Val22 that

is near residue Ile20. The experimental mutational analysis

showed that a change at Ile20 resulted in extensive changes in

side chain dynamics while mutations at residues Ile35 and His 71

had a limited response in dynamics. Thus it is concluded that Ile20

might act as a hub that is energetically and dynamically important

for transmitting changes in dynamics throughout the PDZ domain

[36]. When we analyze the directionality preference of this residue

with each residue identified for the most highly weighted pathway,

we find that Ile20 collectively moves together with each of them,

indeed acting as a hub in our dynamic network analysis.

Moreover, the PRS pathway shows a remarkably high similarity

(Ser17, Gly25, Ile35, Val61, His71, and Val75) with the statistical

coupling analysis obtained by Lockless and Ranganathan [16].

As shown in Figure 2B, the most highly weighted pathway for

PSD-95 is obtained through connections Ile314 R Ile327 R
Ile338 R Ala347 R Leu353 R Val362R Leu367 R His372 R
Lys380 R Val386 R Glu396. Interestingly, Val362 [16,19],

Lys380, and Val386 [16] yield significant energetic coupling

interactions with His372 which are confirmed by mutagenesis

studies. While the general pattern of signal propagation predicted

from our method agrees with that inferred from the SCA analysis

[16] there are some differences. The discrepancy between our

model and the two proposed pathways by SCA may result because

SCA analysis investigates the signaling pathway originating from a

single residue, His372. However other residues at the binding

pocket may be important for intramolecular signaling. Our

analysis uses response profiles obtained by sequentially exerting

a random force at a single residue along all the residues at the

binding site. Thus, our approach might lead to the prediction of

extra residues, such as Lys380, that interacts with the peptide and

is near His372. Our model does not include Phe325 in the

allosteric pathway, yet it finds Ile327, which is near residue 325.

Moreover, MD analysis has shown that the mutation of Ile327 to

Val leads to a dramatic signal reduction of Phe325, showing that

position 327 is involved in mediating the signal pathway and

highly linked with Phe325 [22].

Overall, when we compare the allosteric pathways of the two

different PDZs, PSD-95 and hPTP1E, we see a clear difference

(Figure 2C). There are some overlap regions between the two PDZ

domains including residues in the b2 and b3 strands, the loop

between b4 and b5 strands, and the C-terminal of the a2 helix.

However, the predicted allosteric pathway of PSD-95 has a more

homogeneous distribution through N-terminal to C-terminal,

whereas the pathway of hPTP1E seems more localized, especially

Table 1. Residues that give the highest mean square fluctuation response (xj.1.00 for hPTP1E and PSD-95) upon perturbation by
PRS analysis.

Protein Hot Residues

hPTP1E

PRS* based on apo structure (PDB entry = 3LNX) 11, 13, Ser17, 18-19, Ile20, 21, Val22, 23-25, 34-40, Ile41, 45-46, 58-60, Val61,
66, 69, 71, 73-77, Leu78, 79-81, Val85, 87

PSD-95

PRS* based on apo structure (PDB entry = 1BFE) 314, 316, 326-327, Ile328, Gly329, 330, 335-339, Phe340, Ile341, 345-347, 353-356,
358-359, 361, Val362, 367, 370, His372, 375, 379, Val386, 387-389, Ala390

Residues shown in boldface agree with experimentally identified ones.
doi:10.1371/journal.pcbi.1002154.t001
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in regions of b1-b2 loop, b2 and b3 strands and the region of b5

strand and the a2 helix, missing the regions around the a1 helix.

Indeed, the allosteric behavior of Ala347 in the a1 helix has also

been found by SCA [16] and other MD analysis [22]. This

comparison indicates that these two PDZs with similar sequences

and structures have different allosteric behavior, indicating the role

of dynamic coupling in single domain allostery. Thus, slight

changes in the residue network changes dynamic coupling, which

can lead to distinct allosteric paths.

Local structural changes may lead to change in allosteric
response

A recent experimental study [12] provided further support that

allosteric communication can be driven by the network of residue

interactions of PSD-95 without any conformational change. To

investigate this phenomenon, they removed the non-canonical C-

terminal third helix (a3, residues 394-399). Strikingly, removal

lowers the binding affinity 21-fold and has a significant effect on

the internal dynamics of PDZ3, even though it lies outside of the

binding site and does not make direct interactions with the binding

C-terminal peptide (CRIPT) residues.

Using PRS, we also analyzed the truncated PSD-95 structure

and investigated the impact of removal of helix a3 in the allosteric

communication pathway. The most highly weighted pathway of

the truncated structure is presented in Figure 3. Comparison of

the pathway of PSD-95 (Figure 2B) and the truncated one

(Figure 3) computed by PRS remarkably shows that the removal of

the a3 helix significantly alters the allosteric pathway, indicating

Figure 2. Intramolecular signaling pathways of hPTP1E and PSD-95 proposed by the PRS method. (A) The most highly weighted
pathway of hPTP1E follows through connections Ser 17 R Val22 R Gly25 R Arg31 R Ile35 R Val61 R Leu64 R Thr70 R Ala74 R Leu78 R Thr81 R
Leu88. The residues Val22, Ala39, Ile52, Val61 and Leu66 correspond to the residues in the dynamical network determined by experimental study. (B) The
most highly weighted pathway of PSD-95 is obtained through connections Ile314 R Ile327 R Ile338 R Ala347 R Leu353 R Val362R Leu367 R His372
R Ile380 R Val386 R Glu396. (C) Interestingly, these two pathways are clearly different; the predicted allosteric pathway of PSD-95 has a more
homogeneous distribution through N-terminal to C-terminal, whereas the pathway of hPTP1E seems more localized especially in regions of b1-b2 loop,
b2 and b3 strands and the region of b5 strand and the a2 helix. Identified residues in a window size of 3 for the pathway are highlighted in the sequence.
doi:10.1371/journal.pcbi.1002154.g002
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that the interactions responsible in transmitting intramolecular

signals are being lost upon truncation of helix a3. For the

truncated PSD-95 structure, the most highly weighted pathway

has been identified through connections Ile314 R Ile 327 R
Glu334 R His372 R Lys380 R Ile388, which is shown in

Figure 3. Some of the interactions specifically located in the a1

helix and the loop between the b4 strand and the a2 helix

predicted for the full PSD-95 were lost after removal of the a3

helix. Qian and Prehoda [37] showed that truncation of a portion

of the a3 helix modulates and initiates the binding of Dlg to the

localization protein GukHolder. Therefore, it is reasonable to say

that this non-canonical a3 helix has a significant biological role in

this allosteric regulation and the fact that the a3 helix is involved in

the allosteric pathway obtained by PRS supports this.

In our recent work, we analyzed the dynamics of PDZs showing

different binding specificities and showed that we can discriminate

the binding specificity of PDZs based on their dynamics [35].

Within this picture, it is not surprising to see a change in binding

affinity of PSD-95 upon truncation of the distal helix a3, because

this leads to a change in dynamics. In order to investigate this any

further, we also investigate the changes in the binding affinity

upon removal of the a helix using docking techniques where we

incorporate the changes in dynamics of PSD-95 into docking.

Investigating the changes in the binding affinity upon
removal of the helix a3 of PSD-95 using docking
methodology

Computational docking methods are commonly used to identify

the correct conformation of ligand-bound proteins along with their

binding energy. However, docking algorithms predict incorrect

binding modes or energies for about 50–70% of all ligands when

the receptor is kept in a single conformation [56]. This is especially

critical for PDZ whose dynamics play a key role in peptide binding

specificity [35]. Some docking methods also incorporate the side

chain flexibility of the receptor around binding pockets [57–60]. In

our previous study [42], we incorporated the backbone flexibility

of PDZs by generating multiple receptor conformations through

restrained-replica exchange molecular dynamics (REMD) runs

where the restraints are obtained by binding-induced elastic

network modes. In this present study, we first generate multiple

receptor conformations using the response vectors obtained upon

perturbation of each residue via PRS. This provides us more

computational efficiency in exploring conformational space. Then,

we dock these multiple receptor conformations of PSD-95 and the

truncated one against its native peptide (CRIPT) using Rosetta-

Ligand [58,60]. RosettaLigand is docking software that computes

the best-docked pose through a Monte Carlo minimization

procedure in which the rigid body position and orientation of

the small molecule and the protein side-chain conformations are

optimized simultaneously. The lowest binding energy scores and

corresponding peptide RMSDs of PSD-95 and the truncated third

alpha helix of PSD-95 structures interacting with the CRIPT

peptide are summarized in Table 2 for two different docking cases,

(i) using only bound crystal structure (PDB code:1BE9) and (ii)

using ensemble of structures obtained by applying PRS to the

crystal structure. We cannot see this difference in binding affinities

when we perform single receptor docking by using only the full

and a3 helix truncated forms of the crystal structure. When we use

PRS generated multiple receptor conformations to predict binding

Figure 3. Intramolecular signaling pathway for PSD-95 with truncated third alpha helix predicted by the PRS method. We obtain the
allosteric pathway for the truncated PSD-95 through connections Ile314 R Ile 327 R Glu334 R His372 R Ile380 R Ile388. However, the predicted
allosteric pathway of full PSD-95 is different. The interactions specifically located in the a1 helix predicted for the PSD-95 were lost after removal of the
a3 helix.
doi:10.1371/journal.pcbi.1002154.g003
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energies of PSD-95 and the truncated one, we find that the

binding energy increases upon truncation of the C-terminal third

alpha helix (a3 helix) as also observed experimentally [12]. This

analysis indicates that the residue networks and their related

dynamics indeed play a key role in binding affinities of PDZ. Our

PRS analysis suggests that the significant change in the dynamics

pathway of residue communication, caused by truncation of the a3

helix, leads to a change in binding affinity of its native peptide.

Allosteric responses in PDZs usually arise, because a perturba-

tion at one site is transferred to the distal part of the protein

through a network of residue communications. Here we

investigate how the perturbation of a residue at the binding site

is transferred through the dynamics of the residue network

interactions. Thus we investigate the allosteric response of the two

most investigated PDZs, PSD-95 and hPTP1E using our low

resolution dynamics approach PRS. PRS is based on ENM where

it uses only the topology of the given structure, and then using

linear response theory, it computes the response fluctuation vector

of each residue in the chain upon exerting a random force on a

single residue. Using PRS, we compute the allosteric response

ratio for each residue, which is the normalized average mean

square fluctuation response upon perturbation. Most of the

residues that are identified experimentally as residues in allosteric

pathways indeed show high allosteric response ratios, indicating

the consistency and usefulness of the PRS method for extracting

the residues in the signaling pathway. Since PRS not only gives the

mean square fluctuation of the response but also its directionality,

we construct the allosteric pathway by linking the residues aligning

in the same direction upon perturbations. Interestingly, our

analysis has shown that the allosteric pathways of PSD-95 and

hPTP1E are distinctively different from each other, despite the fact

that they have similar structures. Likewise, we also observe a

significant change in the allosteric pathway upon truncation of the

distal a3 helix of PSD-95. Moreover, our flexible docking analysis

where we generate an ensemble of multiple receptor conforma-

tions by PRS shows an increase in binding energy upon

truncation. Overall, these results strongly suggest that local

changes in residue network interactions can lead to changes in

dynamics in allosteric regulations and various PDZs grasp to

mediate different functions in the cell.

Materials and Methods

Benchmark
We analyze unbound structures of hPTP1E (3LNX) [25] and

PSD-95 (1BFE) [61] in this study. The backbone root mean square

deviation (RMSD) between hPTP1E and PSD-95 structures is

1.89 Å, while the sequence identity between pairs is only 36%.

The all-atom RMSD between unbound and bound structures of

PSD-95 is 1.13 Å (backbone RMSD = 0.73 Å) while that of

hPTP1E is 1.03 Å (backbone RMSD = 0.46 Å).

Perturbation Scanning Response (PRS) model
PRS is based on sequentially exerting directed random forces on

single-residues along the chain of the structure and recording the

resulting relative displacements of all the residues using LRT. The

model views a protein structure as a three-dimensional elastic

network. The nodes of the elastic network are Ca atoms of each

residue where identical springs connect the interacting a-carbons

in their native fold. In all elastic network models (ENMs), all

residue pairs are subject to a uniform, single-parameter harmonic

potential if they are located within an interaction range, or cutoff

distance, rc. The major drawbacks of using cutoff distances are: (i)

they are generally taken arbitrarily and (ii) their optimal values

vary for different proteins [62,63]. Instead of using any arbitrary

cutoff distance, the interaction strength between all residue pairs

can be weighted by the inverse of the square distance of their

separation [63,64]. We modify PRS by applying the concept of

inverse square dependence for the interactions between residue

pairs [63,64] and introducing specificity between bonded and non-

bonded interactions [35]. We tested the modified version on

previously analyzed [39] 25 unbound protein structures that make

various conformational changes upon bindings, and the results

showed that the modified version successfully captures these

conformational changes.

The free-body diagram of the central Ca atom of each sphere

exhibits all of the pairwise interaction forces generated by the

coordinating Ca atoms as schematically illustrated in Figure 4A.

Each Ca atom must be in equilibrium under the action of

interaction forces in the absence of external forces. The sum of

forces on residue i along the x-, y-, and z-directions must be equal

to zero under native state conditions,

X
i

fij cos ax
ij~

X
i

fij Xi{Xj

� �
=rij

X
i

fij cos ay
ij~

X
i

fij Yi{Yj

� �
=rij

X
i

fij cos az
ij~

X
i

fij Zi{Zj

� �
=rij

ð1Þ

where fij is the internal force on site i due to its interaction site j,

ax
ij ,. is the angle between the x axis and the line of action of fij, rij is

the instantaneous separation vector between sites i and j and Xi, Yi

and Zi are the components of the instantaneous position, Ri. The

force balance can be generalized to the complete set of N sites (i.e.

sites are Ca atoms of a protein) and M interactions (i.e. an

interaction between any two Ca atoms is determined if the

distance between two Ca atoms is less than the cut-off distance) as

B½ �3NxM Df½ �Mx1~ 0½ �3Nx1 B½ �3NxM Df½ �Mx1~ 0½ �3Nx1 ð2Þ

where B is the directional cosine matrix.

Table 2. Docking of native peptide (CRIPT) to bound structures and the best clustered one obtained from PRS.

PSD-95 Truncated PSD-95

Docking Approach
ERosetta

(kcal/mol)
EDrugscore

(kcal/mol) RMSD (Å)a
ERosetta

(kcal/mol)
EDrugscore

(kcal/mol) RMSD (Å)a

Single crystal structure -13.69 -299.87 0.47 -12.06 -298.27 0.41

Ensemble docking with PRS -16.35 -302.03 0.47 -14.84 -295.91 0.32

aRMSD values between the top scoring pose in Ångstroms measured over all heavy atoms of the peptide and the peptide’s position in the crystal structure.
doi:10.1371/journal.pcbi.1002154.t002
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If there are external forces acting on a set of residues of the

folded structure as shown in Figure 4B, the force balance of the

complete set of N sites and M interactions takes the following

form:(DOC)

B½ �3NxM Df½ �Mx1~ DF½ �3Nx1 ð3Þ

where Df is the residual interaction forces and DF is a 3Nx1

vector containing the external force components at each residue.

The native structure may undergo conformational changes about

the equilibrium state under the action of these forces. During this

process, the positional displacements DR and the bond

deformations Dr are geometrically compatible. The relation

between the positional displacement vector and the bond distance

is given by

B½ �TMx3N DR½ �3NxM~ Dr½ �Mx1 ð4Þ

where [B]T is the transpose of B.

Within the scope of an elastic network of residues that are

connected to their neighbors with springs, the interaction forces,

Df, are related to the bond distance through Hooke’s law by

Df½ �Mx1~ K½ �MxM Dr½ �Mx1 ð5Þ

where the coefficient matrix K is diagonal. Although the entries of

K are taken to be equivalent in the original method [38], we

introduce two different spring constants for the residue interaction

network for bonded and non-bonded interactions, cb and cnb. The

spring constant of the bonded part (cb) is taken as 1. For the non-

bonded part (cnb), the interactions between residue pairs i and j are

weighted by the inverse square of the distances, rij (as 8/rij
2).

Moreover, the work done by the external forces DF is equal to

the work done by the internal forces Df so substituting Equations

(4) and (5) into Eq. (3), we obtain

DF½ �3Nx1~ B½ �3NxM K½ �MxM B½ �TMx3N

� �
DR½ �3Nx1 ð6Þ

Let’s note that the term B½ �3NxM K½ �MxM B½ �TMx3N

� �
in Eq.(6) is

also equivalent to the Hessian (H) [65].

On the other hand, one may choose to perturb a single residue

or a set of residues, and calculate the response of the residue

network through,

DR½ �3Nx1~ B½ �3NxM K½ �MxM B½ �TMx3N

� �{1

DF½ �3Nx1 ð7Þ

or

DR½ �3Nx1~ H½ �3Nx3N

� �{1
DF½ �3Nx1

where the DF vector contains the components of the externally

applied force vectors on the selected residues.

Finding allosteric binding sites
In this study, first we apply a force as a unit vector on residue i

along 7 directions (i.e. in x-, y-, z-, both x- and y-, both x- and z-,

both y- and z-, all x, y, z directions. Then, we build a perturbation

response matrix that includes average displacement DR for each

residue j due to a force applied on residue i,

ANxN~

DR1
�� �� DR2

�� �� : : DRN
�� ��� �

1

DR1
�� �� DR2

�� �� : : DRN
�� ��� �

2

:

:

DR1
�� �� DR2

�� �� : : DRN
�� ��� �

N{1

DR1
�� �� DR2

�� �� : : DRN
�� ��� �

N

2
6666666664

3
7777777775

ð8Þ

where the magnitude of positional displacements for residue j in

response to a perturbation at residue i is defined as,

DRi
�� ��

j
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DRi

x � DRi
x

� �2
z DRi

y � DRi
y

� �2

z DRi
z � DRi

z

� �2

r
ð9Þ

In order to predict which residues are critical in allosteric

pathways, we distinguish the residues exhibiting significant fluctua-

tion upon perturbation on binding site residues. Therefore, we define

an index called the allosteric response ratio, xj for each residue, which

is the ratio of average fluctuation response of the residue j upon

perturbations placed on binding site residues to average response of

residue j upon perturbations on all residues, shown as:

xj~

XNBPm

i~NBP1

Aij

NBP

0
BBBBB@

1
CCCCCA
=

XN

i~1

Aij

N{1

0
BBBB@

1
CCCCA ð10Þ

where Aij is the response fluctuation profile of residue j upon

perturbation of residue i. The numerator is the average mean square

fluctuation response obtained over the perturbation of the binding

pocket (BP) residues, whereas denominator is the average mean

square fluctuation response over all residue perturbation. Thus, NBP

is the number of residues in the binding pocket and NBP1 and NBPm

correspond to residue indexes in the binding pocket (residues 320-328

and 371-380 for PSD-95 and residues 16-23 and 70-79 for hPTP1E).

To identify the critical residues in the allosteric pathway, for each

residues we compute xj in each perturbed direction and take into

account of the maximum value of xj. Then, we sort out all xj and

select the residue positions by setting a threshold of 1.0 or better. To

understand how the sensitivity and specificity change, we predict the

allosteric residues by varying the threshold of response ratio lower or

higher than 1.00. We found that taking a threshold value lower than

1.0 gives same experimentally identified allosteric residues to ones

obtained by using xj.1.00 as a threshold value (Table S5).

We should note that the procedure has been also repeated using

several random directions, rather than the 7 directions and we

observed that our predictions do not change significantly. The

schematic representation showing how we identify allosteric

binding sites can be found in Figure 4C.

Essential dynamics analysis
While PRS is a residue-based low-resolution approach, the

essential dynamics analysis [66] is carried out on all-atom

molecular dynamics (MD) trajectories to support the validity of

the methodology. The details of the analysis are explained in Text

S1. The comparison of residues that give the highest mean square

fluctuation response (xj.1.00 for PSD-95) upon perturbation with

respect to the coarse-grained approach and the essential dynamics
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analysis is presented in Table S6. Overall, 82% of predicted

residues from the essential dynamics analysis of all-atom MD

trajectories are the same as those obtained by our low-resolution

model (see Text S1 for more details). Moreover, the residues found

by the coarse-grained approach that do not overlap with those of

the all-atom approach are sequentially in close proximity to the

residues identified by both approaches.

Determination of pathways
PRS can be used to measure the degree of collectivity of the

response of a group of neighboring residues to a perturbation on

any residue. This enables us to construct an allosteric pathway

through linking those residues showing similar response upon

perturbations of the binding site.

To understand the nature of the response, the submatrix of

residue k in response to perturbations in i from the inverse of the

Hessian (See Equation 7) matrix can be decomposed into its

eigenvalues and eigenvectors:

H{1
� 	ki

3x3
~U3x3^3x3UT

3x3 ð11Þ

If the residues collectively move in line they have a single

dominant eigenvalue and their corresponding eigenvectors should

Figure 4. The Perturbation Scanning Response (PRS) method. (A) The free-body diagram of the central Ca atom of each sphere exhibits all of
the pairwise interaction forces generated by the coordinating Ca atoms. In the absence of external forces acting on the system, each Ca atom must be in
equilibrium under the action of interaction forces. (B) Under an external force applied on residue j, DFj, the residues change their original locations
(shown in black dots in Figure 4A) in space. (C) Algorithm displaying the procedure used for predicting allosterically linked residues using PRS.
doi:10.1371/journal.pcbi.1002154.g004

Change in Allosteric Network for PDZ Domains

PLoS Computational Biology | www.ploscompbiol.org 10 October 2011 | Volume 7 | Issue 10 | e1002154



be parallel, indicating that they move cooperatively in the same

direction. Therefore, to compare if the responses of two residues

are same, we check the dot product of their corresponding

eigenvectors,

u
k1i

1
:u

k2i

1 ~ cos h&1 ð12Þ

where h is the angle between the two eigenvectors. After obtaining

the directionality of different pairs of residues upon perturbations

on the binding site, we carry out a systematic network analysis

using only the residues that give the highest fluctuation response

upon perturbation. For these identified residues, we use a window

size of 3 (i.e. if the residue 320 shows the highest mean square

fluctuation response, the residues 319, 320, and 321 are taken into

account), and search extensively to find residue pairs in sequence

that move collectively upon perturbation. To this aim, we first

calculate the overlap coefficients of the residue pairs by using the

dot product of response vectors (Eq. 12). Using a cut off value of

0.98, we find the residue pairs that move in the same direction.

Importantly, this means we identify the residue pairs showing also

a high allosteric response ratio. We then perform an extensive

search by generating all possible pathways through connecting

these identified residue pairs and weight each pathway with the

product of overlap coefficients. As an example, the predicted

allosteric residue containing 314 in PSD-95 has the highest overlap

coefficient with residue 327 with a value of 0.99. Then residue 327

has also very high overlap coefficient (with a value of 0.98) with

residue 338. We then construct a pathway Ile314RIle327RIle338

which gives a total weight of 0.99x0.98 = 0.97. After exhaustive

construction of all possible pathways we select the pathway with

maximum total weight.
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