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Abstract

Double subgenomic Sindbis virus (dsSINV) vectors are widely used for the expression of proteins, peptides, and RNA
sequences. These recombinant RNA viruses permit high level expression of a heterologous sequence in a wide range of
animals, tissues, and cells. However, the alphavirus genome structure and replication strategy is not readily amenable to the
expression of more than one heterologous sequence. The Rhopalosiphum padi virus (RhPV) genome contains two internal
ribosome entry site (IRES) elements that mediate cap-independent translation of the virus nonstructural and structural
proteins. Most IRES elements that have been characterized function only in mammalian cells but previous work has shown
that the IRES element present in the 59 untranslated region (UTR) of the RhPV genome functions efficiently in mammalian,
insect, and plant systems. To determine if the 59 RhPV IRES element could be used to express more than one heterologous
sequence from a dsSINV vector, RhPV 59 IRES sequences were placed between genes for two different fluorescent marker
proteins in the dsSINV, TE/392J/mcs. While mammalian and insect cells infected with recombinant viruses containing the
RhPV sequences expressed both fluorescent marker proteins, only single marker proteins were routinely observed in cells
infected with dsSINV vectors in which the RhPV IRES had been replaced by a luciferase fragment, an antisense RhPV IRES, or
no intergenic sequence. Thus, we report development of a versatile tool for the expression of multiple sequences in diverse
cell types.
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Introduction

Alphaviruses (family Togaviridae) have a positive strand, non-

segmented, RNA genome ,12 kilobases (kb) in length. The first

two-thirds of the genome encode the nonstructural or replicase

proteins, while the 39 one-third encodes the structural proteins. In

the infected cell, the 49S genomic RNA serves both as mRNA for

the translation of the nonstructural proteins and as a template for

synthesis of full-length minus strand RNA copies [1]. The structural

proteins are translated from the subgenomic 26S mRNA, which is

transcribed from an internal promoter present in the minus strand

RNA [1]. This genome structure and replication strategy is

amenable to the construction of expression vectors.

Replication and packaging competent alphavirus vectors have

been developed by duplicating the subgenomic RNA promoter

element in the genome [2,3]. Heterologous sequences can be

expressed as an additional subgenomic RNA transcribed from the

duplicated promoter. Double subgenomic alphavirus vectors have

several advantages as transient expression systems. These include a

tremendously broad host range (e.g. vertebrates and invertebrates),

routine construction and manipulation with standard recombinant

DNA techniques, and high level expression of proteins, peptides,

and RNA sequences [2]. However, expression levels typically

diminish with virus passage because of instability in the region of

the genome containing the duplicated promoter and heterologous

sequence [3,4]. The utility of alphavirus vectors is also limited by

an inability to express more than a single exogenous gene or

sequence from the subgenomic promoter. This has previously

been addressed by inserting the foot-and-mouth disease virus

(FMDV) 2A protein between the N-terminal capsid and PE2

glycoprotein encoded in the 26S mRNA [5]. The alphavirus

capsid protein autoproteolytically cleaves itself from the structural

polyprotein [6]. The 20 amino acid FMDV 2A sequence mediates

self-processing through a proposed ribosomal-skip mechanism [7].

Thus, a 2A fusion protein located at this position in the viral

genome can be expressed as a discrete product from the structural

polyprotein [5]. Although a protein expressed from the duplicated

subgenomic promoter will be in native form, the other protein is

always expressed in conjunction with the FMDV 2A peptide

sequence [5]. This limits the usefulness of these vectors for some

applications, not least of which is the expression of proteins that

exhibit reduced bioactivity as fusion products.

An alternative mechanism for achieving the expression of more

than one protein from a single mRNA is the insertion of a viral

internal ribosome entry site (IRES) element between the two open

reading frames (ORFs). An IRES directs a cap-independent
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mechanism of protein synthesis and therefore efficient expression

of both ORFs can be achieved. IRES elements found within the 59

untranslated regions (UTRs) of picornavirus genomes have been

extensively studied for this purpose and are able to direct efficient

translation of a downstream ORF within a discistronic mRNA

within mammalian cells [8]. As such, much interest has been

focused on the use of picornavirus IRES elements in protein

expression systems. While these elements have been effectively

used in alphavirus expression systems, the mammalian picorna-

virus IRES elements do not function efficiently in insect cell

systems [9,10,11]. This limits the usefulness of alphavirus

expression systems in dipterans (fruit flies and mosquitoes) and

lepidopterans [12,13,14]. Here, we have employed an IRES

element found within the genome of Rhopalosiphum padi virus

(RhPV), a virus belonging to the Dicistroviridae family. These insect

viruses share many characteristics with the Picornaviridae but they

possess a dicistronic genome, each ORF preceded by an IRES

element. However, the function and structure of these IRES

elements is very distinct [15]. Unlike the picornavirus IRES

elements, the IRES element found within the 59 UTR of the

RhPV genome functions efficiently in insect, mammalian, and

plant systems [11,16,17]. Further, its utility within a baculovirus

protein expression system [18] and a bunyamwera virus replicon

system [19] has previously been demonstrated.

Thus, the ability of the RhPV 59 IRES element to function in

insect cells prompted us to assess its ability to initiate translation of

a native protein from subgenomic transcripts expressed from the

double subgenomic Sindbis virus (dsSINV) vector, TE/392J virus

[3]. We report high level expression of multiple heterologous

sequences from recombinant dsSINV vectors containing the

RhPV 59 IRES element in both insect and mammalian systems,

validating the use of this IRES in alphavirus expression vectors.

Materials and Methods

Plasmid construction
Virus constructs were generated from a modified pTE/392J [3]

in which a multiple cloning site (mcs) had been added [20]. The

coding sequence for Aequorea coerulescens green fluorescent protein

(AcGFP) or Discosoma red fluorescent protein (DsRed) was inserted

into the AscI and PacI sites of pTE/392J/mcs. RhPV 59 IRES

element sequences were amplified from the previously described

pGEM-CAT/RhPVD1/LUC plasmid [11]. These sequences

were subcloned into a pSLfa plasmid [21], previously modified

by digestion with BamHI and BglII, followed by ligation of the

compatible ends to remove both restriction sites. RhPV 59 IRES

sequences (in sense or antisense orientation) or other intergenic

sequences were amplified and inserted, along with the AcGFP or

DsRed ORFs, into the XhoI and StuI sites of the modified pSLfa.

The RhPV IRES/reporter and control/reporter constructs were

then excised from PacI and SphI restriction sites in pSLfa (added

into the plasmid by the primer sequences used in the previous step;

Figure 1. Recombinant viruses generated from pTE/392J/mcs.
The complete 59 UTR of the RhPV genome containing the IRES element,
(A) D1, or a truncated 59 UTR, (B) D200, was inserted between the
Aequorea coerulescens green fluorescent protein (GFP) or Discosoma red
fluorescent protein (DsRed) ORFs, downstream from the second
subgenomic promoter of TE/392J. (C) A third construct reversed the
order of GFP and DsRed in relation to the D1 sequence. Virus constructs
containing a fragment of the (D) firefly luciferase (LUC) gene, (E) the D1
sequence in the antisense orientation, or (F) a construct lacking any
intergenic sequence between GFP and DsRed served as negative
controls. Vertical arrows denote the location of stop codons in reporter
gene ORFs.
doi:10.1371/journal.pone.0013924.g001

Figure 2. Growth of recombinant dsSINV constructs in BHK-21
(A) or C6/36 (B) cells. Infections were done in triplicate at an MOI of
0.05. Culture supernatant was harvested every 12 hours and virus titers
determined by plaque assay. Errors bars indicate one standard deviation
among three replicates at each time point.
doi:10.1371/journal.pone.0013924.g002

Alphavirus RhPV IRES Vectors
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Table S1). The excised fragments were ligated into the PacI and

SphI sites of either pTE/392J/GFP or pTE/392J/DsRed. This

gave rise to the recombinant viruses dsSINV/GFP-D1DsRed,

dsSINV/GFP-D200DsRed and dsSINV/DsRed-D1GFP contain-

ing the RhPV 59 IRES element in the sense orientation between

the two ORFs, dsSINV/GFP-revD1DsRed containing the IRES

element in the antisense orientation, and dsSINV/GFP-

DLUCDsRed and dsSINV/GFP-DsRed containing no IRES

element (Fig. 1). All PCR amplifications were performed with

PlatinumH Pfx polymerase (Invitrogen). A complete list of the

primer sequences used in the construction of recombinant viruses

is provided in Table S1.

Cells and viruses
Aedes albopictus mosquito (C6/36), baby hamster kidney (BHK-

21), and African green monkey kidney (Vero) cells were obtained

from ATCC. Cells were maintained in DMEM supplemented with

penicillin, streptomycin, L-glutamine, and 10% fetal bovine serum

at 37uC (BHK-21 and Vero cells) or 28uC (C6/36 cells).

Recombinant viruses were rescued as described previously [22].

Figure 3. IRES-directed expression of DsRed in cells. (A) BHK-21 or (B) C6/36 cell monolayers were infected in triplicate with recombinant
dsSINV constructs. Pictures were taken at 106 magnification using a Zeiss Axiovert epi-fluorescence microscope. White light pictures show
monolayer confluency at (A) 3 and (B) 4 dpi (upper panels). GFP-specific fluorescence indicates cap-dependent translation of the first ORF (middle
panels). DsRed-specific fluorescence indicates 59-end-independent translation directed by the RhPV 59 IRES element (lower panels).
doi:10.1371/journal.pone.0013924.g003

Alphavirus RhPV IRES Vectors
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Virus titers were determined in triplicate by plaque assay on Vero

cell monolayers.

Infection of cells and mosquitoes
Cells were grown in 25 cm2 tissue culture flasks, washed and

infected with virus at a multiplicity of infection (MOI) of 0.05.

Virus stocks were diluted with DMEM, placed on cells, and rocked

for one hour at RT. After one hour the inoculum was removed,

cells were washed three times with PBS, and fresh medium added

to each flask. Aliquots (300 ml) of the culture supernatant were

taken every 12 hours, and virus titers were determined by plaque

assay. Mosquito colonies were reared at 28uC, 70% relative

humidity, with a photoperiod of 14 hours light/10 hours dark.

One to two day old female white-eyed Aedes aegypti (khw) were

injected with a suspension of recombinant virus (,500 pfu/

mosquito) and examined with a Leica MZ-16FL stereofluores-

cence microscope for eye-specific fluorescence at 1, 2, 3, 4 and

7 dpi.

Virus stability was assessed by plaque assay as described

previously [4]. In addition, viral RNA was analyzed by Northern

blot using standard procedures. Probes were generated with the

MegaprimeTM DNA Labeling System (Amersham) from a

fragment spanning the XbaI and XhoI sites of pTE/392J/mcs.

Western blots
Mosquito cells were infected with recombinant viruses at an

MOI of 1, as described above. Examination of the cells for GFP-

specific fluorescence confirmed that infection was near 100%.

Cells were counted (1.56106) and lysed in 750 ml of 26 SDS

loading dye (Novagen). Recombinant AcGFP standards (Clontech)

and cell lysates were analyzed by 10% SDS-PAGE, and proteins

transferred to a 0.45 mm nitrocellulose membrane using a Mini-

PROTEANH3 system (Biorad). Ponceau S (Sigma) staining was

used to confirm complete transfer of samples to the membrane, as

well as equal loading. Membranes were probed with a mouse anti-

AcGFP monoclonal primary antibody (Clontech) as per the

manufacturer’s instructions, followed by a goat anti-mouse

horseradish peroxidase conjugate (Calbiochem) as per the

manufacturer’s instructions. Fluorescence was detected with

ECL Plus (Amersham) on a Storm 840 phosphorimager (GE

Healthcare), and quantified with ImageQuant software (GE

Healthcare). For protein quantification, samples of unknown

GFP concentration were loaded in triplicate along with the GFP

standards of known concentration. The amount of GFP in the

unknown samples was then determined from standard curves

generated from the known quantities of GFP.

Results

Expression of multiple heterologous proteins from
recombinant dsSINV vectors

The complete 579 nt 59 UTR of the RhPV genome containing

the IRES element, RhPVD1 [11], was inserted between the GFP

and DsRed coding sequences, downstream from the second

subgenomic promoter of the dsSINV, TE/392J (Fig. 1A). Because

it has been postulated that the stability of heterologous sequences

in double subgenomic alphavirus vectors is inversely related to size

[2,3], a second dsSINV construct was generated that contained a

fragment of the RhPV 59 UTR lacking the 59 200 nt (RhPVD200,

Fig. 1B). The RhPVD200 fragment has previously been shown to

function efficiently as an IRES element [16]. A third construct

reversed the order of GFP and DsRed in relation to the RhPVD1

sequence (Fig. 1C). Virus constructs containing a fragment of the

firefly luciferase (LUC) gene (Fig. 1D), the RhPVD1 sequence in

the antisense orientation (Fig. 1E), or a construct lacking any

intergenic sequence between GFP and DsRed (Fig. 1F) served as

negative controls.

Initial characterization of recombinant viruses consisted of

growth analysis. The growth of recombinant virus containing only

GFP (total insert size of 745 nt) was comparable to that of dsSINV

containing no insert, in both mammalian (BHK-21) and mosquito

(C6/36) cells (Fig. 2A and B). The addition of DsRed and either

the full-length or truncated RhPV 59 UTR to the GFP sequence

already present (total insert size of 2029 nt for RhPVD1 or

Figure 4. Cap- and IRES- dependent GFP expression levels in
mosquito cells. (A) Detection of GFP by Western blot in uninfected
C6/36 cells (lane 1), C6/36 cells infected with dsSINV/GFP (lane 2),
dsSINV/DsRed (lane 3), dsSINV/GFP-D1DsRed (lane 4) or dsSINV/DsRed-
D1GFP (lane 5) at 3 dpi. A 25 kDa ladder is shown (lane L). The total
amount of GFP present in 30 ml of cell lysate was determined from
standard curves generated from known concentrations (grey diamonds)
of recombinant GFP (Clontech). (B) C6/36 cells infected with dsSINV/
GFP-D1DsRed. Black triangle indicates the amount of GFP produced by
cap-dependent translation (35.15 ng). (C) C6/36 cells infected with
dsSINV/DsRed-D1GFP. Black triangle indicates the amount of GFP
produced by IRES-dependent translation (2.88 ng). Errors bars indicate
one standard deviation among three replicates.
doi:10.1371/journal.pone.0013924.g004

Alphavirus RhPV IRES Vectors
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1829 nt for RhPVD200), decreased virus production by approx-

imately ten-fold in both cell types (Fig. 2A and B). This may have

been due to reductions in packaging efficiency, as the total viral

genome size in these constructs may be approaching the upper

limit of the virion’s packaging capacity [2,3]. Regardless of the

exact mechanism for the reduced number of plaque forming units

(pfu) produced in each cell type, viruses containing RhPV

sequences still replicated to relatively high levels in both cell

types. These viruses reached similar peak titers of ,6.7 log10 pfu/

ml in BHK-21 cells, and ,8.7 log10 pfu/ml in C6/36 cells (Fig. 2A

and B).

To evaluate the ability of the RhPV 59 IRES to direct cap-

independent translation in the context of an alphavirus sub-

genomic mRNA transcript, cells infected with recombinant

dsSINV constructs were analyzed for the expression of fluorescent

reporter proteins. Cap-dependent translation from dsSINV

subgenomic transcripts was monitored by GFP expression, while

IRES-dependent initiation was monitored by the expression of

DsRed. As expected, all of the recombinant dsSINV vectors

expressed GFP in both BHK-21 (Fig. 3A) and C6/36 (Fig. 3B)

cells. However, efficient expression of DsRed was only observed in

cells infected with viruses containing the RhPVD1 or RhPVD200

sequences in the sense orientation (Fig. 3A and B). RhPVD1-

directed expression of DsRed over multiple time points is shown in

Figure S1. Little or no DsRed expression was observed in cells

infected with viruses lacking any intergenic sequence between the

two reporter proteins (Fig. 3A and B). Similarly, cells infected with

viruses containing the antisense RhPVD1 sequence, or LUC

fragment in the intergenic region, also exhibited almost no DsRed-

specific fluorescence (Fig. 3A and B). Internal initiation of

translation directed by the RhPVD1 sequence was determined to

be approximately 12 times less efficient than cap-dependent

initiation of translation in dsSINV-infected C6/36 cells at three

days post-infection (Fig. 4). By three days post-infection, cells

infected with dsSINV/GFP-D1DsRed (cap-dependent translation)

had accumulated ,1.316107 molecules of GFP per cell, while

those infected with dsSINV/DsRed-D1GFP (IRES-dependent

translation) accumulated ,1.076106 molecules per cell (Fig 4B

and C).

Several studies have successfully employed alphavirus vectors to

express heterologous proteins or silence genes in a range of

medically important mosquito vector species [4,13,23,24,25]. To

determine the utility of dsSINV vectors containing RhPV IRES

elements in a mosquito, adult white-eyed Aedes aegypti were injected

with each recombinant virus. As expected, all of the recombinant

dsSINV vectors expressed GFP in the eyes of infected mosquitoes

(Fig. 5). However, expression of DsRed was only observed in the

eyes of mosquitoes infected with viruses containing the RhPVD1

or RhPVD200 sequences in the sense orientation (Fig. 5 and Table

S2). Thus, we conclude that the RhPV 59 IRES element can

efficiently initiate 59-end-independent translation of dsSINV

subgenomic mRNA transcripts in both mammalian and insect

host systems.

Stability of recombinant dsSINV vectors containing the
RhPV 59 IRES sequences

Repeated passage of double subgenomic alphavirus vectors

containing heterologous sequences generally results in the

appearance of deletion mutants no longer expressing any

functional insert [4]. However, recombinant dsSINV vectors

containing heterologous sequences .2 kb tend to be less stable

than those with smaller inserts [2,3]. Deletion variants appear to

arise more readily when a larger insert is present, and can

represent a substantial portion of the total virus recovered even

from an initial transfection [3]. Because this fraction increases with

passage [4], deletion variants generally become a larger portion of

the total virus population more rapidly when viruses contain larger

inserts.

To assess the stability of dsSINV constructs containing RhPV

IRES elements, recombinant viruses expressing GFP (Fig. 1A and

B), with or without DsRed and associated IRES sequences, were

serially passaged in mammalian and insect cells. Plaque assays

were used to determine total virus titers and ‘‘GFP-expressing

virus’’ titers after each passage. While total virus titers remained

relatively constant after each passage (ranging between 7.8–

8.4 pfu/ml in BHK-21 cells and 8.7–9.4 pfu/ml in C6/36 cells),

the ‘‘GFP-expressing virus’’ titers of all recombinant vectors

declined with passage (Fig. 6). Nevertheless, the percentage of total

virus that expressed GFP did not differ significantly between

viruses, with or without DsRed and the associated IRES element,

after one passage in either cell type (p-values $ 0.14; One-Way

ANOVA). However, comparison at subsequent passages revealed

increasingly significant differences (p-values # 0.02), indicating the

presence of a greater number of deletion variants in the viruses

containing larger inserts. These observations do not appear to be

Figure 5. IRES-directed expression of DsRed in mosquitoes. Aedes aegypti were injected with recombinant dsSINV constructs and pictures
were taken 3 dpi. White light pictures of mosquito eyes (upper panels). GFP-specific fluorescence indicates cap-dependent translation (middle
panels). DsRed-specific fluorescence indicates 59-end-independent translation directed by the RhPV 59 IRES element (lower panels).
doi:10.1371/journal.pone.0013924.g005

Alphavirus RhPV IRES Vectors
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directly related to the IRES element itself, as deletion variants

appear to arise at an equivalent rate following passage of virus with

a similar total insert size, but containing a fragment of LUC in

place of an RhPV sequence (data not shown). These results

confirm previous observations indicating double subgenomic

alphaviruses containing larger inserts are less stable than viruses

containing smaller inserts [2,3,4].

Following each passage, Northern blot analysis confirmed that

viruses no longer expressing fluorescent marker proteins were in

fact deletion variants. Consistent with the plaque assay results,

deletion variants were more readily detected in viruses harboring

larger inserts (those containing DsRed and associated RhPVD1 or

RhPVD200 sequences), regardless of cell type (Fig. 7A and B).

After the third passage of dsSINV vectors containing DsRed and

RhPV sequences, full length subgenomic mRNA (containing a

complete dicistronic insert) could not be detected (Fig. 7A and B).

In comparison, dsSINV containing only the GFP sequence

required four passages before full-length subgenomic mRNA

sequences were no longer detected (Fig. 7A and B). Nevertheless,

our results suggest that the stability of recombinant dsSINV

vectors containing RhPV 59 IRES sequences is sufficient for most

applications of such expression systems.

Discussion

We have demonstrated expression of two different fluorescent

proteins, both in native form, from recombinant dsSINV vectors

containing RhPV 59 IRES sequences. Expression of more than

two proteins is theoretically possible from the use of multiple IRES

elements, but such an approach may be better suited for

replication-competent, packaging defective, replicon vectors with

their greater capacity (at least 5 kb) for insertion of heterologous

sequences [2]. We estimate 59-end-independent expression

directed by the RhPV IRES element to be in the order of 106

Figure 6. Analysis of recombinant dsSINV stability by plaque assay. Total virus titers determined by (P) plaque assay and (F) ‘‘GFP-expressing
virus’’ titers determined by the number of plaques which were GFP positive following passage in (A) mammalian, or (B) mosquito cultured cells. Errors
bars indicate one standard deviation among three replicates.
doi:10.1371/journal.pone.0013924.g006

Alphavirus RhPV IRES Vectors
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polypeptides per dsSINV-infected cell. Expression vectors con-

taining RhPV IRES elements also appear to have sufficient

stability for most applications not requiring extensive passaging of

the virus (Table S2 and Fig. S1). Expression of heterologous

sequences from a subgenomic promoter positioned upstream of

the structural protein genes may further improve the stability of

such constructs, facilitating a potentially wider range of applica-

tions, albeit at the risk of lower expression levels [3]. Expression of

proteins, peptides, and RNAs smaller in sequence than the GFP

(720 nt) and DsRed (681 nt) ORFs used in this study may also

yield increases in stability.

As previously reported, there was little discernable difference in

the IRES activity of the full-length IRES (RhPVD1) and the IRES

with the 59 200 nt deleted (RhPVD200) [16]. Although the stability

of viruses containing these sequences were also similar, in each case

the total size of the inserted heterologous sequences remained near

the 2 kb limit previously reported to be optimal for dsSINV vectors

[2,3]. Therefore, the extra coding capacity accommodated by the

shorter RhPVD200 sequence (379 nt versus the 579 nt full-length

IRES) may prove to be more beneficial when the expression of

larger sequences (.2 kb) is required. It has also been shown that a

fragment of the RhPV 59 UTR corresponding to the 39 153 nt

functions with approximately 50% of the activity of the full-length

IRES [16]. This fragment may prove useful in reducing the insert

size further in the context of a dsSINV vector.

Replication and packaging competent vectors developed from

alphavirus genomes have proven to be useful in applications

ranging from studies of basic virology to vaccine development

[2,26,27,28,29]. However, these virus vectors have two main

disadvantages. The first is an inability to express more than a

single heterologous sequence in an infected cell. The second is

inherent instability in the region of the viral genome containing

the duplicated viral promoter and extrinsic sequence [2]. The first

problem had previously been addressed by expressing a second

heterologous protein as a fusion product with the FMDV 2A

protease from modified virus structural proteins [5]. Incorporating

an RhPV IRES element into alphavirus vectors offers an

alternative solution that does not require the expression of fusion

proteins or modification of the virus structural proteins.

Interestingly, the results reported here may also prove to be

beneficial in addressing the second problem commonly associated

with replication and packaging competent alphavirus vectors,

instability. The stability of a double subgenomic rubella virus

(family: Togaviridae; genus: Rubivirus) was greatly improved by

replacing one of the two subgenomic promoters in the expression

vector with an IRES from encephalomyocarditis virus [30].

Presumably, the increased stability resulted from the elimination of

homologous recombination occurring between the identical

subgenomic promoter sequences present in the original construct

[30]. Although deletion variants continued to arise by other

means, they arose at a much lower rate in comparison to the

double promoter viruses [30]. The main disadvantage in the

application of a similar strategy to alphavirus expression vectors

has been the limited host range of most IRES elements previously

characterized. However, replacing one of the subgenomic

promoters with an RhPV 59 IRES element may increase stability,

while still preserving a primary advantage of double subgenomic

alphavirus expression systems, their broad tropism.

Figure 7. Analysis of recombinant dsSINV stability by Northern blot. Detection of dsSINV RNA following passage (1–5) in (A) mammalian
cells, or (B) mosquito cells. Full genomic length RNA (49S), subgenomic mRNA (26S), full-length second subgenomic RNA (S2), and deletion variants
(del) are shown. Viral RNA was detected with a 32P-label probe generated from a fragment spanning the XbaI and XhoI sites of pTE/392J/mcs.
doi:10.1371/journal.pone.0013924.g007

Alphavirus RhPV IRES Vectors
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Supporting Information

Figure S1 IRES-directed expression of DsRed in cells over time.

A C6/36 cell monolayer was infected at an MOI of 1 with

dsSINV/GFP-D 1DsRed. Pictures were taken at 206 magnifica-

tion using a Zeiss Axiovert epi-fluorescence microscope. White

light pictures show monolayer confluency at each time point

(upper panels). GFP-specific fluorescence indicates cap-dependent

translation (middle panels). DsRed-specific fluorescence indicates

IRES-directed translation (lower panels). The days post-infection

are indicated above each column.

Found at: doi:10.1371/journal.pone.0013924.s001 (1.32 MB

DOC)

Table S1 Primer sequences used in the construction of

recombinant viruses.

Found at: doi:10.1371/journal.pone.0013924.s002 (0.04 MB

DOC)

Table S2 Expression of GFP and DsRed in Aedes aegypti infected

with recombinant Sindbis viruses.

Found at: doi:10.1371/journal.pone.0013924.s003 (0.04 MB

DOC)

Author Contributions

Conceived and designed the experiments: LR ZA KMM. Performed the

experiments: MRW. Analyzed the data: MRW LR ZA KMM.

Contributed reagents/materials/analysis tools: LR. Wrote the paper:

MRW LR ZA KMM.

References

1. Strauss JH, Strauss EG (1994) The alphaviruses: gene expression, replication,

and evolution. Microbiol Mol Biol Rev 58: 491–562.

2. Frolov I, Hoffman TA, Prágai BM, Dryga SA, Huang HV, et al. (1996)
Alphavirus-based expression vectors: strategies and applications. Proc Natl Acad

Sci USA 93: 11371–11377.
3. Hahn CS, Hahn YS, Braciale TJ, Rice CM (1992) Infectious Sindbis virus

transient expression vectors for studying antigen processing and presentation.

Proc Natl Acad Sci USA 89: 2679–2683.
4. Brault AC, Foy BD, Myles KM, Kelly CLH, Higgs S, et al. (2004) Infection

patterns of o’nyong nyong virus in the malaria-transmitting mosquito, Anopheles

gambiae. Insect Mol Biol 13: 625–635.

5. Thomas JM, Klimstra WB, Ryman KD, Heidner HW (2003) Sindbis virus
vectors designed to express a foreign protein as a cleavable component of the

viral structural polyprotein. J Virol 77: 5598–5606.

6. Strauss JH, Strauss EG (1990) Alphavirus proteinases. Semin Virol 1: 347–356.
7. Donnelly MLL, Luke G, Mehrotra A, Li X, Hughes LE, et al. (2001) Analysis of

the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a
proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’.

J Gen Virol 82: 1013–1025.

8. Roberts LO, Jopling CL, Jackson RJ, Willis AE (2009) Viral Strategies to
Subvert the Mammalian Translation Machinary. In: Hershey JWB, ed. Progress

in Molecular Biology and Translational Science. Burlington: Academic Press. pp
313–367.

9. Kamrud KI, Custer M, Dudek JM, Owens G, Alterson KD, et al. (2007)
Alphavirus replicon approach to promoterless analysis of IRES elements.

Virology 360: 376–387.

10. Volkova E, Frolova E, Darwin JR, Forrester NL, Weaver SC, et al. (2008) IRES-
dependent replication of Venezuelan equine encephalitis virus makes it highly

attenuated and incapable of replicating in mosquito cells. Virology 377:
160–169.

11. Woolaway KE, Lazaridis K, Belsham GJ, Carter MJ, Roberts LO (2001) The 59

untranslated region of Rhopalosiphum padi virus contains an internal ribosome
entry site which functions efficiently in mammalian, plant, and insect translation

systems. J Virol 75: 10244–10249.
12. Avadhanula V, Weasner BP, Hardy GG, Kumar JP, Hardy RW (2009) A novel

system for the launch of alphavirus RNA synthesis reveals a role for the Imd
pathway in arthropod antiviral response. PLoS Pathog 5: e1000582.

13. Olson KE, Higgs S, Gaines PJ, Powers AM, Davis BS, et al. (1996) Genetically

engineered resistance to dengue-2 virus transmission in mosquitoes. Science 272:
884–886.

14. Uhlirova M, Foy BD, Beaty BJ, Olson KE, Riddiford LM, et al. (2003) Use of
Sindbis virus-mediated RNA interference to demonstrate a conserved role of

Broad-Complex in insect metamorphosis. Proc Natl Acad Sci USA 100:

15607–15612.

15. Jan E (2006) Divergent IRES elements in invertebrates. Virus Res 119: 16–28.

16. Groppelli E, Belsham GJ, Roberts LO (2007) Identification of minimal

sequences of the Rhopalosiphum padi virus 59 untranslated region required for
internal initiation of protein synthesis in mammalian, plant and insect translation

systems. J Gen Virol 88: 1583–1588.
17. Royall E, Woolaway KE, Schacherl J, Kubick S, Belsham GJ, et al. (2004) The

Rhopalosiphum padi virus 59 internal ribosome entry site is functional in

Spodoptera frugiperda 21 cells and in their cell-free lysates: implications for
the baculovirus expression system. J Gen Virol 85: 1565–1569.

18. Pijlman GP, Roode EC, Fan X, Roberts LO, Belsham GJ, et al. (2006)
Stabilized baculovirus vector expressing a heterologous gene and GP64 from a

single bicistronic transcript. J Biotechnol 123: 13–21.
19. Kohl A, Hart TJ, Noonan C, Royall E, Roberts LO, et al. (2004) A

Bunyamwera virus minireplicon system in mosquito cells. J Virol 78: 5679–5685.

20. Adelman ZN, Anderson MAE, Morazzani EM, Myles KM (2008) A transgenic
sensor strain for monitoring the RNAi pathway in the yellow fever mosquito,

Aedes aegypti. Insect Biochem Mol Biol 38: 705–713.
21. Horn C, Wimmer EA (2000) A versatile vector set for animal transgenesis. Dev

Genes Evol 210: 630–637.

22. Myles KM, Kelly CLH, Ledermann JP, Powers AM (2006) Effects of an opal
termination codon preceding the nsP4 gene sequence in the o’nyong-nyong virus

genome on Anopheles gambiae infectivity. J Virol 80: 4992–4997.
23. Shiao SH, Higgs S, Adelman Z, Christensen BM, Liu SH, et al. (2001) Effect of

prophenoloxidase expression knockout on the melanization of microfilariae in
the mosquito Armigeres subalbatus. Insect Biochem Mol Biol 10: 315–321.

24. Attardo GM, Higgs S, Klingler KA, Vanlandingham DL, Raikhel AS (2003)

RNA interference-mediated knockdown of a GATA factor reveals a link to
anautogeny in the mosquito Aedes aegypti. Proc Natl Acad Sci USA 100:

13374–13379.
25. Keene KM, Foy BD, Sanchez-Vargas I, Beaty BJ, Blair CD, et al. (2004) RNA

interference acts as a natural antiviral response to o’nyong-nyong virus

(Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc Natl Acad Sci USA
101: 17240–17245.

26. Schlesinger S (2001) Alphavirus vectors: development and potential therapeutic
applications. Expert Opin Biol Ther 1: 177–191.

27. Rayner JO, Dryga SA, Kamrud KI (2002) Alphavirus vectors and vaccination.
Rev Med Virol 12: 279–296.

28. Garoff H, Li K-J (1998) Recent advances in gene expression using alphavirus

vectors. Curr Opin Biotechnol 9: 464–469.
29. Lundstrom K Biology and application of alphaviruses in gene therapy. Gene

Ther 12: S92–S97.
30. Pugachev KV, Tzeng W-P, Frey TK (2000) Development of a rubella virus

vaccine expression vector: use of a picornavirus internal ribosome entry site

increases stability of expression. J Virol 74: 10811–10815.

Alphavirus RhPV IRES Vectors

PLoS ONE | www.plosone.org 8 November 2010 | Volume 5 | Issue 11 | e13924


