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A B S T R A C T

Prion diseases are a group of rare neurodegenerative conditions characterised by a high rate of progression and
highly heterogeneous phenotypes. Whilst the most common form of prion disease occurs sporadically (sporadic
Creutzfeldt–Jakob disease, sCJD), other forms are caused by prion protein gene mutations, or exposure to prions
in the diet or by medical procedures, such us surgeries. To date, there are no accurate quantitative imaging
biomarkers that can be used to predict the future clinical diagnosis of a healthy subject, or to quantify the
progression of symptoms over time. Besides, CJD is commonly mistaken for other forms of dementia. Due to the
heterogeneity of phenotypes and the lack of a consistent geometrical pattern of disease progression, the ap-
proaches used to study other types of neurodegenerative diseases are not satisfactory to capture the progression
of human form of prion disease. In this paper, using a tailored framework, we aim to classify and stratify patients
with prion disease, according to the severity of their illness. The framework is initialised with the extraction of
subject-specific imaging biomarkers. The extracted biomakers are then combined with genetic and demographic
information within a Gaussian Process classifier, used to calculate the probability of a subject to be diagnosed
with prion disease in the next year. We evaluate the effectiveness of the proposed method in a cohort of patients
with inherited and sporadic forms of prion disease. The model has shown to be effective in the prediction of both
inherited CJD (92% of accuracy) and sporadic CJD (95% of accuracy). However the model has shown to be less
effective when used to stratify the different stages of the disease, in which the average accuracy is 85%, whilst
the recall is 59%. Finally, our framework was extended as a differential diagnosis tool to identify both forms of
CJD among another neurodegenerative disease. In summary we have developed a novel method for prion disease
diagnosis and prediction of clinical onset using multiple sources of features, which may have use in other dis-
orders with heterogeneous imaging features.

1. Introduction

Prion diseases, also known as transmissible spongiform en-
cephalopathies (TSEs), are a group of progressive neurodegenerative
conditions, which cause cognitive impairment and neurological
deficits (Collinge, 2001). All prion diseases involve a change in con-
formation of the normal cell surface prion protein (PrP) into multichain

assemblies of abnormally folded forms.
Prion diseases can present with a wide spectrum of phenotypes, for

several reasons, including importantly, variation of the coding sequence
of the prion protein gene (PRNP) and the propagation of prion strains.
Heterogeneity manifests in disease duration and clinical onset, symp-
tomatology and the distribution of brain lesions, including spongiosis,
neuronal loss, gliosis, reactive astrocytosis and deposition of misfolded
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prion protein (Parchi et al., 2010; Pocchiari et al., 2004; Siddique et al.,
2010).

The different forms of prion disease can be grouped by aetiology,
accordingly, whether they are sporadic (unknown cause), inherited, or
acquired (transmitted between mammals or humans). The sporadic
form (sCJD) is the most common and it accounts for about 85% of the
annual incidence of human prion disease. This form of CJD shows a
significant neuronal loss, and vacuolisation within cell bodies and
dendrites that gives a spongiform appearance to the cerebral cortex and
deep nuclei (Johnson, 2005). sCJD is also characterised by the rapid
progression of symptoms with prominent cognitive decline. The median
time of survival after clinical onset is only 5 months, and 90% of the
patients die within one year (Pocchiari et al., 2004). The inherited prion
diseases (IPD) are caused by autosomal dominant inheritance of mu-
tations in the PRNP gene, which in total are responsible for 10–15% of
the incidence of human prion disease (Mead, 2006). Over thirty dif-
ferent mutations in PRNP have been found in patients presenting IPD,
with about 95% of familial cases caused by four mutations (point mu-
tations in codons 102, 178, 200 and 210) and insertions of five or six
octapeptide repeats (Johnson, 2005). IPD has often an earlier clinical
onset when compared with sCJD, which also presents a wide range of
clinical onset ages, from 20 to 70 years old. The clinical course of IPD
can be much longer than sCJD, up to 20 years (Mead, 2006). Due to
these long clinical durations, IPD has a similar prevalence in the po-
pulation than sCJD, despite a much lower incidence.

The clinical diagnosis of both forms of CJD can be challenging
during life, due to the heterogeneity of the observed phenotypes, par-
ticularly in the earlier stages of the disease as they can mimic other
neurodegenerative diseases. While the definitive diagnosis is still only
possible by brain biopsy, the improved understanding of the patho-
genesis of prion diseases have allowed definition of recognizable clin-
ical features and a replicable diagnostic criteria in vivo (Fragoso et al.,
2017). The diagnosis criteria are based on a set of neurological, cog-
nitive and psychiatric observations (Mead et al., 2011; Thompson et al.,
2013a). Moreover, noninvasive imaging techniques, such as magnetic
resonance (MR), computed tomography (CT), positron emission tomo-
graphy (PET) or single-photon emission computed tomography (SPECT)
have also been used to diagnose CJD. The qualitative assessment of
neuroimaging data has proven to be useful to identify and characterise
CJD among other pathologies (Caobelli et al., 2014; Manix et al., 2015;
Schroter et al., 2000; Zerr and Poser, 2002).

Several quantitative imaging measures and potential imaging bio-
markers have been studied in order to improve the sensitivity and
specificity of CJD diagnosis based on neuroimaging data.
Siddique et al. (2010) investigated the cross-sectional, longitudinal and
post-mortem cerebral magnetisation transfer ratios (MTR) as a surrogate
for CJD progression. Highly significant associations were found be-
tween whole brain MTR and prion disease. Alner et al. (2012), explored
the potential of using the cortical thickness as a biomarker in order to
characterise IPD, especially the 6-OPRI and P102L variants. They
showed significant differences in the mean cortical thickness between
6-OPRI patients and controls in temporal, cingulate, frontal, parietal
and occipital lobes; whereas only the mean cortical thickness of the
parietal lobe was relevant to distinguish controls from P102L patients.
In a different study using MTR (Vita et al., 2015), differences between
controls and symptomatic subjects were seen in the caudate, hippo-
campus, putamen and cortex. The brain progressive structural changes
were also identified by applying longitudinal voxel-based morphometry
(VBM): significantly greater rates of grey matter decline were observed,
predominantly in the pons, the corpus callosum, the thalamus and the
putamen, when comparing controls and symptomatic
subjects (De Vita et al., 2017). Many studies have also explored the
potential of fluid-attenuated inversion recovery imaging (FLAIR) in the
detection of CJD (Collie, 2001; Kallenberg et al., 2006; Murata et al.,
2002; Young et al., 2005). FLAIR has been shown to be reliable to de-
tect the earlier stages of the disease than T2-weighted (T2w) and

diffusion-weighted imaging (DWI). However, FLAIR is less effective
than DWI to detect lesions, which become less prominent during the
course of the disease (Shiga et al., 2004; Young et al., 2005). The mean
apparent diffusion coefficient (ADC) has proven to be a sensitive ima-
ging biomarker for diagnosis based on abnormalities in the caudate,
putamen and pulvinar nuclei. Research suggests that brain volume loss
in inherited prion diseases is followed by cerebral ADC increase, and
correlates with disease severity (Hyare et al., 2010; 2011). Besides,
other DTI measures computed from DWI, such as fractional anisotropy
(FA), mean diffusivity (MD) and radial diffusivity (RD) were used to
assess the relevance of the putamen as a biomarker in the diagnosis of
CJD (Hyare et al., 2013a; 2013b).

Despite the promise of quantitative biomarkers, clinical diagnosis
still relies only in the qualitative evaluation of MRI scans.

To address this limitation we proposed a framework that aims to (i)
extract quantitative imaging biomarkers from MR images, (ii) show that
those are fit for the diagnosis of CJD in its earlier stages, and (iii) di-
agnose and stratify the subjects according to severity stages of symp-
toms design based on a widely used clinical severity measure, the MRC
Prion Disease Rating Scale Thompson et al. (2013a).

To our knowledge, this study is the first attempt to use quantitative
features extracted from MR images, obtained using different MRI pulse
sequences, as inputs in a classification and differential diagnosis tool, in
order to capture the evolution of prion disease neuropathology over the
course of the disease. Furthermore, the proposed framework also allows
to assess disease severity using imaging data.

By taking advantage of tailored imaging biomarkers for classifica-
tion, we believe that the proposed method can be used to achieve an
early diagnosis of CJD. This it is particularly useful to improve early
patient recruitment to clinical trials and/or CJD studies, and mon-
itoring disease progression during the trial.

2. Materials and methods

2.1. Feature extraction

For each subject, we extracted quantitative features from the three
MRI pulse-sequences available in the dataset, which provide com-
plementary information about brain microstructural changes caused by
CJD. The framework, Fig. 1, consists of three sections: (A) data pre-
processing, including artefact correction steps such as bias field cor-
rection, reduction of the partial volume effect, and correction of the
effects of eddy currents in DWI scans; (B) and (C) specific feature ex-
traction and quantification according to each MRI sequence. In section
(A) both DWI and FLAIR scans were rigidly registered to T1w scans
using the NiftyReg open-source software (Modat et al., 2014). We re-
gressed out the impact of confounding effects, such as age and the total
intracranial volume, by comparison with a healthy population. This
correction is applied a priori to all the features extracted from different
sequences.

To identify nerve cell loss and consequently atrophy of cortical and
deep GM areas, we extracted volumetric information from T1w MRI
scans using automated region of interest delineation. The Geodesical
Information Flows (GIF) (Cardoso et al., 2015) algorithm, that relies on
multi-atlas segmentation propagation, was used to parcellate the brain
into multiple regions. The volume of each 128 individual brain region is
then computed.

Hyperintensity abnormalities visible on FLAIR images need to be
carefully considered since the degree and distribution of these histo-
logical changes tend to vary significantly among the different time of
scanning (Chung et al., 1999; Zeidler et al., 2000). To characterise the
degree abnormality in each subject’s brain, we considered as a feature
the distribution of signal intensities in GM tissues in FLAIR images.
Using the Bayesian Model Selection (BaMoS) algorithm (Sudre et al.,
2015), we automatically segmented the normal and abnormal ap-
pearing tissue types. Knowing that CJD mainly causes lesions in the GM
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tissues, we computed the Mahalanobis distance
(Geoffrey McLachlan, 2004), between the normal appearing WM in-
tensity distribution and the GM intensities for each region of interest as
defined by T1w derived parcellation. The Mahalanobis distance per
region, dM(GM,WM) is computed as

− −−μ μ μ μ( ) ·S ·( ) ,T
GM WM (GM,WM)

1
GM WM (1)

where μGM is the mean of intensities in each GM region, μWM is the
mean intensity of WM tissue after excluding the lesions detected as
outliers, and S(GM,WM) corresponds to the covariance between the two
intensities distributions.

The obtained values are a quantitative measure of signal abnorm-
alities in GM and they can be used as a feature with the assumption that
the larger the amount of hyper-intensity in a given region of interest,
the larger the Mahalanobis distance. The assessment of the hyper-in-
tensities in the brain mimics the clinical practice, in which CJD is ty-
pically diagnosed based on the presence of these signal abnormalities.

The most typical brain microstructural change caused by CJD is
vacuolation, or spongiosis. Spongiosis can result from abnormal mem-
brane permeability and increased water content within neuronal pro-
cesses; however, the molecular mechanisms behind vacuolation are still
unclear (Soto and Satani, 2011). Spongiosis is visible in DWI scans as an
increase in the diffusion signal and it can be quantified using the MD
measurements. We initially processed the DWI scans using the NiftyFit

pipeline, described in Melbourne et al. (2016), in which MD measure-
ments are computed according to (Le Bihan et al., 2001). The median
MD value per ROI is computed and used as feature.

2.2. Feature selection

In the literature, common approaches for imaging classification
when applied to neurodegenerative diseases usually rely on a consistent
set of features among subjects. Most neurodegenerative diseases follow
a common spatial pattern among subjects and across time. However,
these methods are not suitable for the characterisation of CJD, as the
high heterogeneity of the disease yields no consistent spatial pattern of
features in the brain, neither a defined pattern of events related to
disease progression.

We then hypothesized that the disease does not follow a spatial
pattern in the brain. Alternatively, we assumed the imaging biomarkers
can become abnormal in any location in the brain, without following a
particular order. The quantification of abnormality rather than its lo-
cation is thus used to infer the progression of the disease. To char-
acterise the amount of abnormality of signal for the different types of
feature, we implemented a framework previously validated with IPD
data (Canas et al., 2018b), in which the different features were con-
verted into z-scores by comparison with measurements obtained from a
population of healthy subjects. The absolute z-scored values are then
ranked per feature type and only the highly ranked features are con-
sidered for subsequent learning and inference stages. In this study, we
selected the 15 higher ranked regions of interest per subject for each
sequence independently. As a result, the array of features

= ⋯ × ×x xX [ , , ] ,N F
N F m

1,1 , where N is the number of subjects, F refers to
the 15 selected features and m is the number of MRI sequences con-
sidered. We decided to use 15 brain regions since it does correspond to
12.5% of the subjects sample and consequently the optimisation pro-
blem becomes well-posed. As a consequence, only regions of the brain
that most differ from the healthy control sample are kept for each
subject, and the resulting sets of feature are subject-specific.

2.3. Model

In order to characterise the disease status of each subject using the
available multi-source features, we designed a Bayesian framework to
find the function that best fits the relationship between imaging fea-
tures and the subjects’ diagnosis. Bayesian frameworks, such as
Gaussian Process (GP), are particularly useful to study CJD, since they
allow robust modelling even in highly uncertain or incomplete datasets.
GP is also commonly used to perform long term predictions, and has
been shown to improve performances as the number of samples in-
creases (Roberts et al., 2012). Since GP is a probabilistic model, it
provides an estimation of the probability of a subject being assigned to
a certain class. Note that the class probability estimations can be used as
a measure of the confidence of the predictions, which can be useful in a
clinical context as a proxy of the diagnosis confidence and as an in-
dicator of subjects’ prognosis.

We implemented a non-parametric kernel-based model � , as fol-
lows:

�

�� �

= +
∼ + ∼

y f ε
f μ σ ε μ σ

X
K I

: ( ) ,
( ; ), ( ; )f n ε ε

2
(2)

This model was used to predict the probability of the outcome y ∈
�, for a subject = …i N{1, , }, given a set of biomarkers X ∈ � feature
space. For the binary discriminative case, such as subjects’ diagnosis,
the output of the regression model � is transformed into a class
probability using a cumulative density function, also called as probit
likelihood function, which converts its argument, which can lie in the
domain −∞ ∞( , ), into the range [0, 1], guaranteeing a valid prob-
abilistic interpretation. Therefore, the posterior probability of each

Fig. 1. Representation of the framework adopted for feature extraction. A: data
preprocessing step, including rigid registration using (1)
NiftyReg Modat et al. (2014). B: Feature extraction per MRI sequence, applying
(2) GIF algorithm (Cardoso et al., 2011) to T1, using (3) BaMoS algorithm to
extract the intensity distributions of FLAIR (Sudre et al., 2015), and computing
the diffusion tensor from DWI. C: Quantitative features computed from the
images obtained in the section B of the framework.
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class � for a subject i is then given by Eq. (3), where Φ(.) denotes the
cumulative density function of the standard normal distribution
(Rasmussen and Williams, 2004).

�∫= =
−∞

p y f y f x dxx Φ x( | ( )) ( ( )) ( |0, 1)i i i i
y f x( )i i

(3)

For the purposes of subjects diagnosis, the likelihood of p y f x( | ( ))i i is a
cumulative density function, therefore the posterior (Eq. (4)) is analy-
tically intractable. To address this issue, we used the expectation pro-
pagation algorithm (EP) Minka (2001) to approximate the likelihood by
a local likelihood approximation (Eq. (5)).

∏=
=

f y fp
Z

p p y fX X( | , ) 1 ( | ) ( | )
i

N

i i
1 (4)

�≃ ≡∼ ∼∼ ∼p y f t f Z μ σ Z f μ σ( | ) ( | , , ) ( | , )͠ ͠i i i i i i i i i i i
2 2 (5)

where ∼∼Z μ σ, , ͠i i i
2 are the site parameters, as defined in Rasmussen and

Williams (2004). Therefore, the posterior f yp X( | , ) can be approxi-
mated by:

∏≡ ∼∼

=

f y fq
Z

p t f Z μ σX X( | , ) 1 ( | ) ( | , , )͠
i

N

i i i i i
EP 1

2

(6)

The tilde notation corresponds to the local approximation of the like-
lihood via EP approximation, as defined in Rasmussen and
Williams (2004).

As aforementioned, the CJD phenotype is better explained by the
interaction between several types of features; thus, a basis kernel
function is insufficient to describe the variance of the features. Besides,
it is reasonable to assume that the features extracted from one MRI
sequence does not show a consistent relationship with the features
extracted from other sequences, during all stages of the disease
Chung et al. (1999).

The inter MRI sequence relationship can thus be modelled as a
multi-task paradigm – a contribution of independent functions that
explain the biomarkers’ progressions. A sensible way to model a GP as a
multi-task model is using an Additive GP. By implementing an Additive
GP we are able (1) to express superposition of different processes
contributing to the some output and (2) to improve model interpret-
ability, since it provides information about relative weighting of dif-
ferent functions and their orders of interaction (Duvenaud et al., 2013;
2011). The latent function f in model � , Eq. (2), takes the form of

= ∑ =f f ,m
M

m1 with ��∼ +( )f μ σK I; ,m f m n
2

m m where M refers to the
number of MRI sequences taken into consideration in the model
(Rasmussen and Williams, 2004). The imaging biomarkers were en-
coded in individuals kernel matrices ∈mK , {S, F, T}m for T1w,
FLAIR and MD respectively, Fig. 2. Given the kernel properties, the
addition of GP with =μ 0f is equivalent to

��∼ ∑ +=f σK I(0; ),m
M

m n1
2
m where σn

2
m is the noise variance per MRI

sequence (Duvenaud et al., 2013; 2011). Therefore, the matrix K,
Fig. 2, which encodes the imaging biomarkers, is obtained by the ad-
dition of the kernel matrices computed individually using the in-
formation extracted from the MR sequences. Note that we estimate the
kernel matrices using the ranked magnitude of the feature abnormality,
encoded by their z-score, rather than their spatial information. The
consistency across features is thus with respect to their subject-specific
rank of abnormality rather their spatial location. Using this approach,
we construct one kernel matrix per modality before combining them
using an additive GP.

Our model also accounts for the individualised pattern of each ge-
netic mutation of the genetic form of prion disease, defined as a cate-
gorical variable in the kernel matrix KRP. To reduce the bias introduced
by the high number of genetic mutations, we grouped the subjects in
two clusters according to the expected rate of disease progression as-
sociated with each mutation: (1) slow and (2) fast, defined based in the
clinical knowledge1 about the different mutations, Eq. (7), where r is

the rate of progression of a given subject, such as �′ ∈r r, , and it is
defined in the features array.

′ = ⎧
⎨⎩

− ′ =k r r r r( , ) 1 if 0
0 otherwiseRP

(7)

We understand that this is not actually genetic information, but rather a
cluster of mutations with similar physiological behaviour. Using this
kernel with the aforementioned information, we show the flexibility of
our model to deal with both categorical and continuous data, such us
genetic and quantitative imaging data respectively. Future work should
make use of this kernel matrix to encode any other relevant genetic
data, such as SNP information.

The K is lastly combined with the categorical covariance function
by means of the Hadamard product, ⊙K KRP to produce a hier-
archical model, where K is the sum of the kernels used to encode
imaging data.

The modified latent function f X Θ( | ) which encodes the mutation
information is ��∼ ∑ + ⊙= ( )f σK I K(0; ),m

M
m n RP1

2
m where Θ is the

vector of parameters of the model, which includes the hyperparameters
of the kernel functions and the sample variance: = θ θ θ ΣΘ [ , , , ],T F D n

where = ∑ ∈=Σ σ mI, {T, F, D}n m
M

n1
2
m is the noise variance per MRI

sequence.
The estimation of y* requires to find the best hyperparameters of

each kernel covariance function. The hyperparameters Θ of the kernel
functions are estimated via the maximisation of the marginal likelihood
of the model, �p Θ( | ), as described in Eq. (8); i.e., the marginalisation
over the kernel parameters is performed by maximum a posteriori al-
gorithm (MAP), and the hyperparameters Θ are estimated by boot-
strapping (Rasmussen and Williams, 2004).

�

�

= =
− +

Θ p
p p

Θ
Θ Θ

{ ^} argmax ( | )
argmin [ log ( | ) log ( )]

Θ

Θ (8)

The full model is illustrated in Fig. 2.

2.4. Subjects diagnosis

In order to diagnose symptomatic subjects among healthy controls,
we modified the model � to estimate the best predictions under the

Fig. 2. Scheme of the generative model - Eq. (2). The inner section (red line)
illustrates the addition of kernel matrices computed for the features set in-
dependently. The grey section corresponds to the estimation of the hyper-
parameters of the model for according to Eq. (8). The blue section corresponds
to the inference stage in which a predictive label for a new subject j is computed
using model � . (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

1 According to clinical experience, the slow progression is seen for A117V,
P102L, Y163X, 5– and 6–OPRI, whereas E200K, D178N, E196K and sporadic
CJD evolve fast.
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form of class probabilities for � � �= ⋯ ∈y { , , }, {0, 1},C1 where 0 de-
notes the healthy controls and 1 denotes the symptomatic subjects. For
the binary discriminative case, such as subjects’ diagnosis, the output of
the regression model � is transformed into a class probability using a
probit likelihood function. Therefore, the posterior probability of each
class � for a subject i is thus given by Eq. (3), where Φ(.) denotes the
cumulative density function of the standard normal
distribution (Rasmussen and Williams, 2004).

The imaging biomarkers are encoded in Km through the use of a
squared exponential kernel function (SE) with hyperparameters

=θ σ l[ , ],f
2 2 where σf

2 is the signal variance and l2 is the length scale
(Rasmussen and Williams, 2004). The SE function is widely-used within
binary classification problems, especially for its main assumptions:
smoothness and stationarity.

⎜ ⎟′ = ⎛
⎝

− − ′ ⎞
⎠

θk x x σ x x
l

( , | ) exp 1
2

( )
fSE
2

2

2 (9)

In the final section of the proposed model, illustrated in Fig. 2 by the
blue section, we used the optimised model � to estimate the predictive
label y* for a new subject2 = ⋯j S{1, , } from the testing and validation
sets. The predictive probability is given by Eq. 10. Similarly, the mean

q and variance q of function f* is computed using Eqs. (11) and (12)
respectively.

⎜ ⎟

= =

⎛
⎝

⎞
⎠

+

+ − +

∼−

−

yq y x

Φ

( * 1|X, , *)

k

k K Σ μ

x x k K Σ k
* ( )

1 ( *, *) * ( ) *

͠

͠

T

T

1

1 (10)

where ∼Σ is a diagonal matrix with = ∈{ }Σ σ m, {T, F, D}n n
2
m . Note

also that the ∼μ is the site parameter defined in Eq. (5). The tilde no-
tation refers to the local approximation used in the EP algorithm as
defined in Rasmussen and Williams (2004).

= + ∼−yf X x k K Σ μ[ *| , , *] *( )͠q
T 1 (11)

= − + −yf kX x x x k K Σ k[ *| , , *] ( *, *) *( ) *
͠q

T 1 (12)

The analysis of the latent models that compose f* provide the in-
formation about the best combination of features to diagnose prion
disease.

2.5. Subjects stratification

Being able to diagnose CJD at the early stages of the disease could
increase participation in clinical trials, which is currently challenging as
patients usually die in less than 12 months from diagnosis
(Bradford et al., 2014). Therefore, the prediction of the time to clinical
onset of IPD patients is one of the aims of this study.

The proposed model does not give a continuous measure of the time
to onset, in years. Nevertheless, the stratification of the subjects ac-
cording to the severity of symptoms, or the proximity to clinical onset
stage, can be interpreted as the subject’s prognosis. For that purpose we
adapted the generative model 2 to predict the stage of the disease for a
subject i given the set of features X. The estimated probabilistic class
provides a clinical input regarding the severity of symptoms of prion
disease. We implemented a multi-class classification GP based on in-
dividualised likelihood factors computed for the target classes defined
by � � �= … ∈ …y { , , }, {1, , 5}i C1 for the subject i. These classes correspond
to the five predefined stages of the disease: (1) healthy control (HC), (2)
asymptomatic subjects (Asym.), (3) subjects with an MRC Scale score of
20 i.e., asymptomatic3 or early symptomatic but no accrued neurodi-
sability, within one year inside of the clinical onset window (CO), (4) to

(5) symptomatic subjects divided in 2 severity quantiles according to
their MRC Scale scores (Thompson et al., 2013b). The MRC Scale is a
functional composite scale measured as a 0–20 score developed using
item-response modelling (Thompson et al., 2013a). Items rated include
memory and orientation; continence; self care; mobility; and commu-
nication.

Due to the number of classes under consideration, fi is a vector
= …f ff [ , , ]i i i

T1 5 . The multi-class classification is performed by means of a
multinomial probit likelihood, as defined by Eq. (13), where the aux-
iliary variable ui is distributed as �=p u u( ) ( |0, 1)i i .

⎧
⎨⎩

∏ ⎫
⎬⎭

= + −
= ≠

p y u f ff Φ( | ) ( )i i p u
j j y

i i
y

i
j

( )
1,

5

i

i

i

(13)

Analogous to binary classification, the posterior of a multiclass GP is
analytical intractable, thus it requires the approximation of the like-
lihood. To keep the consistency across classification tasks, we used EP
algorithm. However, in case of binary GP the estimation of the tilted
distribution (defined in Eq. (5)) requires solving one-dimensional in-
tegrals, and assuming the probit likelihood function, these univariate
integrals can be computed efficiently without numerical quadratures
(Minka, 2001; Rasmussen and Williams, 2004). For the multiclass
paradigm the solution is more complex, since we need to evaluate the
multi-dimensional integrals (Riihimäki et al., 2013). The approximation
of the tilde variables can be done by Laplace approximation (LA)
(Rasmussen and Williams, 2004). The problem with the LA approach is
that the mean is replaced with the mode of the distribution and the
covariance with the inverse Hessian of the log density at the mode.
Because of the skewness of the tilted distribution caused by the like-
lihood function, the LA method can lead to inaccurate mean and cov-
ariance estimates in which case the resulting posterior approximation
does not correspond to the full EP solution.

The marginal likelihood is then approximated via a nested ex-
pectation propagation (nEP), which does not require numerical quad-
ratures or sampling to estimate the predictive probabilities, as detailed
in Riihimäki et al. (2013).

In this particular case of the model � , the imaging biomarkers are
encoded using a linear combination of linear logistic kernel functions
(Eq. (14)), b is the intercept of the linear part and a is the regression
coefficient of the linear part. This function is used to encode the var-
iance of the biomarkers over the different stages of the disease. In
previous studies focusing on neurodegenerative diseases, it has been
demonstrated that imaging biomarkers show a logistic evolution over
time (Canas et al., 2018a).
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Similarly, to the model described in Section 2.4, the function f is
defined as ��∼ ∑ ⊙ +=f σK K I(0; ),m

M
m RP n1

2
m where Θ is the vector of

parameters of the model, which includes the hyperparameters of the
kernel functions and the sample variance: = θ ΣΘ [ , ],m n where

= ∑ ∈=Σ σ mI, {T, F, D}n m
M

n1
2
m is the noise variance per MRI se-

quence, and =θ a b[ , , Σ ]m m m f
2 .

The predictive probability for a new subject j, given the optimised
model, is given by an extension of Eq. (11), detailed in
Riihimäki et al. (2013).

2.6. Differential diagnosis

Lastly, due to its rarity, CJD is commonly mistaken for other types of
dementia, which results in a higher rate of undiagnosed subjects, and
patients who present at a more advanced disease stage. Improving early
diagnosis could permit (1) a more effective management of the disease

2 The * notation refers to the inference for a new sample, using the optimised
model.

3 The asymptomatic subjects considered as part of clinical onset (CO) had
have the diagnosis confirmed in later MRI images.
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symptoms and (2) planning for end of life and (3) recruitment to clin-
ical trials. We adapted the model � to be used as a differential diag-
nosis tool, and applied it to identify CJD among another form of de-
mentia: young onset Alzheimer’s disease (YOAD).

As described in Section 2.5, we computed individualised likelihood
factors for the target classes defined by � � �= … ∈ …y { , , }, {1, , 4}i C1 for
the subject i, where (1) corresponds to healthy controls, (2) to IPD, (3)
sCJD and (4) YOAD. Analogous to subject stratification task, Eq. (14)
was used to encode the imaging biomarkers.

2.7. Model evaluation

We evaluated the performance of model � in terms of the ro-
bustness and accuracy of the predictions. The robustness of the esti-
mations and the stability of the results were assessed through boot-
strapping.

The effectiveness of the subjects diagnosis was assessed using sen-
sitivity, specificity, accuracy and false rate of discovery (FDR)
(Sokolova and Lapalme, 2009). The receiver operating curves (ROC)
and the area under the curve (AUC) were computed using the for-
mulation for ROC graphs proposed in Fawcett (2006).

Both subjects stratification and differential diagnosis analyses were
performed as a multi-task classification using unbalanced classes. Due
to the multi-task paradigm and the unbalanced nature of the data, we
use macro-averaging measures, generalised from the measures for
binary classification evaluation (Sokolova and Lapalme, 2009). The
averaging accuracy Acc (Eq. (15)), macro-recall RM (Eq. (16)), macro-
precision PM (Eq. (17)) are computed for model evaluation. Note that
the tpc is the true positive for the class � ,c and fpc false positive, fnc false
negative, and tnc true negative counts respectively. The predicted label
for each subject was obtained based on the class with highest prob-
ability among all the possible classes.
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To evaluate the probabilistic predictions performance of the model,
we also computed the multiclass logarithmic loss (Eq. (18)):

	

�

∑= −
=

plog( ) log( )
c

o c
1

,
(18)

where po,c is the probability of observation of class � .

2.8. Data and experiments

2.8.1. Data processing
The data used in this study were obtained from the National Prion

Monitoring Cohort (NPMC). NPMC (2008-) is a prospective observa-
tional interval-cohort study of patients with any form of prion disease in
the UK or willing to travel to the UK. It includes regular follow-up
clinical and psychological assessments of sCJD patients and patient
with IPD and their relatives who may be known carriers of PRNP gene
mutations, at-risk but not had a genetic test, or healthy controls. The
current dataset comprises (a) symptomatic patients with confirmed
prion disease diagnosis, for both the inherited and sporadic forms of the
disease, defined in the following sections as IPD and sCJD respectively;
(b) healthy subjects without a clinical diagnosis of IPD who carry PRNP
gene mutations and are therefore at increased risk of disease in the
future, defined in this study as asymptomatic subjects; (c) healthy

individuals without either prion disease or increased risk, defined as
healthy controls (HC). From the sample aforementioned detailed, we
defined a group composed by the subjects at clinical onset (CO) (sub-
jects within one year of a clinical diagnosis and an MRC scale of 20 or
less), in order to examine specific brain changes occurring during the
clinical onset. To avoid the overlap of criterias used to defined both the
CO and IPD groups, the IPD group is composed only by symptomatic
subjects with an MRC scale equal or lower than 20, in which the scans
were acquired more than one year after clinical onset. Data from all 125
subjects include MRI scans, neurological and neuropsycological as-
sessment and scoring using the MRC Scale Thompson et al. (2013a).

MRI was acquired using a Siemens Magneton Trio (Siemens,
Erlanger, Germany) 3 Telsa with the conventional body coil for trans-
mission and a 32-channel head-only receive coil. Structural imaging
used 3D T1-weighted images (T1w) MPRAGE sequence with repetition
time 2.2 s, echo time 2.9 ms, inversion time 900 ms, echo spacing
6.7 ms, flip angle 10∘, matrix size 256×256×208, voxel size
1.1×1.1× 1.1 mm. 2D Axial FLAIR were acquired using a standard
clinical FLAIR-TSE sequence with a voxel size of 0.9× 0.9×5.2 mm.
The diffusion weighted imaging (TR/TE 9500/93ms) were acquired
using 64 non-colinear directions at =b 1000s/mm2 and 8 images with
b = 0. For all subjects a T1w image was acquired as well as either a
FLAIR, a DWI, or both.

The YOAD subjects used for the differential diagnosis experiment
are part of a larger study of young onset Alzheimer’s disease, for which
ethical approval was obtained from the National Hospital for Neurology
and Neurosurgery Research Ethics Committee. T1w and DWI images
were acquired using the same scanner. The T1w pulse sequence was
identical to the one used for the other data sets. The DWI acquisition
however differ for the two datasets. Multiple shells were acquired for
the YOAD dataset. We here used the shell that had the most similar b-
value (b = 700) than the one used for the prion data acquisition
(b = 1000). We acknowledge this limitation as a potential bias. For
YOAD subjects no FLAIR images were acquired.

The sample’s demographics are detailed in Table 1.

2.8.2. Experiments
In order to assess the performance of the proposed framework, we

designed four experiments to evaluate: (1) The feature selection
strategy, (2) the subjects diagnosis classification performance, (3) the
subjects stratification sensitivity and (4) the differential diagnosis
capabilities. In experiments (2) to (4), we trained the model using 75%
of the overall sample while keeping the input ratio between the dif-
ferent groups. The testing set corresponds to the remaining 25% of each
sample. The hyperparameters of the model were optimised using an
open-source toolbox 4. In order to obtain a robust evaluation, we ap-
plied a cross-validation scheme with 500 runs for all experiments.
Lastly, to understand what is the best set of MRI sequences for each
task, we analysed the predicted labels obtained with the latent func-
tions of our model. The latent functions consist of functions where in-
dividual likelihood factors depend on multiple latent variables. In this
study, the latent variables are represented by the different kernel ma-
trices that encode the imaging features. By comparing the predictive
accuracy obtained by the latent functions, we can directly compare the
performance of the model with different combinations of features and,
consequently, infer what is the best set of features for a specific task.
This analysis was performed for the experiments (2) to (4).

(1) Feature selection As previously detailed in Section 2.8.1, we
grouped the subjects based on their prion disease subtypes and the
existence of clinical symptoms. Using a non-parametric statistical test,
we examined whether the selected features could differentiate the
groups. We also implemented a multi-comparison test to investigate

4 GPstuff: Bayesian Modeling with Gaussian Processes, available from https://
jmlr.csail.mit.edu/papers/v14/vanhatalo13a.html Vanhatalo et al. (2013)
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which set of features allows the best differentiation of the groups. The
resulting p-values were corrected for multiple comparison using the
Bonferroni method. All the subjects were included in this experiment,
independently of the number of the MRI sequences available, since the
features extraction and selection were performed separately for each set
of features.

(2) Subjects diagnosis We evaluated the ability of our model to cor-
rectly diagnose subjects with the two subtypes of CJD independently.
We performed the diagnosis of the subtypes of CJD separately in order
to avoid the confounding effects related to the specific features of each
subtype. For both IPD and sCJD subtypes, we classified only the sub-
jects clinically labelled as symptomatic. Only the subjects with the three
MRI sequences have been included in this experiment, due to the design
of model � which requires joint modelling of the three set of features.
Note that for IPD subjects the rate of progression varies as mentioned;
whereas the sCJD subtype is always considered as having a fast pro-
gression. Further, to avoid missing information for healthy controls,
these were randomly assigned a value between 1 and 3 to encode a
virtual rate of progression.

A squared exponential Support Vector Machine (SE-SVM) was also
used to perform the subjects diagnosis. The results of SE-SVM were
compared with the our model and considered as baseline.

(3) Subjects stratification Using cross-sectional data, we trained the
model to perform subjects’ stratification on the HC, asymptomatic
subjects, IPD and sCJD. Note that in this specific experiment the sCJD
and IPD subjects are jointly classified, based on their MRC Scale score.
Contrarily to experiment (2), we neglected the impact of the disease
rate progression modelled by the categorical kernel KRP. Here, we as-
sumed that sCJD patients show a disease progression rate analogous to
the IPD subjects with the fastest progression rate. The motivation to
include the sCJD subjects in this experiment is the small sample size of
IPD patients with more severe symptoms – MRC scale lower than 14
(stage II, Table 1).

Therefore, we considered 5 classes: (1) HC, (2) stable Asymp., (3)
CO – subjects at clinical onset (early symptomatic subjects with MRC
Scale score equal to 20 and within an year window after conversion),
(4) S-I – Symptomatic subjects with MRC Scale score between 19 and
15, and finally (5) S-II – Symptomatic subjects with MRC Scale score
below 14. Only 2 subjects had an MRC Scale score below 10, and they
were included in the last group. Similarly to experiment (2), to model
the different rates of progression of the subtypes of CJD and of the IPD
mutations, we included the KRP in the model.

(4) Differential diagnosis: Lastly, we compared the CJD subtypes
against a clinically releted form of dementia. For this experiment, we
included the HC, IPD, sCJD and YOAD groups. The asymptomatic
subjects have been excluded to avoid the presence of confounding ef-
fects during the training of the model. Asymptomatic subjects form
indeed a heterogeneous group as individuals can be days or decades

from clinical onset. The features used to characterise YOAD subjects
were obtained from DWI and T1w MRI scans, which have been pro-
cessed using the framework detailed in Section 2.1 and 2.2. Similarly,
only DWI and T1w imaging features were considered to characterise
CJD subjects. Note that the feature selection section of this framework
was tailored to maximise the information related to CJD symptoms;
thus, the features do not encode the spatial pattern that characterises
YOAD.

3. Results

The proposed framework was used to extract the individual features
from T1w, DWI and FLAIR, which were then used as input feature in a
classification algorithm aiming either at the diagnosis or staging of the
individuals. The resulting features are detailed in Section 3.1. The re-
sults of the subjects’ diagnosis for both IPD and sCJD are summarised in
Section 3.2. We present in Section 3.3 the results of the subjects’ stra-
tification experiment. The effectiveness of the differential diagnosis tool
is presented in Section 3.4.

3.1. Feature extraction and selection

We evaluate the statistical significance of the features extracted
before feature selection. Table 2 shows the brain regions and their re-
spective p-value computed using a two sample t-test comparing the
different groups with the healthy population. Neither the Asymp. nor
the CO presented any significant difference in features compared to the
healthy controls. The features extracted from FLAIR are insufficient to
identify brain regions that are relevant to diagnose CJD.

Fig. 3 shows the p-values of the brain regions significantly different
from the healthy population, projected into the MNI152 linear template
Fonov et al. (2009) using the MRIcroGL visualisation software.5 The
brain regions are considered as significantly different from the healthy
population for the p-value < × −3.79 10 ,04 presented in the Fig. 3 with
light orange.

Due to the assumption of spatial heterogeneity of brain changes
caused by prion disease, we implemented a subject-specific features
extraction and selection. This approach selects the most significant
features to characterise the evolution of symptoms for each subject,
neglecting the spatial origin of features in the brain. Fig. 4 shows the
mean of the 15 most significant features per subject and across groups.

The results of the statistical analysis performed on the features se-
lected are detailed in Table 3. The mean of the highest ranked features
extracted from both T1w and DWI are significantly different across
groups, whereas the features extracted from FLAIR images have not
shown statistical significance across groups.

Table 1
Demographic and imaging information of subjects in the baseline of NPMC and YOAD database, included in this study. The full model is the model trained using only
the subjects with all the three MRI sequences available. The number of mutations details the number of different mutations existing among the subjects.

Groups Age (years) Full Model (Male) T1w (Male) FLAIR (Male) DWI (Male) #Mutations

Healthy Controls 48.2 (23.3 - 75.2) 29 (16) 31 (16) 29 (16) 26 (16) —

Diagnosis IPD 47.7 (24.9 - 61.4) 16 (11) 30 (18) 21 (12) 18 (11) 8
Sporadic CJD 63.7 (53.3 - 76.7) 17 (10) 28 (15) 20 (11) 17 (10) —

YOAD 61.0 (48.0 -74.0) — 32 (10) — 32 (10) —

Stratification Asympt. IPD 42.7 (19.5 - 72.3) 22 (6) 31 (11) 29 (16) 22 (6) 6
Clinical Onset 50.7 (41.6 - 65.2) 4 (3) 5 (3) 5 (3) 4 (3) 3

Stage I IPD 44.5 (24.9 - 61.3) 15 (9) 20 (11) 20 (12) 16 (10) 7
sCJD 63.9 (54.3 - 75.7) 5 (3) 5 (3) 7 (4) 5 (3) —

Stage II IPD 26.1 1 (0) 3 (2) 1 (0) 1 (0) 1
sCJD 62.5 (53.3 - 71.5) 11 (6) 21 (12) 19 (11) 19 (10) —

5 https://www.nitrc.org/plugins/mwiki/index.php/mricrogl:MainPage .
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Furthermore, using a multiple comparisons test we also analyzed
which set of features allow differentiation of the patient groups. This
experiment indicates that DWI and T1w features enable the diagnosis of
sCJD vs HC with high statistical significance, whilst the T1w features
identify the disease stage of IPD (vs Asym.) with highest statistical
significance.

3.2. Subjects diagnosis

Fig. 5 shows the predictive accuracy of the model � (Eq. (3)) when
using imaging biomarkers extracted from the three MRI sequences. The
ROC curves show that the model is more effective in the diagnosis of
sCJD ( = ±AUC 0.985 0.06), when compared with IPD classification
( = ±AUC 0.892 0.06) in both cases vs. controls.

To investigate the influence of each feature to the subjects’ diagnosis
performances, we evaluated the accuracy of the predictive classes ob-
tained using the latent models. Table 4 details the accuracy of the
classification of sCJD patients using different sets of features. The
imaging structural biomarkers extracted from FLAIR images appear to
be insufficient to diagnosis sCJD subjects at the early stages of the
disease, whereas the MD measures computed from DWI scans have the
strongest influence in the diagnosis of sCJD, followed by the T1w
imaging biomarkers.

We also evaluated the predictive accuracy of the model for diagnosis
of IPD subjects. Similarly to the sCJD diagnosis, the intensity based
features extracted from FLAIR achieved a lower accuracy when used as
single features in the model. It can be observed that including the rate
of progression associated with specific mutations yields an improve-
ment of the predictive accuracy. Note also that the full model did not

Table 2
Evaluation of the statistical significance of the imaging biomarkers, before
feature selection. The two sample t-test was used to identify which brain regions
show significant differences between symptomatic subjects and the healthy
population. The p-values indicate the test rejection of the null hypothesis at 5%
significance level, considering the Bonferroni correction.

DWI

IPD Brain Regions P-value
Right cuneus 1.74E-5
Left central operculum 2.48E-5
Right anterior cingulate gyrus 2.91E-5
Right inferior frontal gyrus 3.54E-5
Right angular gyrus 3.61E-5

sCJD Right frontal operculum 1.03E-6
Left entorhinal area 1.05E-6
Cerebellar Vermal Lobules VI-VII 1.99E-6
Cerebellar Vermal Lobules I-V 2.35E-6

Structural

IPD Brain Regions P-value
Left cuneus 6.01E-8
Right cuneus 7.55E-5
Left central operculum 5.03E-6

sCJD Left cuneus 2.45E-9
Right cuneus 1.11E-6
Left central operculum 3.89E-6
Left hippocampus 5.00E-5
Right hippocampus 5.49E-5

Fig. 3. Evaluation of the statistical significance of the imaging biomarkers, before feature selection. The colour map encodes the p-value obtained from the two
sample t-test, for each brain region showing. Seven axial slices (zz) ( ∈ − −zz { 35; 20; 0; 20; 30; 39; 50; 60}) show the brain areas with significant features. A: sCJD
structural features; B: DWI features extracted from sCJD data. C: T1w volumetric features extracted from IPD subjects; D: DWI features obtained from IPD scans.
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necessarily achieved the best performances for all metrics, which can be
justified by the introduction of noise due to the features’ interactions.

Lastly, the predictive accuracy of the SE-SVM model was also
evaluated for each set of biomarkers: T1w, FLAIR and DWI. Tables 4
and 5 show that the accuracy obtained from the binary classification
using SE-SVM is comparable with the predictive accuracy of our model,
namely on the sCJD diagnosis. Nevertheless, our model showed a sig-
nificantly lower logarithmic Loss in both tasks, which is translated in a
lower uncertainty of the predictions given by our model. Therefore,
even with a higher accuracy, the SE-SVM is not suitable to be used in
clinical context given the uncertainty of the predicted classes.

Furthermore, the good results obtained by the SE-SVM sustained the
hypothesis that subject-specific features are suitable to diagnose CJD,
since these features even when used in a different classifier lead to a
good identification of prion disease.

3.3. Subjects stratification

Fig. 6 shows the normalised confusion matrix for the testing set. The
qualitative analysis of the confusion matrix suggests that the model is
able to correctly identify the extreme stages of the disease, while being
less accurate in the differentiation of the intermediate stages of the
disease. The results reported in Fig. 6 are deterministic and they do not
account for the fuzziness of the classes estimated, particularly for the
asymptomatic stage.

Fig. 7 shows the correlation between the categorical (discrete) la-
bels and the average probability given to each class, computed through
bootstrapping. The probability distribution across classes gives a more
intuitive interpretation of subjects’ clinical status. For a clinical appli-
cation, the probability of the prediction associated with the predicted
label corresponds to the model confidence in its output.

We further investigated what is the best combination of features to
achieve a good stratification of subjects, by computing the predictive
classes obtained from the latent models. Table 6 presents these findings,
where the average accuracy across stages is higher for the jointly
modelling of the three set of features (Average Acc = 85 ± 4%)
combined with the progression rate of the individual mutation. The
logarithmic loss, computed across classes, is also lower for the full
model (	 = ±1.74 0.44), supporting the assumption that by using the
three MRI sequences we better explain the CJD symptoms and we are
able to infer the subject’s prognosis. Moreover, the low logarithmic loss
translates the higher certainty of the classes correctly label, whilst the

Fig. 4. Mean of the 15 highest ranked imaging features per subject, after feature selection. A: structural features extracted from T1w scans. B: intensity based features
computed using FLAIR images. C: MD computed from DWI. The red crosses represent outliers, whilst the grey asterisks represent a statistical significance of

− <p value 0.01. HC – healthy controls; Asym. – asymptomatic subjects; CO – clinical onset; SI – stage I and SI - stage II of the disease. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Evaluation of the statistical significance of the imaging biomarkers, after fea-
ture selection. The Kruskal–Wallis test result is shown with the null hypothesis
that the sample data from each group of subjects came from the same dis-
tribution. The bold p-values indicate the test rejection of the null hypothesis at
5% significance level, considering the Bonferroni correction, < −p-value 3. 80 .4

T1w FLAIR DWI

HC vs Asym. 0.622 0.838 0.986
HC vs Conv. 0.082 0.941 0.242
HC vs IPD 9.92E-09 0.004 2.53E-06
HC vs sCJD 5.45E-07 0.008 9.96E-09
Asym. vs CO. 0.828 0.999 0.695
Asym. vs IPD 5.63E-08 0.195 7.55E-04
Asym. vs sCJD 0.006 0.266 8.22E-07
CO. vs IPD 7.32E-05 0.166 0.065
CO. vs sCJD 0.191 0.228 6.71E-04
IPD vs sCJD 0.115 0.999 0.728
All groups 2.47E-17 6.67E-04 2.21E-13

HC – healthy controls; Asym. – asymptomatic subjects; CO – clinical onset; SI –
stage I and SI - stage II of the disease.

Fig. 5. Predictive accuracy of the model for both IPD and sCJD subjects, when
considering a dataset composed by the three MRI sequences. The predictive
accuracy for both IPD and sCJD subjects, using squared exponential SVM (SE-
SVM) is also computed using the three modalities. The ROC curves are com-
puted considering the predicted labels of 500 iterations, as proposed by
Fawcett (2006).
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classes wrongly predicted have often higher uncertainty related to
them.

As the model has not been re-trained for each latent model in-
dividually, the performance on the latent models that include DWI and
FLAIR are very similar. This is due to their limited influence on the full
model.

3.4. Differential diagnosis

By modelling the joint contribution of the three sets of features it is

possible to achieve a good differentiation between the symptomatic
CJD subjects and the YOAD patients, as reported in Fig. 8. The confu-
sion matrix also shows that only approximately 8% of CJD subjects are
labelled as HC. We presume that the slower rate of progression of IPD
subjects and the higher number of subjects with MRC scale of 20 lead to
less evident symptoms and consequently a proximity to the HC bio-
markers pattern.

The results also indicate that 75% of the YOAD subjects have been
correctly labelled, showing a probability of 0.61 of being YOAD (Fig. 9);
whereas the CJD subjects have shown a probability of 0.35 of being
wrongly labelled as YOAD subjects, with a higher uncertainty in the
differentiation of IPD and YOAD. The overlap between these two classes
is explained by the lack of a specific kernel matrix to explain the spatial
differences between the two diseases. Our approach only correlates the
magnitude of symptoms and the correlation between the features

Table 4
Evaluation of the full model used for subjects diagnosis, for Sporadic CJD (sCJD). The mean value and standard deviation of 500 iterations is computed for all the
metrics used for performance evaluation. The AUC is computed considering the results of all iterations. The false discovery rate (FDR) is also evaluated. All the
evaluation measures are presented in percentage, excepting the AUC and the 	 . SE-SVM stands for Support Vector Machine with squared exponential kernel.

Accuracy Sensitivity Specificity FDR AUC 	

SE-SVM 98.82 (3.90) 97.75 (7.50) 99.90 (1.58) 0.01 (1.58) 0.99 (0.04) 1.13 (<0.01)
T1w 90.01 (10.34) 89.55 (16.60) 90.48 (16.76) 9.52 (0.17) 0.95 (0.10) 0.54 (0.18)
FLAIR 60.98 (15.48) 85.19 (22.29) 36.77 (29.25) 63.23 (0.29) 0.60 (0.25) 0.69 (0.01)
DWI 98.61 (4.62) 97.22 (9.23) 99.90 (< 0.10) 0.1 (< 0.01) 0.99 (0.01) 0.51 (0.18)
T1w+FLAIR 88.29 (13.33) 87.83 (19.33) 88.76 (20.00) 11.24 (0.03) 0.94 (0.13) 0.54 (0.19)
T1w+DWI 94.84 (8.79) 93.12 (14.47) 96.56 (10.59) 3.44 (0.05) 0.99 (0.03) 0.40 (0.22)
FLAIR+DWI 96.16 (10.13) 93.65 (16.41) 98.68 (10.22) 1.32 (0.02) 0.99 (0.06) 0.51 (0.18)
T1+FLAIR+DWI 94.51 (9.96) 92.86 (15.52) 96.16 (12.21) 12.21 (0.06) 0.99 (0.06) 0.34 (0.15)

Table 5
Performance of the model for IPD diagnosis. The mean value and standard deviation of 500 iterations is computed for all the metrics used for performance evaluation.
We included the impact of the rate of progression (RP) of the several mutations as a categorical variable in the model. In the full model, we modelled the join
contribution of the DWI, FLAIR, T1w and the RP. Accuracy, sensitivity, specificity and false rate of discovery (FDR) are shown in percentage. The comparison with
Support Vector Machine with squared exponential kernel (SE-SVM) is presented.

Accuracy Sensitivity Specificity FDR AUC 	

SE-SVM 91.73 (8.89) 84.68 (16.37) 99.92 (1.26) 0.08 (1.24) 0.92 (0.08) 0.78 (<0.01)
T1 93.70 (8.77) 93.00 (11.89) 94.40 (13.46) 5.40 (12.70) 0.95 (0.09) 0.35 (0.29)
FLAIR 56.36 (17.64) 80.73 (24.75) 31.98 (23.79) 67.82 (23.94) 0.53 (0.19) 0.70 (0.07)
DWI 77.63 (13.58) 80.40 (18.15) 74.84 (25.65) 24.93 (22.31) 0.69 (0.20) 0.69 (0.07)
T1+ FLAIR 93.48 (8.87) 93.00 (11.89) 93.95 (13.96) 5.85 (13.31) 0.95 (0.09) 0.35 (0.28)
T1+DWI 92.53 (9.21) 93.00 (11.89) 92.05 (15.68) 7.75 (15.13) 0.94 (0.09) 0.36 (0.28)
FLAIR+DWI 70.85 (16.25) 74.22 (21.86) 67.48 (25.73) 32.32 (25.60) 0.67 (0.21) 0.69 (0.08)
T1+ FLAIR + RP 93.50 (8.87) 93.12 (11.74) 94.00 (13.93) 5.80 (13.28) 0.94 (0.09) 0.36 (0.28)
T1+DWI + RP 93.05 (9.16) 92.85 (12.02) 93.10 (15.09) 6.70 (14.50) 0.94 (0.10) 0.37 (0.28)
FLAIR+DWI + RP 70.78 (15.74) 74.23 (20.92) 67.32 (26.16) 32.48 (26.02) 0.69 (0.21) 0.69 (0.09)
T1+ FLAIR + DWI 91.93 (9.07) 93.00 (11.89) 90.85 (15.90) 8.95 (15.37) 0.94 (0.09) 0.37 (0.28)
T1w+FLAIR+DWI+RP 92.45 (9.09) 93.14 (11.78) 91.90 (15.48) 7.90 (14.93) 0.94 (0.10) 0.37 (0.27)

Fig. 6. Subjects Stratification. The discrete confusion matrix was computed
based on the mean of 500 iterations of the model. The values correspond to the
mean percentage of subjects labelled as belonging to a given class. The intensity
of the color increases with percentages. HC – healthy controls; Asym. –
asymptomatic subjects; CO – clinical onset; SI – stage I and SI - stage II of the
disease.

Fig. 7. Stratification of prion disease patients using the proposed framework.
The discrete confusion matrix is normalised by the number of subjects included
in the classification task. The shadow area is the average distribution of prob-
abilities per class, computed over the 500 iterations.
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selected to a specific form of dementia. Nonetheless, this section is an
illustrative example of the flexibility of the proposed model and the
possibility of being used as a differential diagnosis tool, particularly to
identify CJD among other types of dementia.

The analyses of the latent models performance show that the cate-
gorical kernel used to encode the progression of IPD mutations, highly
improves the accuracy and precision of the differential diagnosis tool.
Fig. 10 highlights that the combination of features from DWI and FLAIR
is the most sensitive to differentiate IPD from YOAD, whereas T1w
images combined either with DWI or FLAIR show better results in the
identification of sCJD among YOAD patients. The micro-structural

changes happening in the brain of IPD symptomatic patients visible in
DWI and FLAIR can be used as the main feature to distinguish this type
of CJD from other neurodegenerative syndromes.

4. Discussion

In this study we proposed a novel framework to extract quantitative
imaging biomarkers to diagnose and stage prion disease patients. These
biomarkers were also used to characterise the disease stage within a
stratification task. To the best of our knowledge, this work is the first
attempt to extract quantitative imaging biomarkers to be used in an
automated diagnosis tool for prion related applications.

Due to the high heterogeneity of the clinical manifestations of prion
diseases, it is very challenging to select useful biomarkers that may be
used to comprehensively characterise all the different subtypes of prion
disease and to perform an accurate diagnosis.

Previous studies have shown signs of atrophy in temporal, cingulate,
frontal, parietal and occipital lobes caused by IPD (Alner et al., 2012).
By using the structural biomarkers obtained via the proposed frame-
work, we also identified statistical differences in the occipital gyrus,
specifically in the cuneus, for both IPD and sCJD. The left and right
hippocampus and central opercullum had been identified as meaningful
regions to identify CJD, as suggested by De Vita and
collaborators (Vita et al., 2015). However, we were not able to identify
signs of atrophy in the temporal and parietal lobes. Our analysis also
identified signal abnormalities in DWI scans. Statistical significant dif-
ferences were observed in the sCJD sample, when compared with
controls, in the left and right entorhinal areas, cerebellar vermal lobus
I-VII. In turn, DWI signal differences were observed in the right cuneus,
anterior cingulate gyrus, angular gyrus and central operculum for IPD
subjects. Previous studies (Shiga et al., 2004; Young et al., 2005), have
reported signal abnormalities in DWI scans in the caudate, putamen and
pulvinar nuclei. Our analysis did not reveal relevant changes in those
regions (Table 7).

By comparing the imaging features extracted from healthy controls
and symptomatic patients, we observed that CJD disease burden weighs
equally on each hemisphere. Furthermore, despite the initial assump-
tion of spatial heterogeneity of the brain changes, we identified some
regions with higher prevalence among subjects with the same form of
CJD (Fig. 3). These results are explained by the broad spectrum of
symptoms stages found in the IPD and sCJD groups. Due to the spatial
heterogeneity of the symptoms, patients at similar disease stage exhibit
abnormality in non-consistent areas of their brain. Therefore, event-
based models previously used to study other forms of dementia, in
which a spatial homogeneity is seen for subjects at the same stage,
cannot be used in the context of CJD Young et al. (2005).

Based on the clinical assumption that prion disease is highly het-
erogeneous even among subjects with the same mutation, we chose to
extract subject-specific biomarkers. Thus, by extracting subject-specific

Table 6
Performance of the proposed approach when used for disease staging. The mean value and standard deviation of 500 runs is computed for all the metrics used for
multiclass evaluation. The values are presented in percentage, excepting the logarithmic Loss.

Average Acc PrecisionM RecallM 	

T1w 69.43 (2.16) 4.80 (1.50) 19.96 (0.80) 3.14 (1.11)
FLAIR 69.17 (1.68) 5.24 (3.71) 20.08 (2.14) 2.60 (0.13)
DWI 69.17 (1.68) 5.24 (3.71) 20.08 (2.14) 2.60 (0.13)
T1w+FLAIR 70.26 (2.03) 6.83 (5.28) 20.67 (4.07) 2.66 (0.23)
T1w+DWI 70.26 (2.03) 6.83 (5.28) 20.67 (4.07) 2.66 (0.23)
FLAIR+DWI 69.09 (1.78) 5.09 (3.36) 19.94 (2.35) 3.84 (1.66)
T1w+FLAIR +RP 78.74 (5.11) 35.18 (13.15) 39.40 (10.45) 2.05 (0.16)
T1w+DWI + RP 78.74 (5.11) 35.18 (13.15) 39.40 (10.45) 2.05 (0.16)
FLAIR+DWI + RP 77.62 (5.60) 35.31 (17.37) 42.85 (13.26) 2.47 (0.68)
T1w+FLAIR + DWI 69.88 (1.96) 6.48 (5.81) 20.97 (4.21) 6.03 (2.01)
T1w+FLAIR+DWI+RP 85.39 (4.21) 57.34 (11.91) 58.83 (11.93) 1.74 (0.44)

RP – Rate of Progression.

Fig. 8. Differential diagnosis of CJD subtypes. The confusion matrix shows the
mean percentage of predictive labels across the 500 runs of the model. The
higher percentages of subjects classified with a given label across iterations are
shown with an intense colour. HC – healthy controls; Asym. – asymptomatic
subjects; CO – clinical onset; SI – stage I and SI - stage II of the disease.

Fig. 9. Likelihood of the predictive classes obtained from the differential di-
agnosis framework. The discrete confusion matrix is normalised by the number
of subjects included in the classification task. The shadow area is the average
distribution of probabilities per class.
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biomarkers, we ensured that the lack of spatial pattern of biomarkers
does not compromise the extraction of features that track subtle brain
changes. The extracted imaging biomarkers (Section 3.1) have shown
significant differences between healthy controls and symptomatic sub-
jects, for both IPD and sCJD. Nonetheless, the intensity based features,
computed from FLAIR images, did not show statistical relevance to
separate symptomatic subjects from healthy controls. Currently, only
MRI features are considered. For a better accuracy in prediction of
prion disease severity or onset, we intend to include quantitative fea-
tures from other sources, such as blood and CSF biomarkers.

The biomarkers were then used in a non-parametric Bayesian ap-
proach to predict the subjects status. The predictive labels are based on
the joint modelling of the biomarkers pattern by a Gaussian Process,
producing a probabilistic labelling for each subject. We diagnosed in-
dependently the sCJD and IPD, evaluating the predictive accuracy of
the labels for both subtypes. The reported results, detailed in
Section 3.2, are indicative of the effectiveness of the model to detect
prion disease patients, among healthy controls. Furthermore, the model
was also able to diagnose subjects in the early stages of CJD, particu-
larly for IPD symptomatic subjects with MRC Scale of 20, at which time
the diagnosis can be otherwise very challenging. The results also sug-
gest that the diagnosis can be achieved without all three MRI se-
quences; i.e., the biomarkers extracted from DWI scans and the jointly
modelling of FLAIR, DWI and the rate of disease progression are equally
predictive for sCJD and IPD when compared with the joint modelling of
the three MRI images.

By comparing the predictive accuracy of our model with more
simple frameworks, such as SE-SVM, we showed that our model is able
to identify symptomatic prion disease subjects with lower uncertainty.
Therefore, our model is more relevant in clinical context.

This analysis could yield to improvement of the clinical workflow,
since it provides information about which imaging biomarkers are more
useful for the earlier diagnosis of CJD and thus avoiding unnecessary
exams.

Notwithstanding the promising results obtained for subjects’

diagnosis, there is not an effective characterisation of the different
stages of the disease, neither the prediction of clinical onset for IPD
patients. This can in part be due to the fact that our model only takes
into consideration cross-sectional data and a reduced number of sub-
jects who exhibit high heterogeneity of symptoms.

To improve our knowledge about the evolution of the disease over
time, we extended the initial model to perform subject’s staging ac-
cording to the MRC Scale and by consequence the severity of brain
changes. The new model can be seen as a disease progression model,
defined as an additive multi-class GP. Contrary to other disease pro-
gression models currently used for other neurodegenerative diseases
(Lorenzi et al., 2017; Oxtoby et al., 2018), our model does not assume a
known ordering of events to stage the subjects in specific clinical status,
neither an expected time-to-onset based on the familial clinical onset.
Alternately, our model finds the correlation between subjects at the
similar stage of the disease, by means of the covariance kernel function.
The predicted stages of the disease are then computed based on the
highest probability across classes. The overall accuracy (Average Acc =
85%), suggests that the model has been successful in stratifying the
subjects based on their MRC Scale score. However, the analysis of the
confusion matrix (Fig. 6) suggests that the model is not sensitive to
classes with close intervals of the MRC Scale values. The creation of
well defined clinical stages of CJD goes beyond the scope of this work,
but a future study should investigate alternatives to MRC Scale to define
the labels used to train the model for subject’s staging. Furthermore, the
current definition of CO is based on the functional disability (MRC Scale
equal to 20) and the defined window of one year from the clinical onset;
attending to the fast rate of progression of CJD and its diverse evolution
among patients, we would need to investigate the best criteria to define
this class. Similarly, Asymp. IPD are a very heterogeneous group that
should also be stratified itself, in order to have a more accurate and
sensitive training of the model.

Thanks to the probabilistic nature of the predictions, the model
gives information regarding the predicted class for a given time-point,
but also the closest classes for that time-point. This information can be

Fig. 10. Predictive classes of the differential diagnosis task.The confusion matrices show the results of the latent models for the differential diagnosis task.

Table 7
Performance of the model for the differential diagnosis. The mean value and standard deviation over 500 runs is computed for all the metrics used for performance
evaluation. The average accuracy, macro precision and macro recall are shown in percentage. RP refers to the rate of progression.

Average Acc PrecisionM RecallM 	

T1w 60.99 (4.97) 7.55 (6.40) 25.40 (2.90) 3.40 (1.68)
FLAIR 60.69 (4.89) 5.91 (3.66) 25.09 (1.96) 2.79 (0.26)
DWI 60.69 (4.89) 5.91 (3.66) 25.09 (1.96) 2.79 (0.26)
T1w+FLAIR 63.75 (6.08) 17.49 (13.63) 34.44 (10.81) 2.94 (0.61)
T1w+DWI 63.75 (6.08) 17.49 (13.63) 34.44 (10.81) 2.94 (0.61)
FLAIR+DWI 60.69 (4.89) 5.91 (3.66) 25.09 (1.96) 5.52 (2.46)
T1w+FLAIR +RP 80.95 (8.33) 67.06 (18.90) 63.80 (13.15) 1.51 (0.20)
T1w+DWI + RP 80.95 (8.33) 67.06 (18.90) 63.80 (13.15) 1.51 (0.20)
FLAIR+DWI + RP 85.11 (8.31) 70.39 (20.58) 71.28 (12.69) 1.52 (0.50)
T1w+FLAIR + DWI 64.26 (7.35) 15.38 (14.09) 34.24 (11.26) 5.34 (2.40)
T1w+FLAIR+DWI+RP 88.90 (6.89) 80.86 (11.23) 77.09 (9.28) 0.97 (0.31)
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used as a prognosis tool, since the transition between classes can be
used to infer the severity of symptoms and consequently the stage of the
disease. Bearing this in mind, we intend to test the model for the pre-
diction of the several stages of the disease for the subjects with scans
before and after the clinical onset. Only four subjects had all three scans
modalities available before and after onset, therefore the results are
inconclusive. Moreover, considering the current design of the model,
different time-points for these subjects would be modelled in-
dependently, which consists in to a source of bias in the model since
there is no dependency between results for a same subject. In the future,
we will include the subjects excluded from this study due to missing
modalities, increasing the sample size and guaranteeing more robust
and meaningful results.

Lastly, we also investigated the possibility of using the model as a
differential diagnosis tool. The current framework has proven to be able
to recognize the individual features of prion disease among another
form of dementia: young onset Alzheimer’s disease. Note however that
the results reported in Section 3.4 are achieved without a particular
modelling for the two types of dementia. The current formulation of the
model relies only on the proximity of features pattern for the subjects
with the illness. In the future, we plan to adapt the model to learn what
is the best covariance kernel function for different neurodegenerative
diseases. Following the good results obtained in this illustrative ex-
ample, we intent to develop a new diagnostic tool based on quantitative
measures, which should account for the uncertainty of the diagnosis,
given the similarity of prion diseases to other syndromes. This new
diagnostic algorithm, developed to identify prion disease among other
neurodegenerative diseases, would improve the detection accuracy of
this illness, and thus address the current high rate of misdiagnosis pa-
tients.6

By analysing the predictive accuracy of the latent models, our ap-
proach also gives information regarding the combination of input fea-
tures that better describes the response variable, defined here as sub-
ject’s status. This means that we can extend our approach to learn the
best model for a specific aim, aside of learning the best kernel function
used to explain the variance of the features that characterise the sub-
jects’ symptoms.

More generally, due to their statistical nature, the performances of
machine learning approaches are negatively impacted by small sample
size in the presence of normal or pathological variability. Finally, a
specific drawback of GP models is that their computational complexity
scale poorly with the number of observations N; i.e., solving GP models
requires 
 N( )3 computations.

In the future, thanks to the flexibility given by the GP, we aim to
extend our framework to account for the longitudinal information
available. This will allow not only a more accurate stratification of
subjects based on the extracted biomarkers, but also the subjects
prognosis in a given time frame. We intend to do this by integrating a
spatio-temporal covariance model, such as the Kronecker form pro-
posed by Lorenzi et al. (2015), to provide a unified framework to model
jointly the time-series of biomarkers measurements with different nat-
ures, for a given subject.

5. Conclusion

This study presents a novel framework to extract and select imaging
biomarkers especially relevant for the diagnosis of prion diseases. We
demonstrate that it is possible to use a non-parametric Bayesian algo-
rithm for the diagnosis and subjects’ stratification by disease severity.
Moreover, the model presented in this study may also be extended to

consider longitudinal data and to model individual brain changes;
therefore, the model represents a promising tool for subjects’ diagnosis
and prognosis.
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