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INTRODUCTION

Breast cancer is one of the most common fatal malignant 
tumors [1]. Estrogen receptor (ER)-positive breast cancer ac-
counts for more than 60% of all breast cancer cases [2], for 
which endocrine therapy is among the most effective treat-

ments. Tamoxifen, a selective estrogen-receptor modulator, is 
widely used in the adjuvant treatment of patients with ER-
positive breast cancer [3]. However, de novo or acquired resis-
tance still occurs. Approximately 30% of ER-positive patients 
do not respond to adjuvant tamoxifen treatment [4]. To deter-
mine whether ER-positive patients require further adjuvant 
treatment beyond tamoxifen, clinical and pathological para-
meters must be identified to predict the disease outcome follow-
ing tamoxifen therapy. For patients with a high risk of relapse, 
additional treatment, such as chemotherapy, may be needed 
to decrease disease recurrence. Breast cancer tumor are het-
erogeneous and routine clinical and pathological factors, in-
cluding age, menopausal status, ER positivity, progesterone 
receptor (PR) positivity, human epidermal growth factor re-
ceptor 2 (HER2) status, and Ki-67 expression level, cannot ac-
curately predict disease outcomes following tamoxifen treat-
ment [5]. In recent decades, several multi-gene assays, such as 
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Purpose: Recent data have shown that the expression levels of 
long noncoding RNAs (lncRNAs) are associated with tamoxifen 
sensitivity in estrogen receptor (ER)-positive breast cancer. Herein, 
we constructed an lncRNA-based model to predict disease out-
comes of ER-positive breast cancer patients treated with tamox-
ifen. Methods: LncRNA expression information was acquired 
from Gene Expression Omnibus by re-mapping pre-existing mi-
croarrays of patients with ER-positive breast cancer treated with 
tamoxifen. The distant metastasis-free survival (DMFS) predic-
tive signature was subsequently built based on a Cox propor-
tional hazard regression model in discover cohort patients, which 
was further evaluated in another independent validation dataset. 
Results: Six lncRNAs were found to be associated with DMFS in 
the discover cohort, which were used to construct a tamoxifen 
efficacy-related lncRNA signature (TLS). There were 133 and 362 
patients with TLS high- and low-risk signatures in the discover 
cohort. Both univariate and multivariate analysis demonstrated 
that TLS was associated with DMFS. TLS high-risk patients had 
worse outcomes than low-risk patients, with a hazard ratio of 

4.04 (95% confidence interval, 2.83–5.77; p<0.001). Both sub-
group analysis and receiver operating characteristic analysis in-
dicated that TLS performed better in lymph node-negative, lumi-
nal B, 21-gene recurrence score high-risk, and 70-gene progno-
sis signature high-risk patients. Moreover, in a comparison of the 
21-gene recurrence score and 70-gene prognosis signature, TLS 
showed a similar area under receiver operating characteristic 
curve in all patients. Gene Set Enrichment Analysis indicated 
that TLS high-risk patients showed different gene expression 
patterns related to the cell cycle and nucleotide metabolism from 
those of low-risk patients. Conclusion: This six-lncRNA signature 
was associated with disease outcome in ER-positive breast can-
cer patients treated with tamoxifen, which is comparable to pre-
vious messenger RNA signatures and requires further clinical 
evaluation.  
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21-gene recurrence score, 70-gene prognosis signature, and 
intrinsic subtype signature, were developed and approved by 
the U.S. Food and Drug Administration for predicting disease 
outcomes of ER-positive patients, leading to more individual-
ized administration of chemotherapy and endocrine therapy 
for these patients [6]. 

Long noncoding RNAs (lncRNAs) are transcripts longer 
than 200 nucleotides without protein translational potential. 
More than 90% of the human genome is transcribed into 
nonprotein coding RNAs, indicating the potentially impor-
tant roles of these sequences in cancer progression in addition 
to messenger RNAs (mRNAs) [7]. In recent years, numerous 
lncRNAs such as UCA1, DSCAM-AS1, and HOTAIR were 
found to be associated with tamoxifen sensitivity in ER-posi-
tive breast cancer, suggesting that lncRNAs can be applied as 
prognosis biomarkers in tamoxifen-treated patients with 
breast cancer [8-10]. A predictive model integrating multiple 
lncRNAs may more accurately predict outcomes than a single 
lncRNA. Additionally, an lncRNA-based predictive model 
may provide prognosis information based on pre-existing 
mRNA signatures, which may cooperate with mRNA predic-
tion models and improve outcome prediction in tamoxifen 
therapy.

In the present study, we used Gene Expression Omnibus 
(GEO) data to select lncRNAs related to tamoxifen sensitivity 
and construct an lncRNA-based signature to predict disease 
outcomes of ER-positive breast cancer patients treated with 
tamoxifen, which was then evaluated in an independent vali-
dation cohort. Additionally, this lncRNA-based signature was 
compared with the 21-gene recurrence score and 70-gene 
prognosis signature in these patients to investigate the poten-
tial clinical implications of this approach.

METHODS

Tamoxifen-treated patients with breast cancer profiling 
database

Datasets in the GEO meeting the following criteria were in-
cluded in our study and formed the discover and validation 
datasets. First, gene expression data of patients was acquired 
using the Affymetrix HG-U133 A (GPL96) or HG-U133 Plus 
2.0 (GPL570) microarray platform (Affymetrix, Santa Clara, 
USA). Next, breast cancer patients were with a full record of 
their ER status and treated with tamoxifen adjuvant treat-
ment. Finally, distant metastasis-free survival (DMFS) records 
were available for each patient in these datasets. Since all the 
patients’ data were obtained from public available GEO, ethic 
approvals of study and informed consent were already han-
dled when they were submitted to GEO.

Determination of lncRNA expression by re-mapping 
approach

The lncRNA expression data from gene expression chips 
was obtained and analyzed as previously reported [11-13]. 
Briefly, the Robust Multichip Average package and Combat 
function in the Surrogate Variable Analysis package were  
utilized to normalize raw data among different datasets [14, 
15]. Moreover, the Guided Principal Components Analysis 
package was utilized to assess the batch effect before and after 
normalization [16]. The statistical variance and the first two 
principal components from each batch were compared before 
and after normalization for the discover and validation  
datasets, respectively. The p-value of batch variance was ana-
lyzed accordingly.

To determine lncRNA expression, probes from the arrays 
were aligned to the human genome (GRCh38/hg38) using 
SeqMap [17] such that probes matching the lncRNA chromo-
somal positions from GENCODE (http://www.gencodegenes.
org; GRCh38, release 25) were identified [18]. 

Cox proportional hazards regression prediction model 
construction

To identify lncRNAs correlated with DMFS, univariate Cox 
proportional hazards regression analysis was firstly performed 
to evaluate the relationship between each lncRNA and DMFS 
in the discover cohort. Only lncRNAs related to DMFS with 
p< 0.002 were considered statistically significant. Each lncRNA 
was evaluated by stratifying patients in the discover cohort 
with Cutoff Finder [19]. Multivariate Cox proportional hazards 
regression analysis was conducted by inputting the significant 
lncRNAs. By integrating these prognosis-related lncRNAs, a 
Cox proportional hazards regression prediction model was 
established. The predictive risk score of each patient was then 
calculated from the linear combination of lncRNA expression 
with its regression coefficients generated in multivariate Cox 
proportional hazards regression analysis. Separated by the op-
timized cutoff score value, patients were classified into a low-
risk group with relatively good survival and a high-risk group 
with poor survival. Survival curves were derived using the 
Kaplan-Meier method with log-rank tests to evaluate differ-
ences in DMFS between the low- and high-risk groups with R 
package “survminer”. Receiver operating characteristic (ROC) 
analysis was performed to assess the predictive capability of 
the model with the R package “survivalROC” [20]. 

Inference of biological processes driven tamoxifen resistance in 
tamoxifen efficacy-related lncRNA signature high-risk patients 

To evaluate the biological processes driving tamoxifen resis-
tance in the tamoxifen efficacy-related lncRNA signature 
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(TLS) high-risk patients, Gene Set Enrichment Analysis 
(GSEA; http://www.broadinstitute.org/gsea) was performed 
to detect the biological differences between TLS high-risk and 
low-risk patients using MSigDB c2: curated gene sets: all ca-
nonical pathways [21,22]. Gene sets associated with TLS high-
risk patients and identified with a false discovery rate (FDR) 
< 0.01 and p< 0.005 were considered as statistically signifi-
cant. Furthermore, we attempted to annotate the potential 
function of each lncRNA in the TLS. Because GSEA failed to 
show significant results for individual lncRNAs in our analy-
sis, a previously described method was adopted [11,13,23]. 
Briefly, mRNAs highly correlated with each lncRNA were 
identified in the discover dataset by Pearson correlation analy-
sis (top 1.0%). Next, the positively or negatively correlated 
mRNAs were input into the Database for Annotation, Visual-
ization, and Integrated Discovery (DAVID; version 6.8; 
https://david.ncifcrf.gov/) [24,25]. Finally, DAVID functional 
annotations with FDR < 0.01 and p < 0.005 were visualized 
with the Enrichment Map plugin in Cytoscape (version 3.2.0; 
http://www.cytoscape.org) for each lncRNA [26].

Statistical analysis
All data in this study was analyzed with R software (version 

3.3.1; http://www.r-project.org/) and Bioconductor (http://
www.bioconductor.org/). PAM50 intrinsic subtypes, 21-gene 
recurrence score (Oncotype DX®; Genomic Health, Redwood 
City, USA) and 70-gene prognosis signature (MammaPrint®; 
Agendia, Amsterdam, the Netherlands) were obtained by us-
ing the “genefu” package in R [27]. A p-value less than 0.05 

was considered significant.

RESULTS

Establishment of discover and validation datasets
A total of 1,056 tamoxifen-treated patients with ER-positive 

breast cancer from GSE6532, GSE9195, GSE17705, GSE19615, 
GSE26971, and GSE45255 datasets were enrolled in this study. 
In detail, 197 ER-positive patients from GSE6532 (GPL96 
platform part) and 298 ER-positive patients from GSE17705 
(GPL96) treated only with 5 years of tamoxifen were com-
bined as the discovery dataset for lncRNA-based model con-
struction. Additionally, 88 patients from GSE6532 (GPL570 
platform part), 77 patients from GSE9195 (GPL570), 62 pa-
tients from GSE19615 (GPL96), 258 patients from GSE26971 
(GPL96), and 74 patients from GSE45255 (GPL96) who were 
also treated with 5 years of tamoxifen were combined as the 
validation dataset. Principal component analysis revealed no 
significant variance among batches for both the discover and 
validation datasets after normalization (Supplementary Fig-
ures 1 and 2, available online).

In the discover cohort, there were 315 and 164 patients with 
negative and positive lymph nodes. A total of 147 patients 
were classified as luminal A subtype, while 348 patients had 
other intrinsic subtypes of tumors. For the 21-gene recurrence 
score, 253 tumors were classified as recurrence score low and 
medium, while 242 patients had high recurrence score tu-
mors. In terms of the 70-gene prognosis signature, there were 
48 and 447 patients with low-risk and high-risk signatures 

Table 1. Distribution of patients and parameters correlated with DMFS in discover set

Characteristic No.
Univariate analysis Multivariate analysis

HR 95% CI p-value HR 95% CI p-value

Lymph node status 0.001 0.445
   Negative 315 1 1
   Positive 164 1.99 0.62–6.37 1.58 0.49–5.09
   Unknown 16
TLS <0.001 <0.001
   Low-risk 362 1 1
   High-risk 133 4.04 2.83–5.77 3.40 2.34–4.96
Intrinsic subtype 0.016 0.768
   Luminal A 147 1 1
   Others 348 1.68 1.10–2.58 0.93 0.59–1.49
Gene21 <0.001 0.008
   Low & medium-risk 253 1 1
   High-risk 242 2.27 1.56–3.29 1.72 1.15–2.58
Gene70 0.028 0.460
   Low-risk 48 1 1
   High-risk 447 2.63 1.08–6.44 1.42 0.56–3.60

DMFS=distant metastasis-free survival; HR=hazard ratio; CI=confidence interval; TLS=tamoxifen efficacy-related long noncoding RNA signature; Gene21=21-
gene recurrence score; Gene70=70-gene prognosis signature.
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Table 2. Distribution of patients and parameters correlated with DMFS in validation set

Characteristic No.
Univariate analysis Multivariate analysis

HR 95% CI p-value HR 95% CI p-value

Tumor size (cm) 0.055 -
   ≤2 239 1 -
   >2 308 1.45 0.99–2.12 - -
   Unknown 11
Lymph node status 0.293 -
   Negative 285 1 -
   Positive 231 1.23 0.84–1.81 - -
   Unknown 42
TLS 0.006 0.023
   Low-risk   380 1 1
   High-risk 178 1.66 1.15–2.40 1.54 1.06–2.24
Intrinsic subtype 0.057 -
   Luminal A 180 1 -
   Others 378 1.49 0.99–2.26 - -
Gene21 0.038 0.103
   Low & medium-risk 244 1 1
   High-risk 314 1.49 1.02–2.17 1.38 0.94–2.02
Gene70 0.032 0.144
   Low-risk 94 1 1
   High-risk 464 1.90 1.05–3.45 1.58 0.86–2.92

DMFS=distant metastasis-free survival; HR=hazard ratio; CI=confidence interval; TLS=tamoxifen efficacy-related long noncoding RNA signature; Gene21=21-
gene recurrence score; Gene70=70-gene prognosis signature.

Affymetrix HG-U133 A & HG-U 133 Plus 2.0 microarray re-annotation

365 IncRNAs shared by two microarrays

Identify 6 IncRNAs with p-value<0.002 in the univariate Cox proportional hazards regression model of the combined dataset of 
GSE6532 (HG-U133A) & GSE17705 whose patients were only treated with 5 years tamoxifen

Construct multivariate Cox proportional hazards regression model to predict patient distant 
metastasis-free survival in the discover dataset with these 6 IncRNAs

Validate this tamoxifen efficacy related IncRNA prediction model in validation dataset composed of GSE6532  
(HG-U133 Plus 2.0), GSE9195, GSE19615, GSE26971 and GSE45255 whose patients were treated with tamoxifen

Subgroup analysis ROC analysis Function annotation

Probes were re-mapped to human genome (GRCh 38/hg38) 
using SeqMap and matched to the IncRNA chromosomal 

positions from GENCODE (release 25, GRCh 38)

Identify 598 probes corresponding to 452 IncRNAs with 
HG-U133 A microarray

Identify 5,654 probes corresponding to 3,793 IncRNAs with 
HG-U133 Plus 2.0 microarray

Figure 1. The diagram of the construction and validation of the tamoxifen efficacy-related long noncoding RNA (lncRNA) signature.
ROC=receiver operating characteristic.
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(Table 1). The medium follow-up period was 7.4 (0.0−16.3) 
years and 126 patients (25.5%) experienced distant metastasis 
in the discover cohort.

A total of 558 patients were included in the validation co-
hort. Two hundred thirty-nine patients had tumors no larger 
than 2.0 cm, while 308 patients had tumors larger than 2.0 
cm. A total of 285 patients were lymph node-negative and 231 
patients were lymph node-positive. Additionally, 180 patients 
were classified as luminal A subtype and 378 as other sub-
types. In terms of 21-gene recurrence classification, there were 
244 and 314 patients classified as having low to medium and 
high recurrence scores, respectively. Meanwhile, 94 and 464 
patients had low and high 70-gene prognosis scores, respec-
tively (Table 2). After a medium follow-up of 6.3 (0.0−17.6) 
years, 117 patients (21.0%) had distant metastasis events.

Identification of lncRNAs associated with disease outcome in 
the discover dataset 

After establishing the discover and validation datasets, we 
re-annotated the probes corresponding to lncRNAs for the 

HG-U133A and HG-U133 Plus 2.0 Affymetrix platform. A 
total of 598 probes corresponding to 452 lncRNAs were ob-
tained for the HG-U133A microarray, while 5,654 probes 
were matching with 3,793 lncRNAs in the HG-U133 Plus 2.0 
microarray. There were 365 lncRNAs overlapping between the 
two platforms. Figure 1 shows a diagram of the data analysis 
and model construction.

In the discover group of 495 ER-positive patients treated 
with tamoxifen, six of these 365 overlapping lncRNAs were 
significantly associated with DMFS in univariate Cox propor-
tional hazard regression analysis (Table 3). Each of these six 
lncRNAs was capable of classifying patients into high- and 
low-risk groups, which could predict disease outcomes in this 
cohort of patients (Figure 2).

Establishment of TLS in the discover dataset
These six lncRNAs were then integrated in a multivariate 

Cox proportional hazard regression model to construct TLS, 
which assessed each tamoxifen-treated patient with an indi-
vidual risk score. TLS scores were calculated as follows: TLS 

Figure 2. The six lncRNAs selected for the construction of the tamoxifen efficacy-related long noncoding RNA (lncRNA) signature. Six lncRNAs were 
identified with p-value less than 0.002 in the univariate Cox proportional hazards regression analysis of distant metastasis-free survival (DMFS) for the 
discover dataset. Each of them successfully divided patients in the discover dataset into high-risk and low-risk groups. (A) RP11-189B4.7, (B) RP11-
59H7.3, (C) CTD-2090|13.1, (D) LINC01399, (E) RP11-119F7.5, and (F) RP11-193F5.1.
HR=hazard ratio.
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score= 0.3753× expression value of RP11-189B4.7+0.1399×  
expression value of RP11-59H7.3+0.3604× expression value of 
CTD-2090|13.1+0.1562 × expression value of LINC01399+ 
0.4007× expression value of RP11-119F7.5+0.0561× expression 
value of RP11-193F5.1. The ROC curve of TLS was subse-
quently obtained with an area under the ROC curve (AUC) of 
0.764 for 5 years of DMFS in the discover cohort (Figure 3A). 
In the ROC curve, by selecting the point nearest to the perfect 
prediction point, the cutoff value was set to 0.362 for TLS. Pa-
tients in the discover dataset were then separated into 133 

high-risk cases and 362 low-risk cases (Table 1). The heat map 
revealed distinct lncRNA expression and DMFS in the TLS 
high- and low-risk groups (Figure 3B). Moreover, patients in 
the high-risk group had worse DMFS than those in the low-
risk group by Kaplan-Meier analysis (Figure 3C). Univariate 
Cox proportional hazard regression demonstrated that lymph 
node status (hazard ratio [HR], 1.99; 95% confidence interval 
[CI], 0.62–6.37; p= 0.001), TLS (HR, 4.04; 95% CI, 2.83–5.77; 
p < 0.001), intrinsic subtype (HR, 1.68; 95% CI, 1.10–2.58; 
p= 0.016), 21-gene recurrence score (HR, 2.27; 95% CI, 1.56–

Table 3. LncRNAs identified to be associated with DMFS in discover data set

Gene ID Gene symbol Chromosome position (GRCh38) p-value HR

ENSG00000277228.1 RP11-189B4.7 Chr13: 46,474,246-46,493,268 (+) <0.001 1.47
ENSG00000259732.1 RP11-59H7.3 Chr15:59,121,034-59,133,250 (+) <0.001 1.41
ENSG00000234277.2 CTD-2090|13.1 Chr1:227,393,591-227,431,035 (+) <0.001 1.37
ENSG00000233080.2 LINC01399 Chr22:35,119,824-35,231,056 (−) 0.001 1.37
ENSG00000260400.1 RP11-119F7.5 Chr10:68,698,500-68,700,794 (+) <0.001 1.35
ENSG00000258892.1 RP11-193F5.1 Chr14:60,879,714-60,982,585 (+) 0.001 1.34

lncRNA= long noncoding RNA; DMFS=distant metastasis-free survival; HR=hazard ratio.

Figure 3. The prediction performance of the tamoxifen efficacy-related long noncoding RNA (lncRNA) signature (TLS) in the discover dataset after op-
timization. The TLS was optimized with best cutoff value. After that, the performance of TLS and expression profile of lncRNAs in TLS was analyzed 
in the discover dataset. (A) In the discover dataset, receiver operating characteristic (ROC) curve for the performance of TLS in distant metastasis-free 
survival (DMFS) was plotted with the corresponding area under the ROC curve (AUC) and the best cutoff for TLS score was determined. (B) The ex-
pression profile of the six lncRNAs in TLS, the risk score of TLS and patients’ DMFS were integrated and then evaluated in the discover cohort. (C) 
Patients classified by TLS with optimized cutoff value were evaluated in Kaplan-Meier analysis in the discover dataset.
HR=hazard ratio.
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3.29; p< 0.001) and 70-gene prognosis signature (HR, 2.63; 
95% CI, 1.08–6.44; p= 0.028) were related to DMFS in the 
discover cohort. Multivariate Cox proportional hazard regres-
sion analysis demonstrated that only TLS (HR, 3.40; 95% CI, 
2.34–4.96; p< 0.001) and 21-gene recurrence score (HR, 1.72; 
95% CI, 1.15–2.58; p= 0.008) were independent factors asso-
ciated with DMFS in the discover cohort.

TLS validation
In the validation cohort, TLS separated patients into 178 

high-risk cases and 380 low-risk cases (Table 2). This six ln-
cRNA-based signature was also found to be associated with 
DMFS (Figure 4). In univariate Cox proportional hazard re-
gression analysis, we found that the TLS (HR, 1.66; 95% CI, 
1.15–2.40; p = 0.006), 21-gene recurrence score (HR, 1.49; 
95% CI, 1.02–2.17; p= 0.038), and 70-gene prognosis signa-
ture (HR, 1.90; 95% CI, 1.05–3.45; p= 0.032) were related to 
DMFS. Multivariate analysis showed that only TLS (HR, 1.54; 
95% CI, 1.06–2.24; p= 0.023) was independently correlated 
with DMFS. 

Subgroup analysis of TLS and disease outcome
Overall, a total of 1,053 patients were in the discover and 

validation cohorts. There were 600, 395, and 58 patients with 
lymph node-negative, -positive, and unknown disease. Pa-
tients with known lymph node status were included in the 
following analysis. According to the PAM50 classification cri-
teria, 327 cases were identified as luminal A subtype, 496 cases 
as luminal B subtype, 61 cases as HER2-enriched subtype, 44 
cases as basal-like subtype and 125 cases as normal-like sub-
type. Patients with luminal A and B disease were included in 
further subgroup analysis. In terms of the 21-gene recurrence 
score, there were 232, 265, and 556 patients classified as hav-
ing low-, medium-, and high-risk recurrence scores, respec-
tively. For the 70-gene prognosis signature, 142 and 911 pa-
tients were classified as having low-risk and high-risk signa-
tures. Subgroups analysis showed that TLS performed better 
in the lymph node-negative subgroup (HR, 3.28; 95% CI, 
2.26–4.75; p< 0.001) than in the positive subgroup (HR, 2.02; 
95% CI, 1.39–2.93; p < 0.001), better in the luminal B sub-
group (HR, 2.41; 95% CI, 1.73–3.37; p< 0.001) than in the lu-
minal A subgroup (HR, 1.96; 95% CI, 1.07–3.58; p= 0.026), 

Figure 4. The evaluation of prediction capability of the tamoxifen efficacy-related long noncoding RNA (lncRNA) signature (TLS) in the validation data-
set. (A) The expression profile of lncRNAs in TLS, the risk score of TLS and patients’ distant metastasis-free survival (DMFS) were integrated and then 
evaluated in the validation cohort. (B) Patients classified by TLS with optimized cutoff value were evaluated in Kaplan-Meier analysis in the validation 
dataset. 
HR=hazard ratio.
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better in the 21-gene recurrence score high-risk subgroup 
(HR, 2.60; 95% CI, 1.89–3.56; p< 0.001) than in the low-risk 
subgroup (HR, 1.91; 95% CI, 0.96–3.83; p= 0.062) and medi-
um-risk subgroup (HR, 1.85; 95% CI, 1.00–3.44; p= 0.047) 
and better in the 70-gene prognosis signature high-risk sub-
group (HR, 2.35; 95% CI, 1.81–3.06; p< 0.001) than in the 
low-risk subgroup (HR, 2.55; 95% CI, 0.73–8.92; p= 0.129) 
(Figure 5). 

Comparison and integration of TLS with other gene models
The predictive accuracy of TLS was then compared with the 

21-gene recurrence score and 70-gene prognosis signature in 
all patients with AUC values of 0.656, 0.635, and 0.631, re-
spectively (Figure 6). In all lymph node-negative patients, the 
AUC values were 0.693, 0.676, and 0.623 for the TLS, 21-gene 
recurrence score and 70-gene prognosis signature in terms of 
DMFS outcome prediction. Similar results were observed in 
the lymph node-positive subgroup (AUC values of 0.627, 
0.573, and 0.611, respectively). For different intrinsic subtypes 
of all patients, TLS was not superior to the 21-gene recurrence 
score and 70-gene prognosis signature in the luminal A sub-
type (AUC values of 0.548, 0.688, and 0.534, respectively). 
However, TLS performed much better than the 21-gene re-
currence score and 70-gene prognosis signature in the lumi-
nal B subtype with AUC values of 0.659, 0.580, and 0.580, re-
spectively. Furthermore, integration of TLS into the current 
21-gene recurrence score and 70-gene prognosis signature 

improved the disease outcome prediction power (Figure 6).

Identification of biological processes driving tamoxifen 
resistance in TLS high-risk patients

GSEA was performed to determine the biological difference 
between the TLS high-risk and low-risk group patients and 
biological processes driving tamoxifen resistance in TLS high-
risk patients. In GSEA, gene sets significantly associated with 
TLS high-risk patients were identified in the discover cohort 
(FDR< 0.01, p< 0.005) (Supplementary Table 1, available on-
line) . Our result indicated that most gene sets associated with 
TLS high-risk patients were mainly correlated with cell cycle 
(most gene sets were correlated with G0/G1 phase, some were 
related to S phase and G2/M phase) and nucleotide metabol-
ism (such as transcription, DNA and RNA synthesis). We also 
attempted to annotate the function of each lncRNA in the 
TLS by DAVID annotation analysis whose results are shown 
in Supplementary Figure 3 (available online).

DISCUSSION

In this study, a 6-lncRNA signature TLS was generated to 
predict tamoxifen sensitivity and survival outcomes of ER-
positive breast cancer patients treated with tamoxifen. Multi-
variate Cox proportional hazard regression analysis demon-
strated that TLS was independently correlated with the DMFS 
of ER-positive patients in both the discover and validation co-

Figure 5. The evaluation of prediction power of the tamoxifen efficacy-related long noncoding RNA signature (TLS) in different subgroups of all tamox-
ifen treated breast cancer patients. Survival analysis of distant metastasis-free survival (DMFS) was performed to assess the prediction power of TLS 
in all tamoxifen treated patients, lymph node-negative subgroup, lymph node-positive subgroup, luminal A subgroup, luminal B subgroup, 21-gene 
recurrence score low-risk subgroup, 21-gene recurrence score medium-risk subgroup, 21-gene recurrence score high-risk subgroup, 70-gene prog-
nosis signature low-risk subgroup and 70-gene prognosis signature high-risk subgroup.
HR=hazard ratio; CI=confidence interval.  
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horts. We also found that this TLS predicted disease outcome 
in different subgroups and the integration of TLS with other 
gene signatures improved outcome prediction. 

Adjuvant tamoxifen treatment can dramatically reduce the 
recurrence risk of ER-positive breast cancer [3]. However, 
various factors lead to primary or secondary tamoxifen resis-
tance in ER-positive patients, including difficulties in ER 
binding, reactivation of ER-mediated downstream biological 
processes, stimulation from the tumor microenvironment and 
mutation of the ESR1 gene. Recent studies demonstrated that 
lncRNAs are related to reactivation of ER downstream path-
ways, providing insight into the mechanism of tamoxifen re-
sistance [28]. In our study, the lncRNA-based model included 
six lncRNAs, which have not been thoroughly studied. Our 
GSEA analysis demonstrated that GSEA high-risk patients 
had different cell cycle (most gene sets were correlated with 
G0/G1 phase, some were related to S phase or G2/M phase) 
and nucleotide metabolism genes from those in the low-risk 

group (Supplementary Table 1, available online). Estrogen can 
accelerate the G1 to S phase transition to promote cell cycle 
progression. Tamoxifen inhibits breast cancer cell growth by 
arresting cells at G0/G1 phase, during which time nucleotides 
are prepared for the next step DNA synthesis [29,30]. There-
fore, we predicted that patients with high TLS scores were re-
sistant to tamoxifen therapy because these lncRNAs interfered 
with G0/G1 arrest induced by tamoxifen.

The PAM50 subtype, 21-gene recurrence score and 70-gene 
prognosis signature are the most widely used mRNA signa-
tures to predict the prognosis of ER-positive breast cancer pa-
tients. These mRNA signatures are superior to traditional clini-
copathological factors and can predict the efficacy of adjuvant 
chemotherapy and endocrine therapy in these patients. Pa-
tients with the luminal B subtype, high recurrence score, or 
poor 70-gene prognosis signature tumor have a higher recur-
rence risk, leading to adjuvant chemotherapy recommenda-
tion. In contrast, for patients with luminal A, low recurrence 

Figure 6. The comparison of the predictive power among 21-gene recurrence score (Gene21), 70-gene prognosis signature (Gene70), the tamoxifen 
efficacy-related long noncoding RNA signature (TLS), the integrated model of Gene21 with TLS and the integrated model of Gene70 with TLS in differ-
ent subgroups of all patients. The receiver operating characteristic (ROC) of Gene21, Gene70, TLS, the integrated model of Gene21 with TLS and the 
integrated model of Gene70 with TLS were plotted and corresponding area under the ROC curve (AUC) was calculated in total tamoxifen treated breast 
cancer patients (A), all lymph node-negative patients (B), all lymph node-positive patients (C), all luminal A patients (D), and all luminal B patients (E).
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score, or good prognosis signature tumor who have a low risk 
of relapse, adjuvant chemotherapy cannot provide further ben-
efits in addition to endocrine therapy [6]. In the present study, 
we found TLS provided additional prognosis information 
compared with the PAM50 subtype, 21-gene recurrence score 
and 70-gene prognosis signature. Subgroup analysis and ROC 
analysis demonstrated that the TLS model could further classi-
fy patients into different relapse risk groups, particularly in 
lymph node-negative, luminal B, 21-gene recurrence score 
high-risk and 70-gene prognosis signature high-risk patients. 
Additionally, integration of TLS with other mRNA signatures 
also improved the prediction accuracy for ER-positive breast 
cancer patients treated with tamoxifen. As a result, chemother-
apy can be administrated to patients in need more accurately.

Our study also had several limitations. First, the microarray 
platform and repurposing method limited the number of  
lncRNAs available for analysis, which may not have included 
potentially important lncRNAs. Second, clinicopathological 
factors including menopausal status, tumor grade, and pathol-
ogical type of enrolled patients were not available. Thus, it re-
mains uncertain whether TLS can predict the DMFS in cer-
tain subgroups. Moreover, it was unknown whether these 
clinicopathological factors can be integrated with TLS, which 
may further improve the prediction accuracy for ER-positive 
patients treated with tamoxifen. 

In conclusion, we identified six lncRNAs useful for predict-
ing DMFS in ER-positive breast cancer patients treated with 
tamoxifen. Our six lncRNA-based model further classified 
these patients into high TLS score and low TLS score groups, 
which was independently associated with DMFS and requires 
further clinical evaluation.
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Supplementary Table 1. Detail of the Gene Set Enrichment Analysis for all six lncRNAs

Gene set Gene ES NES NOM p-val FDR q-val FWER p-val

REACTOME_RNA_POL_II_TRANSCRIPTION_PRE_INITIATION_AND_PROMOTER_OPENING 38 0.68 2.24 0.00E+00 9.59E-04 8.00E-03
REACTOME_MRNA_SPLICING_MINOR_PATHWAY 35 0.76 2.23 0.00E+00 9.60E-04 9.00E-03
REACTOME_MITOTIC_M_M_G1_PHASES 137 0.66 2.26 0.00E+00 1.04E-03 6.00E-03
REACTOME_G1_S_TRANSITION 93 0.70 2.24 0.00E+00 1.05E-03 8.00E-03
REACTOME_TRANSCRIPTION 165 0.58 2.22 0.00E+00 1.13E-03 1.00E-02
REACTOME_RNA_POL_II_PRE_TRANSCRIPTION_EVENTS 57 0.66 2.24 0.00E+00 1.15E-03 8.00E-03
REACTOME_HIV_LIFE_CYCLE 108 0.60 2.21 0.00E+00 1.18E-03 1.20E-02
REACTOME_DNA_REPLICATION 156 0.66 2.26 0.00E+00 1.19E-03 6.00E-03
REACTOME_LATE_PHASE_OF_HIV_LIFE_CYCLE 96 0.60 2.21 0.00E+00 1.26E-03 1.20E-02
REACTOME_CELL_CYCLE_CHECKPOINTS 94 0.70 2.24 0.00E+00 1.28E-03 8.00E-03
REACTOME_CLASS_I_MHC_MEDIATED_ANTIGEN_PROCESSING_PRESENTATION 186 0.57 2.28 0.00E+00 1.30E-03 4.00E-03
REACTOME_CELL_CYCLE_MITOTIC 253 0.61 2.26 0.00E+00 1.39E-03 6.00E-03
REACTOME_ANTIGEN_PROCESSING_UBIQUITINATION_PROTEASOME_DEGRADATION 153 0.59 2.29 0.00E+00 1.40E-03 3.00E-03
REACTOME_HIV_INFECTION 182 0.61 2.27 0.00E+00 1.67E-03 6.00E-03
REACTOME_CELL_CYCLE 322 0.60 2.31 0.00E+00 1.98E-03 2.00E-03
REACTOME_RNA_POL_II_TRANSCRIPTION 84 0.64 2.30 0.00E+00 2.10E-03 3.00E-03
REACTOME_M_G1_TRANSITION 67 0.71 2.17 0.00E+00 2.54E-03 2.30E-02
REACTOME_HOST_INTERACTIONS_OF_HIV_FACTORS 114 0.62 2.16 0.00E+00 2.57E-03 2.50E-02
REACTOME_MITOTIC_G1_G1_S_PHASES 112 0.64 2.15 0.00E+00 2.81E-03 3.20E-02
REACTOME_DNA_REPAIR 92 0.58 2.16 0.00E+00 2.96E-03 3.20E-02
REACTOME_S_PHASE 93 0.69 2.15 0.00E+00 3.15E-03 4.00E-02
REACTOME_MITOTIC_PROMETAPHASE 66 0.62 2.12 0.00E+00 3.68E-03 5.20E-02
REACTOME_MRNA_SPLICING 71 0.62 2.12 0.00E+00 3.72E-03 5.40E-02
KEGG_BASAL_TRANSCRIPTION_FACTORS 31 0.61 2.14 0.00E+00 3.74E-03 4.80E-02
REACTOME_SYNTHESIS_OF_DNA 78 0.70 2.12 0.00E+00 3.83E-03 5.20E-02
REACTOME_CHROMOSOME_MAINTENANCE 93 0.62 2.12 0.00E+00 3.86E-03 5.40E-02
REACTOME_SCFSKP2_MEDIATED_DEGRADATION_OF_P27_P21 51 0.74 2.11 0.00E+00 3.88E-03 5.90E-02
REACTOME_REGULATION_OF_MITOTIC_CELL_CYCLE 69 0.71 2.13 0.00E+00 3.90E-03 5.10E-02
KEGG_CELL_CYCLE 105 0.56 2.11 0.00E+00 3.91E-03 5.70E-02
REACTOME_REGULATION_OF_MRNA_STABILITY_BY_PROTEINS_THAT_BIND_AU_RICH_

ELEMENTS
73 0.66 2.13 0.00E+00 3.97E-03 5.10E-02

REACTOME_APC_C_CDC20_MEDIATED_DEGRADATION_OF_MITOTIC_PROTEINS 58 0.72 2.07 0.00E+00 4.32E-03 8.80E-02
REACTOME_FORMATION_OF_RNA_POL_II_ELONGATION_COMPLEX_ 41 0.65 2.08 0.00E+00 4.53E-03 8.80E-02
REACTOME_NUCLEOTIDE_EXCISION_REPAIR 47 0.60 2.08 0.00E+00 4.64E-03 8.80E-02
REACTOME_MRNA_PROCESSING 114 0.57 2.10 0.00E+00 4.64E-03 6.90E-02
KEGG_HUNTINGTONS_DISEASE 151 0.56 2.07 0.00E+00 4.73E-03 9.40E-02
REACTOME_CYCLIN_E_ASSOCIATED_EVENTS_DURING_G1_S_TRANSITION_ 60 0.71 2.10 0.00E+00 4.75E-03 6.80E-02
REACTOME_ORC1_REMOVAL_FROM_CHROMATIN 56 0.71 2.08 0.00E+00 4.75E-03 8.80E-02
REACTOME_APC_C_CDH1_MEDIATED_DEGRADATION_OF_CDC20_AND_OTHER_APC_

C_CDH1_TARGETED_PROTEINS_IN_LATE_MITOSIS_EARLY_G1
58 0.72 2.08 0.00E+00 4.85E-03 8.70E-02

KEGG_SPLICEOSOME 84 0.63 2.08 0.00E+00 4.95E-03 8.60E-02
REACTOME_AUTODEGRADATION_OF_CDH1_BY_CDH1_APC_C 51 0.73 2.06 0.00E+00 4.95E-03 9.80E-02
REACTOME_PROCESSING_OF_CAPPED_INTRON_CONTAINING_PRE_MRNA 99 0.58 2.08 0.00E+00 5.05E-03 8.60E-02
REACTOME_P53_DEPENDENT_G1_DNA_DAMAGE_RESPONSE 50 0.71 2.08 0.00E+00 5.08E-03 8.40E-02
REACTOME_METABOLISM_OF_NON_CODING_RNA 39 0.65 2.05 0.00E+00 5.14E-03 1.06E-01
REACTOME_CLEAVAGE_OF_GROWING_TRANSCRIPT_IN_THE_TERMINATION_REGION_ 27 0.68 2.08 0.00E+00 5.18E-03 8.40E-02
REACTOME_PROCESSING_OF_CAPPED_INTRONLESS_PRE_MRNA 17 0.75 2.05 0.00E+00 5.19E-03 1.04E-01
KEGG_PARKINSONS_DISEASE 96 0.64 2.05 0.00E+00 5.30E-03 1.09E-01
REACTOME_APOPTOSIS 128 0.52 2.08 0.00E+00 5.33E-03 8.40E-02
REACTOME_TRANSCRIPTION_COUPLED_NER_TC_NER 42 0.62 2.08 0.00E+00 5.34E-03 8.00E-02
REACTOME_VIF_MEDIATED_DEGRADATION_OF_APOBEC3G 47 0.75 2.04 0.00E+00 5.39E-03 1.12E-01
REACTOME_ASSEMBLY_OF_THE_PRE_REPLICATIVE_COMPLEX 54 0.71 2.04 0.00E+00 5.76E-03 1.27E-01
REACTOME_SIGNALING_BY_WNT 59 0.67 2.03 0.00E+00 5.95E-03 1.30E-01

(Continued to the next page)
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Supplementary Table 1. Continued

Gene set Gene ES NES NOM p-val FDR q-val FWER p-val

REACTOME_ACTIVATION_OF_NF_KAPPAB_IN_B_CELLS 56 0.69 2.03 0.00E+00 5.96E-03 1.33E-01
REACTOME_CDK_MEDIATED_PHOSPHORYLATION_AND_REMOVAL_OF_CDC6 44 0.74 2.03 0.00E+00 6.02E-03 1.37E-01
REACTOME_TCA_CYCLE_AND_RESPIRATORY_ELECTRON_TRANSPORT 103 0.66 2.03 0.00E+00 6.02E-03 1.37E-01
REACTOME_SCF_BETA_TRCP_MEDIATED_DEGRADATION_OF_EMI1 46 0.74 2.02 0.00E+00 6.63E-03 1.52E-01
PID_BARD1_PATHWAY 28 0.62 2.02 0.00E+00 6.78E-03 1.61E-01
KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 108 0.48 2.01 0.00E+00 6.88E-03 1.69E-01
REACTOME_TRNA_AMINOACYLATION 29 0.69 1.97 0.00E+00 8.05E-03 2.35E-01
REACTOME_REGULATION_OF_APOPTOSIS 51 0.67 1.98 0.00E+00 8.11E-03 2.24E-01
REACTOME_ACTIVATION_OF_GENES_BY_ATF4 21 0.62 1.97 0.00E+00 8.12E-03 2.35E-01
REACTOME_MRNA_CAPPING 27 0.65 1.98 0.00E+00 8.13E-03 2.24E-01
REACTOME_REGULATORY_RNA_PATHWAYS 21 0.64 1.97 0.00E+00 8.16E-03 2.33E-01
REACTOME_PURINE_METABOLISM 27 0.64 1.98 0.00E+00 8.17E-03 2.27E-01
REACTOME_CDT1_ASSOCIATION_WITH_THE_CDC6_ORC_ORIGIN_COMPLEX 45 0.73 1.98 0.00E+00 8.21E-03 2.18E-01
REACTOME_AUTODEGRADATION_OF_THE_E3_UBIQUITIN_LIGASE_COP1 44 0.73 1.98 0.00E+00 8.24E-03 2.21E-01
REACTOME_P53_INDEPENDENT_G1_S_DNA_DAMAGE_CHECKPOINT 46 0.72 1.97 0.00E+00 8.24E-03 2.32E-01
REACTOME_RNA_POL_I_RNA_POL_III_AND_MITOCHONDRIAL_TRANSCRIPTION 95 0.57 1.99 0.00E+00 8.26E-03 2.04E-01
REACTOME_FORMATION_OF_TRANSCRIPTION_COUPLED_NER_TC_NER_REPAIR_

COMPLEX
27 0.61 1.98 0.00E+00 8.32E-03 2.18E-01

REACTOME_FORMATION_OF_THE_HIV1_EARLY_ELONGATION_COMPLEX 31 0.65 1.96 0.00E+00 8.39E-03 2.45E-01
REACTOME_ELONGATION_ARREST_AND_RECOVERY 31 0.64 1.98 0.00E+00 8.55E-03 2.18E-01
REACTOME_METABOLISM_OF_NUCLEOTIDES 56 0.57 1.98 0.00E+00 8.61E-03 2.16E-01
REACTOME_REGULATION_OF_ORNITHINE_DECARBOXYLASE_ODC 46 0.73 1.98 0.00E+00 8.71E-03 2.15E-01
KEGG_OXIDATIVE_PHOSPHORYLATION 98 0.63 1.98 0.00E+00 8.79E-03 2.14E-01
REACTOME_ACTIVATION_OF_ATR_IN_RESPONSE_TO_REPLICATION_STRESS 26 0.73 1.96 0.00E+00 9.10E-03 2.63E-01
REACTOME_DOWNSTREAM_SIGNALING_EVENTS_OF_B_CELL_RECEPTOR_BCR 78 0.58 1.95 0.00E+00 9.15E-03 2.76E-01
REACTOME_G2_M_CHECKPOINTS 31 0.71 1.95 0.00E+00 9.29E-03 2.75E-01
REACTOME_ANTIVIRAL_MECHANISM_BY_IFN_STIMULATED_GENES 60 0.56 2.05 1.96E-03 5.08E-03 1.04E-01
REACTOME_ER_PHAGOSOME_PATHWAY 56 0.69 1.99 1.96E-03 8.10E-03 2.01E-01
REACTOME_RESPIRATORY_ELECTRON_TRANSPORT_ATP_SYNTHESIS_BY_CHEMIOS-

MOTIC_COUPLING_AND_HEAT_PRODUCTION_BY_UNCOUPLING_PROTEINS_
72 0.69 1.95 1.96E-03 9.44E-03 2.74E-01

REACTOME_DESTABILIZATION_OF_MRNA_BY_AUF1_HNRNP_D0 47 0.72 1.97 1.98E-03 8.09E-03 2.35E-01
KEGG_PROTEASOME 41 0.78 2.01 1.98E-03 6.86E-03 1.64E-01
REACTOME_ANTIGEN_PROCESSING_CROSS_PRESENTATION 68 0.63 2.00 1.99E-03 7.80E-03 1.92E-01
REACTOME_MITOCHONDRIAL_PROTEIN_IMPORT 40 0.63 1.97 2.05E-03 7.99E-03 2.35E-01
REACTOME_TELOMERE_MAINTENANCE 60 0.65 1.98 2.08E-03 8.44E-03 2.18E-01
KEGG_DNA_REPLICATION 32 0.73 2.08 2.09E-03 4.42E-03 8.80E-02
KEGG_PYRIMIDINE_METABOLISM 73 0.54 1.95 2.09E-03 9.24E-03 2.76E-01
REACTOME_CYTOSOLIC_TRNA_AMINOACYLATION 20 0.74 2.00 2.10E-03 7.91E-03 1.92E-01
REACTOME_DEPOSITION_OF_NEW_CENPA_CONTAINING_NUCLEOSOMES_AT_THE_

CENTROMERE
45 0.65 1.95 2.13E-03 9.35E-03 2.74E-01

REACTOME_MICRORNA_MIRNA_BIOGENESIS 20 0.65 1.96 2.20E-03 8.46E-03 2.49E-01
PID_FANCONI_PATHWAY 37 0.63 2.06 2.21E-03 4.84E-03 9.80E-02
REACTOME_INTERACTIONS_OF_VPR_WITH_HOST_CELLULAR_PROTEINS 31 0.60 1.98 2.25E-03 8.15E-03 2.22E-01

lncRNA= long noncoding RNA; ES=enrichment score; NES=normalized enrichment score; NOM p-val=nominal p-value; FDR q-val= false discovery rate q-value; 
FWER p-val= familywise-error rate p-value.



 Gen Wang, et al.

http://ejbc.kr https://doi.org/10.4048/jbc.2018.21.e39

Supplementary Figure 1. The evaluation of batch effect before and after normalization in the discover dataset. The batch effect before and after 
Combat function normalization was assessed by Guided Principal Components Analysis package for discover dataset. The variance among batches 
was statistically assessed with p-value before (A) and after (B) Combat normalization for discover dataset. Meanwhile, the first two principle compo-
nents (PC) of each batch were also compared before (C) and after (D) Combat normalization.
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Supplementary Figure 2. The evaluation of batch effect before and after normalization in the validation dataset. The batch effect before and after 
Combat function normalization was assessed by Guided Principal Components Analysis package for validation dataset. The variance among batches 
was statistically assessed with p-value before (A) and after (B) Combat normalization for validation dataset. Meanwhile, the first two principle compo-
nents (PC) of each batch were also compared before (C) and after (D) Combat normalization.
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Supplementary Figure 3. Identification of the biological function associated with each individual long noncoding RNA (lncRNA) in the tamoxifen effi-
cacy-related lncRNA signature (TLS). Messenger RNAs highly correlated with each lncRNA in TLS were input into the Database for Annotation, Visu-
alization, and Integrated Discovery (DAVID) and results were visualized by Enrichment Map plugin in Cytoscape. (A) RP11-189B4.7, (B) RP11-59H7.3, 
(C) CTD-2090|13.1, (D) LINC01399, (E) RP11-119F7.5, and (F) RP11-193F5.1. Nodes represent DAVID annotation terms whose size is positively cor-
related with the number of genes in terms. 
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