
RESEARCH ARTICLE Open Access

Validation of markers with non-additive
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Abstract

Background: It has been suggested that traits with low heritability, such as fertility, may have proportionately more
genetic variation arising from non-additive effects than traits with higher heritability, such as milk yield. Here, we
performed a large genome scan with 408,255 single nucleotide polymorphism (SNP) markers to identify chromosomal
regions associated with additive, dominance and epistatic (pairwise additive × additive) variability in milk yield and a
measure of fertility, calving interval, using records from a population of 7,055 Holstein cows. The results were subsequently
validated in an independent set of 3,795 Jerseys.

Results: We identified genomic regions with validated additive effects on milk yield on Bos taurus autosomes (BTA) 5,
14 and 20, whereas SNPs with suggestive additive effects on fertility were observed on BTA 5, 9, 11, 18, 22, 27,
29 and the X chromosome. We also confirmed genome regions with suggestive dominance effects for milk yield
(BTA 2, 3, 5, 26 and 27) and for fertility (BTA 1, 2, 3, 7, 23, 25 and 28). A number of significant epistatic effects for milk
yield on BTA 14 were found across breeds. However on close inspection, these were likely to be associated with the
mutation in the diacylglycerol O-acyltransferase 1 (DGAT1) gene, given that the associations were no longer significant
when the additive effect of the DGAT1 mutation was included in the epistatic model.

Conclusions: In general, we observed a low statistical power (high false discovery rates and small number of
significant SNPs) for non-additive genetic effects compared with additive effects for both traits which could be
an artefact of higher dependence on linkage disequilibrium between markers and causative mutations or smaller size
of non-additive effects relative to additive effects. The results of our study suggest that individual non-additive effects
make a small contribution to the genetic variation of milk yield and fertility. Although we found no individual mutation
with large dominance effect for both traits under investigation, a contribution to genetic variance is still possible from
a large number of small dominance effects, so methods that simultaneously incorporate genotypes across all loci are
suggested to test the variance explained by dominance gene actions.
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Background
Female fertility is of great interest to the dairy industry be-
cause impaired reproductive ability can reduce the profitabil-
ity of a dairy herd, particularly by increased expenses of
additional inseminations, veterinary treatments and replace-
ment cows [1, 2]. Selection to improve milk production traits
in Holstein and Jersey cattle populations has led to a decline

in fertility traits in the last few decades due to unfavourable
genetic correlations between fertility and milk production
[3]. Many countries have now included fertility in their
national breeding goals [4, 5], however fertility related traits
usually have low heritability estimates [3, 6, 7], and genetic
improvement through traditional breeding programs is slow,
although substantial genetic variation exists [8].
When heritability estimates are low for a trait, one

could examine the non-additive part of genetic vari-
ation for opportunities to improve the trait of interest.
Non-additive genetic variation is the result of allele by
allele interactions and involves intra-locus (dominance)
and inter-locus (epistasis) interactions. Pedigree based
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estimates of non-additive genetic variance for fertility
related traits have been reported to be as large as or
larger than additive variance [9]. Hoeschele [10] esti-
mated additive and non-additive genetic variance for a
number of cow fertility measures in US Holsteins and
obtained broad sense heritabilities that were at least
twice as large as narrow sense heritabilities, albeit with
large standard errors. Similarly, Fuerst and Solkner [9]
reported a higher proportion of the phenotypic vari-
ance explained by dominance and additive × additive
epistatic effects than heritability estimated in the
narrow sense for calving interval (CI). Druet et al. [11]
observed similar values for additive and dominance
variances in analyses of fertility traits for Austrian
Simmental and Brown Swiss dairy cattle and Palucci et
al. [12] estimated non-additive genetic effects of
sizable magnitude for a number of fertility measures in
Canadian Holstein heifers and cows and suggested in-
cluding non-additive genetic effects in models for esti-
mating genetic merit of animals.
The prediction of non-additive genetic effects is not a

trivial task and requires complex statistical and compu-
tational methods [13]. In traditional genetic evaluation
methods, pedigrees are usually not informative enough
to accurately estimate non-additive genetic effects for
each individual and in many cases these effects are con-
founded with other non-genetic effects such as common
environment, or maternal effects that may lead to over-
estimation [12, 14]. The use of genomic data instead of
pedigree information has the potential to overcome
these problems when both phenotypes and genotypes
for individuals in a given population are known. Avail-
ability of genotypes coupled with phenotypes has led to
a renewed interest in the estimation of non-additive
genetic variance. Sun et al. [15] showed that dominance
variance can account for up to 7 % of total phenotypic
variance of yield traits in dairy cattle and including
additive and dominance effects in the model fits data
better than including only additive effects. Ertl et al. [16]
obtained larger estimates of dominance variance for milk
production and conformation traits in Fleckvieh cattle
such that the ratio of dominance variance over total gen-
etic variance ranged from 3.3 % to 50.5 % in their study.
Over the last decade, high throughput genotyping has

provided a valuable source of information to study the
relationships between phenotypes and genotypes in live-
stock breeding [17, 18]. Access to large SNP arrays at an
affordable price has made genome-wide association
studies (GWAS) a common practice. GWAS use link-
age disequilibrium (LD) between DNA markers and
QTL to identify variants associated with traits and it
can be used to map QTL regions throughout the
genome [19]. Genome-wide association studies can be
used to estimate both the additive and non-additive

effects of genetic markers, but most published GWAS
for dairy cattle to date have focused on additive effects
of genes while non-additive interactions are generally
neglected, with a few exceptions (e.g. [15]). This might
not be an appropriate assumption since the modes of
biological actions are often more complicated than can
be explained by simple additive models [20]. Known
genotypes of individuals are more informative than
pedigree based methods, especially for estimating dom-
inance effects. The disadvantage comes from the large
increase in dimensionality generated by including all
potential epistatic interactions. Testing combinations of
all possible allelic interactions would be ideal, however
it is not always computationally feasible and the results
might not be interpretable. An alternative approach to
decrease the dimensionality is to perform a filtering
step in which a set of variants or genes are selected and
subsequently tested for epistatic effects [21–23].
The objective of this study was to detect chromosomal

regions with additive and non-additive genetic effects for
calving interval and milk yield (MY) using a Holstein
discovery population. We then attempted to validate
these associations in an independent Jersey population
of cows. The benefits and limitation of accounting for
non-additive effects in genetic analyses are discussed,
with examples from the present study.

Results
Additive marker effects
Manhattan plots of all additive SNP effects for MY and
CI in study populations are presented in Figs 1 and 2.
There were a large number of SNPs for MY that
reached the 5 % genome-wide significance level after
the Bonferroni correction in both Holstein (P < 1 × 10−7)
and Jersey (P < 1 × 10−5) populations. However, for CI
(Fig. 2) very few SNPs passed this threshold, therefore
lower suggestive thresholds in Holstein (P < 0.0001) and
Jersey (P < 0.01) cows were set to identify potential associ-
ations. Significant associations for MY were found on
BTA 5, 14 and 20 whereas suggestive additive SNP effects
associated to CI were observed on BTA 5, 9, 11, 18, 22,
27, 29 and X chromosome.
In the association analysis of MY, 715 SNPs were sig-

nificant (P < 1 × 10−7) in the Holstein analysis (Table 1).
The number of SNPs which validated in the Jersey popu-
lation at the probability threshold of P < 1 × 10−5 was 93
in the individual SNP validation but this increased to
413 in the segment validation (Table 1). Out of the 93
individually validated additive SNP effects on MY, 64
had the same direction in both discovery and validation
populations. False discovery rates (FDR) for MY were
calculated to be very close to zero in all cases. For CI,
136 SNPs were significant (P < 0.0001) in the Holstein
set which corresponds to an estimated FDR of 30 %,
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while only 5 of these were found to be significant (P <
0.01) in the Jersey population used for validation, with
an estimated FDR equal to 26 % (Table 1). All of the 5
validated effects were in the same direction in Holstein
and Jersey cows. In segment SNP validation for CI, the
number of significant SNPs (P < 0.01) was 73 with a FDR
of 1 %.

Dominance marker effects
The Manhattan plots of all dominance SNP effects for
MY and CI are shown in Figs. 3 and 4 respectively. No
dominance effects were found to be significant for either
MY or CI at the genome-wide threshold of P < 1 × 10−7

(5 % Bonferroni corrected). Therefore for both traits,
SNP effects were tested with a suggestive less stringent

Fig. 1 Distribution of additive SNP effects for milk yield. Manhattan plot of all additive SNP effects for milk yield in discovery and validation
populations with chromosome number on horizontal axis and –log10(P-value) on vertical axis

Fig. 2 Distribution of additive SNP effects for fertility. Manhattan plot of all additive SNP effects for calving interval in discovery and validation
populations with chromosome number on horizontal axis and –log10(P-value) on vertical axis
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threshold of P < 0.0001 in Holstein population and
validated in Jersey cows at a threshold of P < 0.01.
The magnitude of significant dominance effects were

smaller than those for additive effects especially for MY.
This was confirmed with large FDRs, such that in the
discovery analyses of both traits, these values were cal-
culated to be more than 100 % (Table 2). Forty SNPs
were significant (P < 0.0001) in the Holstein discovery
population for MY, but only 1 of these was validated
(P < 0.01) in Jersey cows with different signs observed
in the discovery and validation analyses and with a
FDR of 39 % (Table 2). The number of validated SNPs
increased to 21 using the segment validation approach
(P < 0.01) with a FDR equal to 1 %. For CI, 36 SNPs
were found to have significant (P < 0.0001) dominance
associations in the Holstein discovery set (Table 2). Of
these, 3 (1 with same direction) and 10 SNPs were
validated respectively in individual (FDR = 11 %) and
segment (FDR = 3 %) validations in the Jersey popula-
tion when a threshold of P < 0.01 was applied. The
validated SNPs with suggestive significant dominance

effects on MY and CI were detected on 5 (BTA 2, 3, 5,
26 and 27) and 7 (BTA 1, 2, 3, 7, 23, 25 and 28)
chromosomes, respectively.

Epistasis interactions
There were 255,255 and 9,180 pairwise interaction
effects included in the epistasis analyses for MY and CI
respectively. The SNPs were selected where they had
significant additive effects in the discovery population
of Holsteins (Table 1). We only performed individual
validation for epistatic analyses, such that if an inter-
action between two SNPs was significant in discovery
population we checked for its significance also in valid-
ation set.
Similar to the additive analysis, a larger number of

pairwise interactions were found to be statistically sig-
nificant for milk yield compared with fertility (Table 3).
However, since all of the SNPs that had validated inter-
actions for MY were located at the beginning of BTA 14
and near diacylglycerol O-acyltransferase 1 (DGAT1)
gene, we suspected that these interactions may have

Table 1 P-value thresholds, number of SNPs found to be additively significant and corresponding false discovery rates (FDR) for milk
yield (MY) and calving interval (CI) in discovery and validation populations

Discovery Individual validation Segment validation

Trait P-value
threshold

Holstein discovery
(7055)

FDR
(%)

P-value
threshold

Jersey validation
(3795)

FDR
(%)

No. Same
Dir.a

P-value
threshold

Jersey validation
(3795)

FDR
(%)

MY 10−7 715 0 10−5 93 0 64 10−5 413 0

CI 0.0001 136 30 0.01 5 26 5 0.01 73 1
aNumber of same direction SNP effects in discovery and validation populations

Fig. 3 Distribution of dominance SNP effects for milk yield. Manhattan plot of all dominance SNP effects for milk yield in discovery and validation
populations with chromosome number on horizontal axis and –log10(P-value) on vertical axis
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been due to the DGAT1 mutation effect [24]. There-
fore, the epistatic model was extended to include the
DGAT1 effect to see if any of the interactions remained
significant. We did this by including an additional SNP
effect in the model, this SNP was the highest peak in
the DGAT1 region. The absence of significant interac-
tions in this region after including the SNP in high LD
with the DGAT1 effect in the model suggests that the
identified significant pairwise interactions were picking
up the DGAT1 effect by creating haplotype like combi-
nations. That is, the linkage disequilibrium of SNP al-
lele combinations with the DGAT1 mutation was
higher than for the individual SNP.
Five additive × additive interactions were found that

had significant (P < 0.0001) effects on CI in Holstein
analysis with a FDR of 18 %, however none of them was
validated (P < 0.01) in the Jersey cows, so we did not
report them here.

Discussion
Additive and non-additive genetic variants influencing
MY and CI were identified using a large GWAS applied

to phenotypes and genotypes of females of two breeds
of dairy cattle. We found several significant additive
and dominance associations in a discovery population
of Holstein cows which were confirmed in Jersey cows.
Although many of the additive QTL effects identified
and validated here overlapped with previously reported
genomic regions in the literature, this study is novel in
identifying a number of QTL regions associated with
dominance effects on MY and CI.
We discovered more additive associations for MY than

for CI, which was likely a consequence of the higher
heritability of MY. Calving interval is the most widely
used measure of female fertility in national genetic eval-
uations worldwide [3, 8], but it has a low heritability.
Besides, CI suffers from censored records where data
from cows unsuccessful to calve again are excluded from
evaluations, or a maximum arbitrarily value is assigned
which impairs the predictive ability of models not ac-
counting for censoring [25]. These contribute to the
low power in detecting underlying additive genetic var-
iants. Other detailed measures of fertility as well as
potential biomarkers linked with female reproduction

Fig. 4 Distribution of dominance SNP effects for fertility. Manhattan plot of all dominance SNP effects for calving interval in discovery and validation
populations with chromosome number on horizontal axis and –log10(P-value) on vertical axis

Table 2 P-value thresholds, number of SNPs with significant dominance effects and corresponding false discovery rates (FDR) for
milk yield (MY) and calving interval (CI) in discovery and validation populations

Discovery Individual validation Segment validation

Trait P-value
threshold

Holstein discovery
(7055)

FDR
(%)

P-value
threshold

Jersey validation
(3795)

FDR
(%)

No. Same
Dir.a

P-value
threshold

Jersey validation
(3795)

FDR
(%)

MY 0.0001 40 102 0.01 1 39 0 0.01 21 1

CI 0.0001 36 113 0.01 3 11 1 0.01 10 3
aNumber of same direction SNP effects in discovery and validation populations
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[8, 26] which have higher heritabilities could provide a
better insight of the genetic underlying female fertility
in future.
High false discovery rates in identifying SNPs with

dominance effects on both MY and CI in the discovery
population of Holsteins (Table 2) indicates that the iden-
tified associations might only serve as a reference for
future studies. Increasing the number of observations
would improve power.

Locating QTL regions
Additive effects
Four regions were detected that had additive associa-
tions with MY, of which 2 were on BTA 5 and 1 each on
BTA 14 and BTA 20 (Table 4). The longest (~4 Mbp)
region was on chromosome 14, extended from 1.4 to 5.3
Mbp and comprised 96 % of the significant additive SNP
associations. All of the individually validated SNPs for
MY, except 1 on BTA 5, were also found within this
region, where 65 of them associated with 31 genes
(Additional file 1: Table S1). A cluster of genes with
suggested effects on all milk production traits in dairy
breeds have previously been identified in this region
(e.g. [27–29]). The most significant association in this
interval in both Holstein and Jersey animals was SNP
rs109421300 (~1.8 Mbp) located within an intron of
the DGAT1 gene. This marker also had the largest
additive effect on MY and explained highest proportion
of phenotypic variance (5.694 %) by additive effects for
MY. The effect of DGAT1 on several production traits
including MY has been previously demonstrated in
several studies [24, 30, 31].
Chromosome 5 contained 2 significant regions for

MY (94.5 to 95.0 Mbp and 96.9 to 97.9 Mbp) which
extended beyond the previously reported significant
regions on this chromosome for milk production traits
[32, 33]. Wang et al. [32] reported a significant region
between 91.2 Mbp and 97.1 Mbp for milk fat percent-
age, with the most significant SNP located in an intron
of the epidermal growth factor receptor pathway substrate
8 (EPS8) gene. This gene has also been reported by Raven
et al. [33] as influencing milk yield in Australian Holstein
and Jersey populations. In our study, the two aforemen-
tioned regions contained the most significant SNPs
rs136816685 at 95.0 Mbp (Jersey) and rs110729080 at

97.4 Mbp (Holstein) respectively inside intronic regions
of protein tyrosine phosphatase, receptor type, O
(PTPRO) gene and G protein-coupled receptor, family
C, group 5, member A (GPRC5A) gene. PTPRO is lo-
cated 18 Kbp downstream of EPS8 so it is likely that
the same QTL affecting milk production traits is re-
sponsible for detected associations in these studies. A
candidate gene in the other interval, GPRC5A, is associ-
ated with signal transduction between cells and has
been reported as having differential expression (up
regulation / turning on) during the onset of lactation in
bovine mammary tissue [34].
The region on BTA 20 for MY was located on the

middle of this chromosome which was strongly sug-
gested as having a QTL affecting milk production traits
[35, 36]. A mutation in the Growth hormone receptor
(GHR) gene has been suggested as underlying the QTL
in this region [35].
Seventeen significant regions suggesting several genes

with additive effects on CI were discovered in this study
(Table 5). Chromosome 18 had the highest number of
significant regions for CI but BTA 9 and 27 contained
more significant associations than other chromosomes
with each having about 22 % of significant SNPs. The
most significant additive effect for fertility was SNP
rs41996522 (−log10(P) = 6.076) located on BTA 22
which also explained the highest proportion (0.137 %)
of phenotypic variance for CI by additive effects. Never-
theless, all of the individually validated SNPs were
found within the region on X chromosome extending
from 139.2 to 139.8 Mbp.
Most of the identified QTL regions for CI in this

study have been previously reported in the literature.
Chromosome 18 has been largely investigated in search
for QTLs affecting reproduction traits in dairy breeds
[37–39]. Sahana et al. [39] found strongest marker associ-
ations for some direct calving traits on this chromosome
on a region ranging from 55.2 to 60.0 Mbp in Danish and
Swedish Holstein cattle. Their detected interval covers
one of the identified QTL regions in the present study
(57.1 – 58.1 Mbps). The most strongly associated SNP in
this region found by these authors, which was previously
reported by Cole et al. [17] as having largest effect on sev-
eral traits including calving ease, was located in an intron
of the sialic acid binding Ig-like lectin-5 (SIGLEC5) gene.

Table 3 P-value thresholds, number of significant pairwise additive × additive interactions and calculated false discovery rates (FDR)
for milk yield (MY) and calving interval (CI) in discovery and validation populations

Discovery Validation

Trait No. of tested pairwise
interactions

P-value
threshold

Holstein discovery
(7055)

FDR
(%)

P-value
threshold

Jersey validation
(3795)

FDR
(%)

No. Same
Dir.a

MY 255,255 10−7 3700 0 10−5 165 0 163

CI 9,180 10−4 5 18 0.01 0 NA NA
aNumber of same direction SNP effects in discovery and validation populations
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Table 4 Boundaries of the validated regions with significant additive effects on milk yield and the most significant SNPs within the identified regions with their associated
genes in discovery and validation populations

Most strongly associated SNP in discovery Most strongly associated SNP in validation

BTCa Interval (Mbp)b SNP Position (bp) -log10 (P) Effect ± SE MAFc
σ2a
σ2p (%)d SNP Position (bp) Effect ± SE -log10 (P) MAF

σ2a
σ2p (%) Genese

5 94.453 - 95.026 rs136374794 94518850 11.633 120.3 ± 17.11 0.300 0.490 rs136816685 95001236 −80.76 ± 16.46 6.013 0.471 0.459 PTPRO

5 96.927 - 97.854 rs110729080 97435197 8.791 149.8 ± 24.79 0.117 0.373 rs134869818 97031962 97.04 ± 16.57 8.291 0.452 0.660 GPRC5Af

14 1.428 - 5.289 rs109421300 1801116 134.354 −389.4 ± 15.34 0.369 5.694 rs109421300 1801116 −234.1 ± 17.53 38.947 0.468 3.858 DGAT1f

20 29.568 - 30.367 rs134175348 30001269 7.230 −104.6 ± 19.27 0.206 0.289 rs42276093 29568029 −133.9 ± 19.25 11.382 0.270 0.999 NA
aBTC: Bos Taurus chromosome
bIntervals containing individually validated SNPs are in bold
cMAF minor allele frequency
dσa

2 = additive variance; σp
2 = phenotypic variance

eGenes with both top SNPs in discovery and validation inside them are in bold
fGenes with individually validated SNPs within them
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Table 5 Boundaries of the validated regions that are additively significant on calving interval as well as the most significant SNPs and their associated genes within these
regions in discovery and validation populations

Most strongly associated SNP in discovery Most strongly associated SNP in validation

BTCa Interval (Mbp)b SNP Position (bP) -log10 (P) Effect ± SE MAFc
σ2a
σ2p (%)d SNP Position (bp) -log10 (P) Effect ± SE MAF

σ2a
σ2p (%) Genes

5 12.551 - 13.463 rs133249083 13027942 4.139 2.462 ± 0.620 0.329 0.095 rs135584613 13270757 3.229 −3.077 ± 0.893 0.325 0.140 NA

5 88.607 - 89.159 rs135833682 88822777 4.076 −2.191 ± 0.556 0.417 0.083 rs133539520 88861488 2.679 −2.784 ± 0.934 0.313 0.112 ABCC9

9 55.233 - 55.657 rs134339497 55233033 4.325 −2.364 ± 0.580 0.402 0.096 rs136630637 55637401 2.399 −2.559 ± 0.887 0.337 0.098 NA

9 57.397 - 57.735 rs137407787 57396816 4.130 −2.346 ± 0.591 0.358 0.091 rs42550144 57723628 2.408 −2.685 ± 0.929 0.290 0.100 EPHA7

9 60.121 - 60.477 rs43600502 60477358 5.195 −2.642 ± 0.584 0.352 0.114 rs133175600 60130790 2.127 2.813 ± 1.05 0.212 0.087 LOC101902479

11 20.620 – 21.274 rs133774241 20994163 4.318 −2.706 ± 0.665 0.241 0.096 rs137059194 20898669 2.410 −2.467 ± 0.8529 0.458 0.101 LOC783737

11 39.466 - 39.772 rs109315341 39466071 4.126 −2.971 ± 0.749 0.177 0.092 rs133126268 39747182 2.408 −3.706 ± 1.284 0.115 0.094 NA

11 40.896 - 41.299 rs133462686 41298588 4.491 −3.036 ± 0.729 0.182 0.098 rs109834745 40895791 2.414 3.554 ± 1.228 0.139 0.101 LOC101903002

18 4.541 - 4.810 rs109920290 4541123 4.326 2.4 ± 0.589 0.391 0.098 rs110689012 4810082 2.044 3.37 ± 1.29 0.119 0.080 NA

18 37.446 - 37.925 rs41875426 37446338 4.061 2.679 ± 0.682 0.213 0.086 rs137407722 37925382 3.142 4.111 ± 1.213 0.147 0.142 NA

18 53.789 - 54.605 rs41891477 54232476 4.180 −2.302 ± 0.576 0.399 0.091 rs109907036 54028686 3.680 4.065 ± 1.094 0.186 0.168 PRKD2 / PPP5C

18 57.109 - 58.052 rs110801791 57516245 4.675 −3.508 ± 0.824 0.136 0.103 rs41895542 57269152 2.496 3.6 ± 1.219 0.133 0.100 NA

18 61.922 - 62.150 rs133761590 62115202 4.661 2.525 ± 0.594 0.369 0.106 rs137170802 62143810 2.736 −3.018 ± 0.966 0.255 0.116 CACNG6 / VSTM1

22 4.979 - 5.598 rs41996522 5028345 6.076 −2.784 ± 0.564 0.442 0.137 rs41995585 5133660 2.168 −3.028 ± 1.117 0.168 0.086 NA

27 41.873 - 42.109 rs134294374 42079983 5.581 −2.76 ± 0.586 0.367 0.127 rs41586304 41872925 2.295 3.105 ± 1.107 0.176 0.094 NR1D2

27 43.595 - 44.261 rs110746407 43914360 6.075 −2.781 ± 0.564 0.441 0.136 rs43064076 43595406 2.873 −3.831 ± 1.192 0.146 0.123 NA

X 139.211 - 139.509 rs136627433 139508886 4.679 −2.606 ± 0.6098 0.394 0.116 rs110719178 139490243 2.320 −3.327 ± 1.175 0.163 0.101 NA
aBTC: Bos Taurus chromosome
bIntervals containing individually validated SNPs are in bold
cMAF minor allele frequency
dσa

2 = additive variance; σp
2 = phenotypic variance
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SIGLEC5 was suggested to have a role on the initiation of
parturition in Human [40], hence suggested influencing
fertility in cattle [17]. Although we have not identified the
same gene here, but SIGLEC5 is positioned in our re-
ported QTL region, so it may be possible that the de-
scribed intervals are harbouring the same QTL.
Hoglund et al. [41] performed a large GWAS in a

population of Nordic Holsteins for eight female fertility
traits and validated their results in independent popula-
tions of Nordic Reds and Jerseys. They found several sig-
nificant SNP associations for number of inseminations
per conception in heifers and cows (BTA 5 and 11),
Nordic female fertility index and length of the interval
from calving to first insemination (BTA 9) and 56-day
non-return rate in cows and heifers (BTA 27) which all
overlapped with QTL regions for CI identified in our
study.
Studies for detecting associations on chromosome X

for fertility related traits are scarce in the literature and
this chromosome is generally discarded in GWA studies
mainly due to the use of mixed-sex observations. All of
the SNPs that were individually validated in Jerseys for
CI were found on the X chromosome, so future studies
including data on this chromosome are suggested to
search for QTL affecting fertility traits.

Dominance effects
Of the 7 validated regions with dominance effects on
MY, 3 were on BTA 26 and 1 identified on each of BTA
2, 3, 5 and 27 (Table 6). Chromosome 3 (97.9 – 98.8
Mbp) contained more significant SNPs (59 %) than other
chromosomes but the identified region on BTA 5 (71.8
Mbp) encompassed the only individually validated SNP
(rs110106971) with dominance effects on MY which
happened to be within an intronic region of the synapsin
III (SYN3) gene. The ATP/GTP binding protein like-4
(AGBL4) gene was associated with both of the most sig-
nificant SNPs in Holstein discovery (rs43361287) and
Jersey validation (rs43363311) populations on the identi-
fied region on BTA 3 (97.9 – 98.8 Mbp). AGBL4 was re-
ported as a gene under positive selection in the dual
purpose (milk and beef ) Normande breed cattle [42].
Among the candidate genes on the 3 identified regions
on BTA 26, phospholysine phosphohistidine inorganic
pyrophosphate phosphatase (LHPP) gene was reported as
a differentially expressed gene in mammary gland of
Holstein-Friesian dairy cows affected by the polymorph-
ism in DGAT1 [43].
There were 8 regions identified for CI (Table 7) sug-

gesting some genes influencing fertility by dominance
gene actions. The region on BTA 2 extended from 80.2
to 80.7 Mbp contained both of the most significant SNPs
in Holsteins (rs41591067) and in Jerseys (rs133868000)
within intronic regions of Myosin IB (MYO1B) gene.

MYO1B associated with one of the individually validated
SNPs (rs133868000) with dominance effect on CI in our
study and was reported to have differential expression in
in vitro culture of mouse blastocysts in suboptimal
conditions [44]. Both of the top SNPs in Holstein
(rs134910746) and Jersey (rs29020504) populations on
the interval extended from 15.8 to 16.0 Mbp on BTA 3
were found to be inside intronic regions of potassium
intermediate/small conductance calcium-activated chan-
nel, subfamily N, member 3 (KCNN3) gene. KCCN3
plays a key role in fluid secretion within the bovine ovi-
duct which is essential to provide an appropriate envir-
onment for gamete maturation, transport, fertilization
and early embryo development [45]. It has also been
shown that KCNN3 is differentially expressed between
oocytes and granulosa cells (GCs) during development
of the sheep ovarian follicle [46]. Similarly, human
orthologue of KCNN3 was reported as a gene associated
with preterm birth [47].

Implications
One of the critical parameters determining the power of
GWAS is the amount of LD between the observed SNP
and the unobserved causal variant. In fact, the success of
a GWAS in identifying QTLs with additive effects is
controlled by r2 (r is the correlation between genetic
marker and causative mutation) while detection of dom-
inance or pairwise additive by additive effects depends
on r4. This indicates there is a much higher reliance on
LD when searching for non-additive effects compared to
additive effects, if LD between the markers and QTL is
incomplete [48]. This was reflected in results of the
present study in which a larger number of markers with
additive effects were identified than the markers with
dominance and epistasis effects for both traits under
investigation.
Although we validated some of the pairwise (putative

epistatic) interactions for MY across breeds, a subse-
quent analysis that included the effect of the DGAT1
gene, which has known effect on the trait [24], removed
all of the detected associations. This suggests that the
identified epistatic associations are actually haplotype ef-
fects that are in higher LD with the DGAT1 mutation
than the individual SNPs. This illustrates a problem with
testing for epistatic interactions with common SNPs in
imperfect LD with causative mutations; SNP by SNP in-
teractions can describe haplotypes that are in higher LD
with the causative mutation than the individual SNP,
and are therefore significant when there is no true epi-
static effect present. Putative epistatic interactions be-
tween common SNP should therefore be treated with
caution.
The standard in reporting GWAS results is validation

and before genotype-phenotype relationships can be
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Table 6 Boundaries of the validated regions with significant dominance effect on milk yield as well as the most significant SNPs and their associated genes within these regions
in discovery and validation populationsa

Most strongly associated SNP in discovery Most strongly associated SNP in validation

BTCa Interval (Mbp)b SNP Position (bp) -log10 (P) Effect ± SE MAFc
σ2d
σ2p

(%)d SNP Position (bp) -log10 (P) Effect ± SE MAF
σ2d
σ2p

(%) Genese

2 95.312 - 95.730 rs136022579 95312328 4.920 155 ± 35.39 0.166 0.149 rs134324850 95725812 3.563 132 ± 36.23 0.171 0.197 ADAM23

3 97.907 - 98.799 rs43361287 98306933 4.351 82.29 ± 20.14 0.443 0.133 rs43363311 97907057 2.516 64.04 ± 21.6 0.427 0.139 AGBL4

5 71.878 - 71.878 rs110106971 71878168 4.947 −99.82 ± 22.71 0.332 0.158 rs110106971 71878168 2.012 55.58 ± 21.49 0.438 0.106 SYN3f

26 32.249 - 32.341 rs42460360 32248251 4.185 129.5 ± 32.42 0.186 0.124 rs42741343 32336734 2.065 61.42 ± 23.36 0.349 0.110 LOC100847832

26 39.358 - 39.765 rs132810457 39358269 4.017 86.38 ± 22.13 0.343 0.122 rs110552548 39764774 2.239 −88.38 ± 32 0.214 0.125 GRK5

26 44.215 - 44.543 rs109406756 44537471 4.673 114.1 ± 26.83 0.244 0.143 rs134524557 44257893 2.246 70.3 ± 25.4 0.301 0.123 LHPP

27 42.674 - 42.890 rs41665573 42837186 5.248 −90.48 ± 19.92 0.469 0.164 rs41575082 42673983 2.328 62.09 ± 21.95 0.424 0.130 NA
aBTC: Bos Taurus chromosome
bIntervals containing individually validated SNPs are in bold
cMAF: minor allele frequency
dσd

2 = dominance variance; σp
2 = phenotypic variance

eGenes with both top SNPs in discovery and validation inside them are in bold
fGenes with individually validated SNPs within them
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Table 7 Boundaries of the validated regions with significant dominance effect on calving interval and the most significant SNPs with their associated genes within these
regions in discovery and validation populations

Most strongly associated SNP in discovery Most strongly associated SNP in validation

BTCa Interval (Mbp)b SNP Position (bp) -log10 (P) Effect ± SE MAFc
σ2d
σ2p

(%)d SNP Position (bp) -log10 (P) Effect ± SE MAF
σ2d
σ2p

(%) Genese

1 19.667 - 19.777 rs110080440 19706636 4.651 −3.802 ± 0.896 0.299 0.091 rs109600947 19776964 2.178 −4.129 ± 1.52 0.249 0.080 NA

2 80.202 - 80.654 rs41591067 80201648 4.412 3.07 ± 0.746 0.500 0.084 rs133868000 80276795 2.403 −3.268 ± 1.133 0.473 0.089 MYO1Bf

3 15.808 - 15.963 rs134910746 15947344 4.119 3.024 ± 0.764 0.420 0.078 rs29020504 15808470 2.505 −5.434 ± 1.837 0.197 0.099 KCNN3

7 62.509 - 62.852 rs29013244 62508803 4.252 3.012 ± 0.747 0.480 0.081 rs43520270 62851917 2.123 3.664 ± 1.37 0.304 0.081 ABLIM3

23 46.082 - 46.581 rs137262994 46579868 4.494 −3.234 ± 0.777 0.407 0.087 rs109881533 46081778 2.401 4.222 ± 1.464 0.264 0.090 OFCC1

23 50.929 - 51.326 rs110165999 51326222 5.087 −5.153 ± 1.154 0.205 0.101 rs134147379 51081072 2.212 −3.689 ± 1.345 0.309 0.083 GMDS

25 39.070 - 39.921 rs135893130 39548382 4.364 −3.225 ± 0.788 0.390 0.084 rs108968775 39070284 2.808 3.583 ± 1.131 0.489 0.108 LOC618542

28 43.832 - 44.145 rs133899460 44144815 4.032 −2.918 ± 0.7461 0.480 0.076 rs109392728 43831664 2.404 −6.638 ± 2.302 0.143 0.089 CHAT
aBTC Bos Taurus chromosome
bIntervals containing individually validated SNPs are in bold
cMAF minor allele frequency
dσd

2 = dominance variance; σp
2 = phenotypic variance

eGenes with both top SNPs in discovery and validation inside them are in bold
fGenes with individually validated SNPs within them
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used in selection decisions, they should be replicated
in an independent population to confirm generalized
effects in multiple populations [49]. Validation of
GWAS results across breeds can refine QTL regions
to narrower intervals [33] and is powerful in identify-
ing positional candidate genes. This is because the
extent of LD across cattle breeds is limited in con-
trast to within a breed where considerable LD can be
maintained in intervals up to 1 Mbp as a result of a
relatively small effective population size [50]. We
validated a lower number of non-additive genetic as-
sociations than additive effects such that very few
dominance effects for MY and CI were confirmed and
no epistasis effect was common across Holstein and
Jersey cows for CI. This trend is in agreement with the
statement that the higher dependence on LD in searching
for dominance and epistatic effects compared to additive
effects significantly decreases the chance of validating
associations in two independent populations for non-
additive effects of the markers [48]. Failure to validate
many associations could also be related to the genetic
differences between breeds, or even populations, and the
fact that many QTLs are only segregating in one breed
and not in the other [33, 41]. In situations like these,
the validation may not be successful in confirming a
true positive that exists in one breed but not shared
between breeds, even if the power for detecting associa-
tions in both populations is high. Detecting marker
effects and validating them on very dense genotypes or
sequence data may help to overcome these problems.
Quantifying non-additive gene actions requires phe-

notypes that are measured on genotyped individuals.
Daughter yield deviations are performance averages typic-
ally over hundreds of daughters. However, by definition
they cannot capture the dominance deviation in daugh-
ters’ phenotypes, so they are not useful for estimating
non-additive effects of genes. The only way to estimate
non-additive genetic effects in dairy cattle is through large
datasets of dairy cows, as they express almost all of the
economically important traits in dairying.
The number of cows with available genotypes in dairy

cattle is less than the genotyped bulls but the trend is
towards genotyping more cows. Moreover, the availabil-
ity of genotyped ancestors of cows enables inferring
genotype probabilities for cows that can be then used in
estimation of non-additive effects [51]. Nonetheless,
accurate estimation of non-additive genetic effect re-
quires more data than the data needed for additive
effects to maintain the same power in analysis [20, 48]
and this is exacerbated by the necessity of having obser-
vations in all three genotype classes. We removed a large
number of SNPs with minor genotypic frequency <0.01
here when included biased estimates of dominance
effects were obtained because of a missing class of SNP

genotype. A large number of genotyped cows with a high
resolution (dense) genome content or whole genome
sequence could solve this problem.

Conclusions
We identified and validated a small number of SNPs
with suggested dominance effects on MY and CI in
Australian Holstein and Jersey cows. Given our results,
identifying non-additive gene actions using single SNP
regression in a GWAS setting will require very large
datasets to capture the likely very small individual non-
additive genetic effects. Alternative approaches that
simultaneously use all genomic information in Bayesian
methods or in terms of genomic relationship matrices
in a BLUP seem more appropriate. As the number of
genotyped animals is steadily increasing in dairy cattle
breeding, incorporating whole genome sequence could
reduce the problem of high dependency on LD in
detection of non-additive genetic effects and is sug-
gested as a future approach.

Methods
Data
The original dataset contained 9,159,969 calving inter-
val and 305 d milk yield records of 3,513,757 Australian
Holstein and Jersey cows that were in lactation between
1980 and 2011 and recorded by the Australian Dairy Herd
Improvement Scheme (ADHIS; Melbourne, Australia).
Not all contemporaries in a given herd-year-season were
genotyped, and therefore, to accurately remove contem-
porary group effects from the phenotypes, the records
were pre-corrected for the effects of age at calving, herd-
year-season, parity and month of calving using the full set
of records. The residuals from this model were used as
the response variable in GWAS analyses for the geno-
typed animals. Records that did not have both genotype
and phenotype data were discarded, so that the final
datasets included 23,198 and 11,091 MY and CI records
respectively for 7,055 Holstein and 3,795 Jersey cows.
Distribution and descriptive statistics of the Holstein
and Jersey populations’ phenotypes are shown in Fig. 5.
The genotyped animals were part of the Australian

genomic reference population that were previously selected
for typing based on completeness of their phenotypic data
and having sires in the national Australian genomic refer-
ence population. Animals were genotyped with Illumina
BovineSNP50 v2 BeadChip (Illumina, San Diego, CA, USA)
and their 50 K SNP data were imputed to the high density
(HD) 800 k panel by using another set of 1,785 animals
(including Holstein and Jersey key ancestor bulls and
heifers) with genotypes from the Illumina BovineHD Bead-
Chip (Illumina, San Diego, CA, USA). The imputation was
performed with BEAGLE 3.1 [52]. Quality control checks
applied on both genotypic data sets prior to the imputation
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step were as described in Erbe et al. [53]: only SNPs with
Gen-Call score > 0.6 and call rate > 90 % were kept; mito-
chondrial, unmapped and duplicate map position SNPs were
removed; and a minimum number of 10 copies for the minor
allele was required for each SNP to be included in the data
set. This resulted in 45,754 and 632,003 SNPs for the 50 K
and 800 K panels, respectively. A further 223,748 SNPs were
removed from HD SNP panel owing to a genotype class had
a frequency <0.01 in both Holstein or Jersey animals. This
was done because the scope of this study focused on both
additive and dominance effects of the SNPs and required
enough observations in all three classes of SNP genotypes. Fi-
nally, the remaining 408,255 SNPs were used for the GWAS.
The positions of SNPs on the genome were based on UMD
3.1 genome assembly [54] and the coding of SNP genotypes
were 0, 1, and 2 respectively for aa, Aa and AA allele combi-
nations. More details on filtering and imputation of SNPs
can be found in Erbe et al. [53] and Hayes et al. [55].
A total of 408,255 SNPs included in the analyses were

distributed over 29 BTA as well as the X chromosome,
but the distribution was uneven with an average
genome-wide distance of 6.52 Kb between SNPs, and a
minimum and maximum average distance of 5.40 Kb
and 15.37 Kb on BTA 25 and on X chromosome,
respectively.

Statistical model
A mixed linear model was implemented to test for
associations between genetic markers and phenotypic
values of both traits (CI and MY) for each breed separ-
ately. SNP effects were calculated one at a time using
single SNP regression procedure. The model in matrix
notation was:

y ¼ 1nμþ Xbþ ZuþWpeþ e ð1Þ

where y is a vector of phenotypes (CI or MY), 1n is a
vector of ones, μ is the population mean term, b is the
vector containing relevant additive, dominance or epi-
static marker effects as specified below, u contains poly-
genic effects assumed to be distributed as u ~N(0,Aσg

2)
with A being the pedigree based numerator relationship
matrix, pe is the vector of random permanent envir-
onmental effects with pe ~ N(0, Iσpe

2 ) and e is a vector
of random residual deviates supposed to be distrib-
uted as e ~ N(0, Iσe

2). X is a design matrix allocating
records to markers effects (additive, dominance or
epistatic) and Z and W are incidence matrices for the
random effects. σ2g , σ

2
pe and σ2e are polygenic additive,

permanent environmental and residual variances, re-
spectively. The pedigree files included 29,042 and

Fig. 5 Summary statistics of data. Distribution and summary statistics of Holstein and Jersey datasets for milk yield and calving interval
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15,977 animals for Holstein and Jersey with corre-
sponding average generations of seven and six.
The original marker covariates (0, 1 or 2) were corrected

for allele frequencies [13] to build X, so that xij(a) = {−2p,
(q − p) or 2q} for additive effects of aa, Aa and AA geno-
types, respectively, with p and q being the allele frequency
of A and a allele at marker j in the population. For domin-
ance effects, aa, Aa and AA genotypes were coded as xij(d)
= {−2p2, 2pq and − 2q2}. Then, the contents of Xb varied
with the type of the genetic effect being tested. For addi-
tive effects, Xb = {xij(a)aj}, where aj is the corresponding
additive effect. For dominance, Xb = {xij(a)aj + xij(d)dj},
where dj is the dominance effect of marker j. In the epista-
sis model, Xb ¼ fxijðaÞaj þ xij′ ðaÞaj′ þ xijj′ðeÞajj′g; where
xijj′ðeÞ is the qualification for nested interaction effects in-

volving markers j and j’, aj′ is the corresponding additive

effect for the j’ marker and ajj′ is the pairwise additive by

additive epistatic marker effect between markers j and j’.
The models were fitted to the data with ASReml v3.0 [56].

Validation
Cross validation
To discriminate between true discoveries and false positive
SNP effects, and also to confirm significant SNPs that were
consistent between breeds, results from the Holstein and
Jersey data sets were compared. The larger Holstein popula-
tion was assigned to the discovery set and results from
Holstein analyses were validated in the Jersey breed in two
different ways. First, if a significant SNP was found in the dis-
covery process, we examined whether it was also significant
in the validation population. Second, for each significant
SNP in the discovery population, we searched for significant
SNPs in the validation population within the region 500 kb
downstream and upstream of the identified SNP. We call the
latter segment validation which accounts for the possible
difference in allele frequency of markers in LD with the
causal mutation in the different population, that may cause
different markers in the same region are tagging the same
causal mutation in different populations. The window size
was chosen by considering the long range of strong LD
between SNPs in the Holstein and Jersey breeds [50, 57].

False Discovery Rate (FDR)
The false discovery rate was calculated following the
approach proposed by Bolormaa et al. [58].

%FDR ¼ P 1− S
T

� �

S
T

� �
1−Pð Þ � 100 ð2Þ

where P is the P-value threshold in F-test, S is the num-
ber of significant SNPs according to this threshold and

T is the total number of tests. This FDR can be used to
provide an expectation of the number of true positives
at the probability thresholds.
The P-value level used to decide on significance of a

main or interaction effect was the corresponding Bonfer-
roni correction of the nominal P-value of 0.05 as:

0:05
Number of tests ; so the adjusted P-value threshold in the

analysis including all SNPs was equal to P < 1 × 10−7. In
the case that no significant SNP effects were identi-
fied at this threshold, an arbitrary P-value threshold
of P < 0.0001 in the discovery dataset (i.e. Holsteins)
and P < 0.01 in the validation population (i.e. Jerseys)
was used. Although this might be arbitrary and some
false positives may arise using this approach, it is
highly unlikely for significant effects to arise simul-
taneously in two completely independent populations
and our ultimate standard is across breed validation.
For additive and dominance models, all of the markers

in the final HD panel were used. To reduce the dimen-
sion of SNP combinations tested in the epistatic models,
only significant SNPs determined using the P-value of
the F-test of the additive model in the Holstein discovery
set were included. Therefore, n(n-1)/2 pairwise inter-
actions were tested where n is the number of SNPs
whose main additive effect is significant.
The additive (σa

2) or dominance (σd
2) variance of each

SNP was estimated as follows:

σ2ai ¼ 2piqia
2
i ð3Þ

σ2di ¼ 4p2i q
2
i d

2
i ð4Þ

where pi and qi are the frequency of A and a alleles, and ai
and di are respectively the estimated additive and domin-
ance effect of the ith SNP obtained from model (1) and
model (2). For most strongly associated additive or dom-
inance SNP effects, these variances were expressed as a
fraction of total phenotypic variance (σp

2 = σg
2 + σpe

2 + σe
2)

where each variance component was estimated based on
model (1) without fitting SNP covariates.
Manhattan plots were created using qqman 0.1.1 [59] in R

3.1.0 (R Development Core, 2014) and the National Center
for Biotechnology Information’s databases (www.ncbi.nlm.-
nih.gov) were used to determine if the significant SNPs were
positioned inside known genes. Animal genome QTL data-
base (AnimalQTLdb: http://www.animalgenome.org/cgi-bin/
QTLdb/index) was used to compare the results of present
study with the reported QTL regions in the literature.

Additional file

Additional file 1: Candidate genes for milk yield. Table S1. Positions
of genes associated with individually validated SNPs with additive effects
on milk yield.
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