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Tunable band-gap structure and 
gap solitons in the generalized 
Gross-Pitaevskii equation with a 
periodic potential
Changming Huang & Liangwei Dong

The tunable band-gap structure is fundamentally important in the dynamics of both linear and 
nonlinear modes trapped in a lattice because Bloch modes can only exist in the bands of the periodic 
system and nonlinear modes associating with them are usually confined to the gaps. We reveal that 
when a momentum operator is introduced into the Gross-Pitaevskii equation (GPE), the bandgap 
spectra of the periodic system can be shifted upward parabolically by the growth of the constant 
momentum coefficient. During this process, the band edges become asymmetric, in sharp contrast to 
the standard GPE with an external periodic potential. Extended complex Bloch modes with asymmetric 
profiles can be derived by applying a phase transformation to the symmetric profiles. We find that the 
inherent parity-time symmetry of the complex system is never broken with increasing momentum 
coefficient. Under repulsive interactions, solitons with different numbers of peaks bifurcating from 
the band edges are found in finite gaps. We also address the existence of embedded solitons in the 
generalized two-dimensional GPE. Linear stability analysis corroborated by direct evolution simulations 
demonstrates that multi-peaked solitons are almost completely stable in their entire existence 
domains.

The Bloch band is crucial to our understanding of periodic systems. Its underlying physics is the Bragg reflection 
occurring at the edges of the Brillouin zone. The interplay between spatial periodicity and nonlinear dynamical 
evolution excites great interest in many-body effects. The experimental realization of optical lattices is thus impor-
tant in almost all physical fields1. In nonlinear science, optical lattices provide an effective means for the guid-
ance, management, and control of the dynamics of objects described by wave functions, including solitary waves 
in Bose-Einstein condensates (BECs)2,3, nonlinear optics4,5, and nonlinear polariton topological insulators6–8.  
According to the Floquet-Bloch theorem, the band-gap spectra of a periodic system determine the forms and 
existence domains of solitary waves associating with the corresponding linear Bloch modes4,5.

Atomic gases trapped in external potentials provide a versatile tool for simulating phenomena predicted in 
other branches of physics. The observation of spin-orbit coupling (SOC) effects in BECs9,10 and fermionic gases11 
attracts unprecedented attention these days in diverse areas of science such as matter waves, solid-state physics, 
acoustics, and photonics (see, e.g.6,7, for recent reviews). Recent progress in SOC-BECs significantly enriches the 
possibilities that many fundamental phenomena can be emulated or modeled by cold atom systems. Some unique 
characteristics, such as Zitterbewegung12, the quantum spin Hall effect13, topological quantum phase transitions14, 
and chiral topological superfluid phases15, have been reported. The most striking and interesting phenomenon 
relating to SOC is the topological insulators6,7 and the relevant nonlinear modes8,16–19 trapped in optical lattices. 
They are described by a system of coupled GPEs or nonlinear Shrödinger equations for the spinor polariton wave 
function7,8,18.

The intrinsic nonlinearity, originating from interatomic interactions, supports solitary waves in BECs con-
fined in harmonic potentials or optical lattices2,3. Diverse types of localized nonlinear excitations were predicted 
to be supported by SOC condensates. For example, coherent structures in the form of gap17, dark20, and bright21 
solitons have been found in SOC-BECs. Topological structures such as skyrmions22, vortices23, and Dirac mono-
poles24 were also uncovered.
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While most current studies focusing on the topologically protected unidirectional edge states in honeycomb 
lattices are based on the combination of SOC and Zeeman splitting, little attention has been paid to the dynamics 
of nonlinear excitations in a scalar GPE with a momentum operator, which can be reduced from the coupled 
GPEs.operator iγ(x)∂/∂x is introduced into the system, the generalized Hamiltonian operator becomes 

γ= ∂ ∂ + ∂ ∂ +x i x x V x/ ( ) / ( )1
2

2 2 . Stable solitons were found in nonlinear systems described by the general-
ized Hamiltonian operator with several types of external potentials, e.g., the rotating harmonic-plus-quartic 
potential25,26, anharmonic25 and two narrow Gaussian barrier27 potentials. More recently, Yan et al. reported the 
propagation dynamics of solitons in the generalized GPE with a localized parity-time (PT ) symmetric Scarff-II 
potential28.

Thus far, the bandgap structure is usually adjusted by changing the lattice depth or frequency. For a fixed lat-
tice, other methods for the realization of tunable bandgap spectra have not yet been proposed. Moreover, the 
evolution of matter-wave gap solitons in the generalized scalar GPE with a momentum operator modulated by a 
periodic lattice has not yet been explored. In this paper, we will address two closely related problems. First, we 
reveal that the bandgap structure of a system with a fixed lattice can be shifted parabolically by the growth of the 
constant momentum coefficient. This feature offers us a new way, instead of using the lattice depth or frequency, 
to tune the bandgap spectra of a periodic system. Second, we find several families of nonlinear waves with differ-
ent numbers of peaks. Such solitons bifurcate from the complex Bloch modes at the band edges, and their peaks 
are of the same value, analogous to the truncated-Bloch-wave29 and multi-peaked gap solitons in PT -symmetric 
lattices30. In addition, we demonstrate the existence and dynamics of two-dimensional (2D) in-band solitons in 
the system with a quasi-one-dimensional (1D) lattice. Linear stability analysis results demonstrate that different 
families of solitons are stable in almost their whole existence domains.

Theoretical Model
We start our analysis from the 1D coupled Gross-Pitaevskii equations or nonlinear Shrödinger equations:18,19
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where the spinor Ψ = (ψ1, ψ2)T describes the quasi-1D spin-orbit-coupled Bose-Einstein condensates trapped in 
an optical potential V′(x), σ1,3 are the Pauli matrices, and Ω denotes the Zeeman splitting. κ(x) = (d)/(dx)K(x), 
with K(x) being a phase modulation. In the absence of an external potential, Eq. (1) is exactly integrable if either 
Zeeman splitting or spin-orbit coupling is considered alone18.

By setting ψ1 = ψ2 = ψ, κ(x) = 2γ(x), ′ = + +V x V x ik x k x( ) ( ) [ ( ) ( )]x
1
2

2 , and ignoring the Zeeman splitting 
(Ω = 0), one obtains a generalized dimensionless scalar GPE:
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Here, ψ(x, t) is a complex condensate wave function, γ ∂
∂

i x( )
x

 is the so-called momentum operator with γ(x) being 
the coefficient28, V(x) is an external trapping potential and g = ±1 stand for the attractive and repulsive nonlinear 
interactions. Eq. (2) describes a BEC cloud loaded into an optical lattice in the mean-field approach. This model 
equation is made dimensionless by using the characteristic scales of the lattice, length aL = d/π, energy 

=E ma/2rec l
2 2  and time ω =− E/L rec

1  , where d is the lattice period and m the mass of the trapped atoms. The 
wave function is in units of π | |a a1/ 8 L s

2  where as is the scattering length of the condensed atoms.
When a real harmonic lattice =V x p x( ) cos ( )2  is considered, the system becomes nonintegrable and must be 

solved numerically. We are interested in stationary localized solutions that can be searched by inserting the form 
of a plane wave solution Ψ(x, t) = φ(x)exp(ibt) into Eq. (2). Here, b is the chemical potential, and φ = φr + iφi is the 
complex soliton profile, including real and imaginary components. The derived nonlinear differential equation 
can be written as
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The power of solitary waves can be defined as ∫ φ= | |
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4 . In the following discussion, for simplicity, we set γ(x) = γ and 
=V x cos x( ) 6 ( )2 , and we focus on the repulsive nonlinearity g ≡ −1. Stationary solutions of nonlinear modes can 

be solved numerically either by the relaxation method or by the Newton-conjugate-gradient method31.

Tunable bandgap structure and the corresponding Bloch modes
To understand the basic properties of the guided nonlinear modes, it is instructive to consider the Floquet-Bloch 
spectrum of the corresponding linear system. The spectrum of the system described by Eq. (2) is determined by 
the linear eigenvalue problem Lφ(x) = bφ(x), with γ= + +∂

∂

∂
∂

L i V x( )
x x

1
2

2

2 , where b and φ(x) are the eigenvalue 
and eigenfunction, respectively. For the standard GPE with γ = 0, the linear system degenerates to the usual 
Hamiltonian operator L0φ0(x) = b0φ0(x), which admits an entirely real eigenvalue and eigenfunction. Applying 
the invertible transformation φ0(x) = φ(x)exp(iγx), one immediately finds that b = b0 + γ2/2 holds for all nonzero 
momentum coefficients.
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In particular, due to the presence of the imaginary momentum operator, although the eigenfunction becomes 
complex for a real V(x), the spectrum remains real for any real γ(x). Substituting ψ(x, t) = φ(x)exp(ikt) into Eq. 
(2), where k∈[−1, 1] is the wave number and φ(x) = φr(x) + iφi(x) is the complex Bloch mode, after dropping the 
nonlinear term, one obtains

φ φ γ φ φ φ φ+ − − + = .
d
dx

ikd
dx

i d
dx

k V b1
2

2
(4)

2

2
2

The spectra of the system can be solved numerically by the plane-wave expansion method32.
To illustrate the role of the momentum operator, we plot the bandgap structure versus the momentum coef-

ficient γ in Fig. 1(a). At γ = 0, the spectrum of the linear system with a periodic lattice is composed of an infinite 
number of bands and gaps sandwiched between the neighbouring bands. As predicted by the above analysis, the 
bands and gaps are shifted towards the direction of the semi-infinite gap with the growth of γ. Each band and each 
gap move upward in a parabolic manner. For example, at the lower edge of the first band, b = 4.39 at γ = 0 and 
b = 22.39 at γ = 6. Obviously, the relationship bγ=6 = bγ=0 + γ2/2 holds.

This property offers us an effective method for the realization of the tunable bandgap structures of a fixed 
lattice. In other words, instead of the lattice depth, one can utilize the momentum coefficient to change the spec-
tra. Concretely, b = 5 belongs to the semi-infinite gap at γ = 0 and the first gap at γ = 2. When γ = 2.8, the same 
b resides in the second gap. This allows one to study the dynamics of different families of nonlinear modes at the 
same b value but bifurcating from the edges of different bands.

The band spectra versus k in the first Brillouin zone at γ = 0 to 1.2 are shown in Fig. 1(b). With the growth of 
γ, the band edges become asymmetric, which is in sharp contrast to conventional systems with a periodic lattice29 
or a PT  symmetric lattice33. A specific case of band spectra at γ = ±1.2 is displayed in Fig. 1(c). At γ = 1.2, the 
lower and upper edges of the first band locate at klow = −0.2 and kupp = 0.8, respectively. The wave numbers of the 
lower and upper edges of the second band are opposite to those of the first band. The band edges at γ = −1.2 are 
symmetric with those at γ = 1.2, which results in the fact that the edges of the first two bands locate at k = 0.2 and 
−0.8. At γ = ±1.2, δb1st = 0.024 and δb2nd = 0.3780, which exactly equals the width of the first and second bands 
at γ = 0. This demonstrates that the bands or the open gaps remain the same width when they are shifted by the 
increase in γ.

Figure 1.  Bandgap structure. (a) Band-gap structure of a fixed periodic lattice. Bands are marked with yellow; 
gaps are shown as white. (b,c,e) The detailed band spectra versus Bloch wave number k. The lines with the 
same colour share the same γ and δγ = 0.2 in (b). (d,f) Complex Bloch modes at the lower edge of the first 
band marked by solid circles in (c) and (e). Extended Bloch modes residing in different lattice channels are also 
shown.
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Due to the presence of the imaginary momentum operator, the eigenmodes are now complex [Fig. 1(d)]. The 
Bloch mode at the lower edge of the first band with γ = 1.2 includes two components with different symmetries. 
The real part is even symmetric, and the imaginary part is odd symmetric. However, by applying a constant phase 
transformation in the form of exp(iθ) with θ = (klowπ/d)d = 0.2π to the Bloch mode at klow, one derives a series of 
extended Bloch modes covering many lattice periodicities. While the real and imaginary parts of the extended 
Bloch modes are no longer symmetric, their moduli remain even symmetric. After n = 2π/|θ| = 10 consecutive 
transformations, the mode can be recovered to the original mode. Reversely, any asymmetric Bloch mode can be 
transformed as a symmetric Bloch mode with even real and odd imaginary parts.

In general, the action of the parity operator P̂ is defined by the relations → − → −ˆ ˆ ˆ ˆp p x x, , where p̂ and x̂ are 
the momentum and position operators, respectively. The time operator T̂  is defined by → − →ˆ ˆ ˆ ˆp p x x, , and 
i → −i. Thus, γ γ= 


+ + 


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2
2 . To obtain 

=ˆ ˆ ˆ ˆPTH H , one only needs V(x) = V*(−x). Obviously, the linear version of Eq. (2) respects the PT  symmetry 
because the even real potential V(x) satisfies the condition. A unique feature that we should stress is that with 
increasing γ, the eigenvalue of the system never becomes complex, which indicates that the PT  symmetry in our 
system is unbreakable. Note that the only two known examples of unbreakable PT  symmetry were found in 
inhomogeneous defocusing nonlinearities with an antisymmetric localized34 or periodic gain and loss35.

The detailed band spectra at γ = ±1.5 and the corresponding Bloch modes are illustrated in Fig. 1(e) and (f),  
respectively. Now, the band edges reside at k = ±0.5 for both bands, and the band edges are antisymmet-
ric about k = 0. The b value at the marker in Fig. 1(c) is 5.113, and the b value at the marker in Fig. 1(e) is 
5.518. One finds that δb = 0.405, which exactly equals 1.52/2 − 1.22/2. This proves again that the above derived 
relationship b = b0 + γ2/2 holds for all γ. Similar to the cases of γ = ±1.2, the extended Bloch modes covering 
other lattice channels can be obtained by applying a constant phase transformation in the form of exp(iθ) with 
θ = (klowπ/d)d = 0.5π to the Bloch mode at klow. However, the consecutive transformations do not involve asym-
metric modes. Specifically, the components of the extended Bloch modes satisfy either even or odd symmetries 
[Fig. 1(f)]. The times for recovering the Bloch mode at k = −0.5 is n = 2π/|θ| = 4.

We should stress that at γ = 0, the extended Bloch modes with other forms cannot be obtained by a constant 
phase transformation. All the Bloch modes in different lattice channels are identical and cannot be distinguished. 
It is the nonzero γ that affords the emergence of extended asymmetric Bloch modes and the asymmetric nonlin-
ear excitations originating from them.

Families of solitons bifurcating from complex linear Bloch modes
Now, we consider the nonlinear modes bifurcating from the Bloch modes at the lower edge of the first band. 
Families of stationary solutions are found in the first gap [Fig. 2]. Solitons can bifurcate from any extended Bloch 
modes shown in Fig. 1(d). At γ = 1.2, both the real and imaginary parts of solitons originating from the asymmet-
ric extended Bloch modes exhibit strong asymmetries [Fig. 2(a) and (b)]. It is worth mentioning that the solutions 
with PT  symmetries (i.e., an even real part and an odd imaginary part) associating with the Bloch modes at the 
lower edge of the first band [see the first Bloch mode shown in Fig. 1(d)] can be obtained by applying a phase 
transformation to the asymmetric modes. When γ = 1.5, the lower edge of the first band is at klow = −0.5. The real 
and imaginary parts of the solitons at b = 4.0 originating from the Bloch mode in the region x ∈ [−0.5d,0.5d] (d is 
the periodicity of the potential) respect even and odd symmetries, respectively [Fig. 2(c)]. The symmetries are 
reversed when a soliton bifurcates from the Bloch mode in the region x ∈ [2.5d, 3.5d] [Fig. 2(d)]. The profiles in 
Fig. 2(d) can still be obtained through a phase transformation on the soliton shown in Fig. 2(c).

In addition to the one-peaked solutions, we also find solitons with more peaks originating from the complex 
Bloch modes at the lower edge of the first band [Fig. 2(e) and (f)]. They are similar to the multi-peaked gap soli-
tons in a linear PT  lattice30 or the truncated-Bloch-wave solitons associating with the nonlinear Bloch waves in 
conventional (real) lattices29. Such solitons are composed of out-of-phase soliton components in neighboring 
lattice sites. Yet, the neighboring soliton components correspond alternatively to the nonlinear modes shown in 
Fig. 2(c) and (d) and respect opposite symmetries [Fig. 2(e) and (f)]. Overall, the real and imaginary parts of 
multi-peaked solitons hold the even and odd symmetries, respectively. Note that the amplitudes of soliton units 
are of the same value and are exactly equal to those of delocalized nonlinear Bloch waves at the same b. We should 
note that the amplitude of the imaginary part can be larger than that of the real part; see, e.g., Fig. 2(b) and (d). 
This only occurs when a system features an unbreakable PT  symmetry34,35.

At fixed chemical potential b, the dependence of the one-peaked soliton power U on the momentum coeffi-
cient γ is displayed in Fig. 3(a). The power curves are symmetric about γ = 0. With the growth of |γ|, the soliton 
power increases also in a parabolic manner. When b = 3.0, the existence domain of solitons occupies the whole 
first gap. However, one-peaked solitons at b = 5.0 exist only when |γ| > 1.1, which is exactly the lower edge of the 
first band. Meanwhile, γ = 2.6 corresponds to the upper edge of the second band.

Due to the repulsive nonlinearity, the power of solitons residing in one lattice site decreases monoto-
nously with the growth of b [Fig. 3(b)]. With increasing γ, the power curve shifts towards the direction of the 
semi-infinite gap. This is because the existence domains of the solitons are always confined to the first bandgap of 
the corresponding linear system, which can be tuned by the momentum coefficient. Thus, tuning γ leads to the 
shift of the existence region of the solitons. At γ = 1.5, solitons with different numbers of peaks share the same 
existence domain [Fig. 3(c)]. At fixed b, the power of a five-peaked soliton is approximately five times the power 
of the single-peaked soliton. The Hamiltonian H of multi-peaked solitons decreases with increasing power U. The 
negative Hamiltonians guarantee the possibility for the existence of stable multi-peaked gap solitons [Fig. 3(d)].

For complex nonlinear modes, a transverse power-flow density in the form of φ φ φ φ= −⁎ ⁎S i x x x x/2[ ( ) ( ) ( ) ( )]x x  
may arise due to their nontrivial phase distribution33. The power-flow density curves of the single-peaked solitons 
at γ = 0.5, 1, and 1.5 are shown in Fig. 3(e). For γ 0, the energy always flows from right to left. The power-flow 
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Figure 2.  Soliton profiles. (a,b) Asymmetric solitons originating from the asymmetric extended Bloch modes 
shown in Fig. 1(d). (c,d) Profiles of symmetric solitons bifurcating from Bloch modes residing in the first and 
fourth lattice sites [see Fig. 1(f)]. (e,f) Profiles of three- and five-peaked gap solitons. γ = 1.2 in (a,b) and 1.5 in 
(c–f). b = 4.0 in all the panels.

Figure 3.  General properties of gap solitons. (a) Dependence of power U of one-peaked solitons at b = 3.0 (top) and 
5.0 (bottom) on γ. (b) Power versus b for different γ. (c) Power of solitons with different numbers of peaks versus 
b at γ = 1.5. (d) Hamiltonian versus power corresponding to (c). (e) Transverse power-flow density of one-peaked 
solitons at different γ. (f) Transverse power-flow density of three-peaked soliton at γ =  −1.5. b = 4.0 in (e,f). (g) 
Instability growth rate Re(λ) versus b for three-peaked solitons at γ = 1.5. Notice the huge difference in scale between 
the horizontal axes in (c) and (g). (h) Stability spectrum for three-peaked solitons at b = 4.0 (top) and 5.494 (bottom).
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density is proportion to the modulus of the soliton. When γ < 0, the direction of the energy flow is reversed 
[Fig. 3(f)]. The unidirectional energy flow is in sharp contrast with that of a soliton in a conventional PT  lattice, 
where the direction of flow from gain to loss regions varies across the lattice channels30,33.

To elucidate the stability property of multi-peaked gap solitons, we search for perturbed solutions of Eq. (2) in 
the form of Ψ(x, t) = [φ(x) + v(x)exp(λt) + w*(x)exp(λ*t)]exp(ibt), where v w, 1 are the infinitesimal pertur-
bations, and λ is the complex growth rate of the disturbance. The linearization of Eq. (2) around φ yields a 
linear-stability eigenvalue problem:
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2 , M21 = −(gφ2)*, and = − ⁎M M22 11. Nonlinear modes 
are stable if λ is purely imaginary or zero; otherwise, they are unstable.

According to Eqs (5), we conduct the linear stability analysis on all families of stationary solutions solved 
above. The results demonstrate that branches of solitons are almost completely stable in their entire existence 
domains. Taking three-peaked solitons as examples, the instability region (5.488, 5.507] occupies approximately 
0.75% of the corresponding existence domain ([2.959, 5.507]) [Fig. 3(g)]. Even when b resides in the instability 
region, the growth rate is on the order of ∼ −10 3. This implies that the unstable solitons are very robust and can 
remain unchangeable over a long period of time without obvious deformations. The detailed stability spectra of 
three-peaked solitons at b = 4.0 and 5.494 are illustrated in the top and bottom plots of Fig. 3(h).

To verify the linear stability analysis results, we exhaustively simulate the evolution of solitons by the split-step 
Fourier method. Good agreements are obtained between the linear stability analysis and the direct numerical 
simulations. Several representative examples are displayed in Fig. 4. As expected, the weak instability occurs only 
when b approaches the upper edge of the first bandgap [Fig. 4(d,e)]. Unstable solitons are robust for a very long 
time without obvious distortions. The symmetric plots in Fig. 4(d,e) express again that the direction of the energy 
flow of solitons is determined solely by the sign of the momentum coefficient γ.

Two-dimensional embedded solitons
Next, we discuss the formation of gap solitons in 2D periodic geometries. In this case, Eq. (2) becomes
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Here, γx and γy are the momentum coefficients in the x and y directions, respectively. We consider a quasi-1D 
potential in the form of = −V x y cos x exp y( , ) 6 ( ) ( /4)2 2 , which is periodic along the x direction but localized along 
y36,37.

When γx = γy = 0, the linear system corresponding to Eq. (6) degenerates into the usual Hamiltonian operator 
L0φ0(x, y) = b0φ0(x, y). Applying the invertible transformation φ0(x, y) = φ(x, y)exp(iγxx + iγyy), one immediately 
finds that γ γ= + +( )b b /2x y0

2 2  also holds for all nonzero momentum coefficients, similar to the 1D case in the 
previous section.

One can see clearly from Fig. 5(a–c) that the bands are shifted toward the semi-infinite gap parabolically with 
increasing γx and γy. For example, while the lower edge of the first band resides at b = 3.71 for γx = γy = 0 
[Fig. 5(a)], the lower edge sits at b = 16.67 for γx = γy = 3.6. The corresponding b values at the lower band edges at 
γx = γy = 0 and γx = 3.6,γy = 0 are 3.71 and 10.19, respectively [Fig. 5(a,b)]. In other words, the relationships 

= + . + .γ γ γ γ= . = . = =b b (3 6 3 6 )/23 6, 3 6 0, 0
2 2

x y x y
 and = + . +γ γ γ γ= . = = =b b (3 6 0 )/23 6, 0 0, 0

2 2
x y x y

 hold for the 2D case. 

Figure 4.  Evolution of different-peak-gap solitons. (a–c) Stable evolution examples of one-, three-, and five-
peaked gap solitons corresponding to the solutions shown in Fig. 2(d–f). (e,f) Two unstable examples of three-
peaked solitons at γ = +1.5 and −1.5. b = 4.0 in (a–c) and 5.494 in (d,e). t = 10000 in all the panels.
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One can also expect that bands with different curvatures can be obtained for a fixed γx and varying γy. Comparing 
with the 1D case, this offers a more flexible method for tuning the bandgap structure. Note that each band (gap) 
remains the same width for different γx, y.

To illustrate the internal structure of 2D nonlinear solutions, we plot several representative examples of soliton 
profiles in Fig. 5(d–f). For γx = γy = 1.5, the system also respects a PT  symmetry. Yet, the symmetry axes of the real and 
imaginary parts of one-peaked solitons reside on the line of y = −x instead of on the x or y axis [Fig. 5(d)]. Concretely, 
the symmetry axis of the real profile is orthogonal to that of the imaginary profile, which guarantees the even symmetric 
distribution of the soliton modulus. The components of the one-peaked solitons satisfy the relations φr(x,y) = φr(−x, 
−y) and φi(x,y) = −φi(−x, −y). The symmetries of the present solitons are similar to those of solitons in inhomogene-
ous defocusing nonlinearities with a periodic gain and loss, where the PT  symmetry is shown to be unbreakable35.

For γx = 1.5 and γy = 0, the real part of a one-peaked soliton is even symmetric and the imaginary part is odd 
symmetric about x = 0. If γx = 0 and γy = 1.5, the distributions of the soliton components are orthogonal to those 
of solitons at γx = 1.5 and γy = 0. Although there exist slight differences between the real and imaginary parts 
shown in Fig. 5(e) and (f), their moduli are completely identical (see the bottom plots in the two figures). We 
note that such solitons originate from the corresponding complex Bloch modes at the lower edge of the first band. 
Therefore, their symmetries reflect the symmetric properties of the Bloch modes at different γx,y. Similar to the 
1D case, 2D solitons with asymmetric components can also be derived by applying a phase transformation to the 
symmetric components.

Figure 5.  2D bandgap structures and soliton profiles. (a–c) Bandgap structures versus two transverse 
momentum coefficients γx,y. (d–f) Profiles of one-peaked gap solitons. (g–i) Profiles of three-peaked 
gap solitons. b = 4.51 in (d,g) and 3.39 in (e,f,h,i). γx = γy = 1.5 in (a,d,g), γx = 1.5,γy = 0 in (b,e,h), and 
γx = 0,γy = 1.5 in (c,f,i).
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Solitons with more peaks exhibit similar symmetric properties to the one-peaked solitons [Fig. 5(g–i)]. If 
γx = γy, the symmetry axes of each soliton component remain y = &minusplus;x [Fig. 5(g)]. On the whole, the 
relations φr(x, y) = φr(−x, −y) and φi(x, y) = − φi(−x, −y) are always satisfied. Additionally, the peak values of 
each soliton unit are equal. Despite the different distribution of the real and imaginary parts of the soliton profiles 
shown in Fig. 5(h) and (i), their moduli and power are completely identical to each other.

One striking finding in the present system with a quasi-1D potential and a momentum operator is that 
multi-peaked solitons exist in both the first and second finite gaps of the corresponding linear system, as well as 
the bandgap sandwiched between them [Fig. 6(a)]. In other words, such nonlinear modes can continuously cross 
the Bloch band associating with the continuous spectrum. According to refs36,37, stationary waves with b in the 
bands are the so-called “in-band” or “embedded” solitons. Unlike one-peaked solitons, multi-peaked solitons here 
have a threshold power, below which no stationary solutions can be found [inset plot in Fig. 6(a)]. Solitons cease 
to exist when b approaches an upper cutoff value near the lower edge of the second gap. The underlying physics 
of the existence of embedded solitons is that the symmetries of the real and imaginary linear Bloch modes in 
the second band are always opposite to those of nonlinear modes in the same region. Note that Bloch modes in 
the second band are y-antisymmetric, and multi-peaked solitons are y-symmetric. Thus, the resonance between 
Bloch modes and solitons cannot be excited. When b approaches the upper edge of the third band, the resonance 
between y-symmetric Bloch modes and solitons with the same symmetry prevent the solitons from penetrating 
into the third band.

At fixed chemical potential b, the power curves are symmetric about γ. The soliton power increases paraboli-
cally with the growth of γ [Fig. 6(b)]. Similar to the 1D situation, the variation in γ adjusts the bandgap structure 
of the system and thus the existence domain of the nonlinear modes. The penetration of b into the band and the 
shift of band with γ are also well presented in Fig. 6(b). The transverse power-flow density defined as 

φ φ φ φ
→

= ∇ − ∇⁎ ⁎S i/2[ ] of the one-peaked embedded soliton at b = 4.51 is shown in Fig. 6(c). Due to the 
non-centrosymmetric potential, the direction of S&vec; does not coincide with the axis of y = −x.

Stability analysis results reveal that multi-peaked solitons are unstable only when b approaches the upper 
cutoffs. When one-peaked solitons are entirely stable in their whole existence domains, the instability region 
of three- and five-peaked solitons is only approximately 0.83% and 0.95% of their respective existence domains 
[inset plot in Fig. 6(a)]. One can expect that solitons with more peaks (e.g., 11,15) can be stable in wide parame-
ter ranges. Direct numerical simulations of the stationary solutions verify the stability analysis results very well 
[Fig. 6(d–f)]. The strong noises added to the initial inputs radiate away quickly for stable solitons, and coherent 
bright patterns evolve invariably over arbitrarily long times. The unstable nonlinear mode suffers a symmetry 
breaking and becomes asymmetric and broader after a very long time [Fig. 6(f)].

Figure 6.  (a) Dependence of power U of one-, three-, and five-peaked solitons on b. Inset: Soliton power near 
the lower cutoffs. Solid: stable; dashed: unstable. Bands are shown in yellow and gaps in white. (b) Power versus 
γ for one-peaked solitons with different b. (c) Transverse power-flow density of one-peaked soliton. Evolution 
simulations of stable (d,e) and unstable (//) solitons marked in (a). b = 4.51 in (c–e) and 5.83 in (f). In all the 
panels, γx = γy = 1.5.
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Conclusions
To summarize, we investigated two closely related problems. First, by introducing a momentum operator into the 
standard GPE, we realize the tunable bandgap structure of the system with a fixed periodic lattice. While the 
bands shift upward parabolically with the growth of the constant momentum coefficient, the width of each band 
and gap remains the same. For a nonzero momentum coefficient, the band edges are no longer symmetric about 
k = 0, which is in sharp contrast to the band spectrum of the conventional periodic systems. The nonzero momen-
tum coefficient also leads to the existence of extended complex Bloch modes with asymmetric profiles, which can 
be derived by applying a phase transformation to the symmetric profiles. We showed that the PT  symmetry of the 
generalized GPE is never broken. Second, under repulsive interactions, multi-peaked matter-wave solitons bifur-
cating from the band edges were found in finite gaps. Such nonlinear localized modes are stable in almost their 
entire existence domain. We also demonstrated the existence of 2D complex truncated-Bloch-wave or embedded 
solitons supported by the generalized GPE. The in-band solitons originating from the edges of the Bloch bands 
exist in finite bandgaps of the corresponding linear system and continuously cross the Bloch band (continuous 
spectrum) sandwiched between (or neighboring) them. We anticipate that instead of a constant momentum 
coefficient, other forms of the momentum coefficient may provide more convenient or flexible methods for the 
realization of tunable bandgap structures.
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