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Emerging evidence suggests that donor/recipient matching in non-HLA (human leukocyte
antigen) regions of the genome may impact transplant outcomes and recognizing these
matching effects may increase the power of transplant genetics studies. Most available
matching scores account for either single-nucleotide polymorphism (SNP) matching only
or sum these SNP matching scores across multiple gene-coding regions, which makes it
challenging to interpret the association findings. We propose a multi-marker Joint Score
Test (JST) to jointly test for association between recipient genotype SNP effects and a
gene-based matching score with transplant outcomes. This method utilizes Eigen
decomposition as a dimension reduction technique to potentially increase statistical
power by decreasing the degrees of freedom for the test. In addition, JST allows for
the matching effect and the recipient genotype effect to follow different biological
mechanisms, which is not the case for other multi-marker methods. Extensive
simulation studies show that JST is competitive when compared with existing
methods, such as the sequence kernel association test (SKAT), especially under
scenarios where associated SNPs are in low linkage disequilibrium with non-
associated SNPs or in gene regions containing a large number of SNPs. Applying the
method to paired donor/recipient genetic data from kidney transplant studies yields
various gene regions that are potentially associated with incidence of acute rejection
after transplant.
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1 INTRODUCTION

Transplant matching usually focuses on non-genetic factors related to the donor, the recipient, or the
graft itself, such as recipient age, donor sex, or organ size. Genetic matching in transplant has been
limited to the human leukocyte antigen (HLA) region of the genome in the past, as this region codes
for immune related genes that may lead to the recipient recognizing the allograft as non-self and
mounting an immune response against it (Reddy et al., 2013; Hernandez-Fuentes et al., 2018).
Although HLA matching reduces the risk of allograft rejection, it is not enough to prevent allograft
rejection, even in the case of transplant between HLA-identical siblings (Grafft et al., 2010; Zanoni
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and Kiryluk, 2020). More recent transplant genetic studies have
identified gene regions outside of the HLA region that may act as
genetic modifiers for transplant outcomes (Almoguera et al.,
2014; Yang and Sarwal, 2017; Steers et al., 2019; Farouk et al.,
2020; Marin et al., 2020; Reindl-Schwaighofer et al., 2020). These
so-called minor histocompatibility antigens may be important
regions of interest to examine further in order to improve
transplant outcomes.

Several studies have found evidence suggesting that donor and
recipient genetic mismatch in these non-HLA regions could
impact transplant outcomes. Zhang et al. (2020) showed that
non-HLA donor/recipient (D/R) genetic differences were
significantly associated with long-term graft survival in kidney
transplant. Pineda et al. (2017) found a significantly increased
number of D/R mismatched variants in the group of kidney
transplant recipients with antibody-mediated rejection (AMR)
compared to the group with no rejection, and they were able to
identify 16 gene regions with multiple SNPs associated with
AMR. Steers et al. (2019) utilized a genomic-collision model,
in which a recipient who is homozygous for a deletion tagging
allele obtains a transplant from a non-homozygous donor and
were able to find a single polymorphism located in the LIMS1
locus with an increased hazard for rejection for D/R pairs with the
collision genotype. In addition, previous work on single
nucleotide polymorphism (SNP) matching in transplant found
that utilizing D/R matching scores in association analyses led to
discovery of SNPs potentially associated with acute rejection after
liver transplant. Joint testing of these scores with the recipient
genotype also suggested that the scores were measuring some
aspect other than the combination of the recipient and donor
genotype, since there were cases where the score was associated
with transplant outcome, but the recipient and donor genotypes
were not (Arthur et al., 2020). In order to improve power, increase
interpretability and reproducibility of association signals, and
facilitate follow-up functional studies, it is of interest to extend
these single SNP methods to a multi-marker framework.

Many multi-marker methods have been proposed in the
literature for assessing the association of multiple genetic
markers within a gene region. Depending on how association
information for individual markers is aggregated, they can largely
be classified into three groups. In the first group, each test is based
on combining p-values from tests of individual markers (Li et al.,
2011; Chen et al., 2012; Mishra and Macgregor, 2015). Members
in the second group can be seen as some quadratic form that
combines statistics for testing marginal associations with each
marker (Pan 2011). Well-known examples include Hotelling’s T2

statistic (Fan & Knapp, 2003), genomic-distance based regression
(Wessel and Schork, 2006), variance component (VC) or kernel
machine regression based tests (Tzeng and Zhang 2007; Pan
2009; Wu et al., 2010; Wu et al., 2011), the use of weighted genetic
risk scores (Li et al., 2009; Iribarren et al., 2018), and the C-alpha
test (Neale et al., 2011). These tests have also been extended using
the framework of functional or mixed effects models (Fan et al.,
2013; Chen et al., 2019; Chiu et al., 2019). In the third group, each
test assesses associations between the phenotype variable and
some form of aggregated genotype data. For example, the
principal component regression (PCR) method (Gauderman

et al., 2007; Wang and Abbot 2008; Chen and Qin, 2010; de
Leeuw et al., 2015) tests the significance of top principal
components of centered multi-marker genotype data, and
Wang and Elston (2007) test similarly collapsed variables
obtained via Fourier transformations. Similarly to tests in the
second group, tests in this group have been built upon using
functional data analysis methods (Luo et al., 2011; Luo et al.,
2013). PCR and VC methods have been shown to generally have
competitive statistical power (Ballard et al., 2010; Pan 2011; Liu
et al., 2020). The connections among some of these methods have
been studied in the literature (Schaid 2010; Bacanu 2012).

Only a few multi-marker D/R matching scores have been
utilized for association analysis of transplant genetics data. The
allogenomics mismatch score (AMS) is based on the hypothesis
that observing the coding regions of both the recipient and
donor genomes can help identify the number of potentially
incompatible amino acids between the pair (Mesnard et al.,
2016). The AMS is defined as the sum of amino acid mismatch
contributions across all SNPs in the exome. A negative linear
association was observed between the AMS and estimated
glomerular filtration rate at 36 months post-transplant,
suggesting that the AMS may be correlated with long term
kidney graft function (Mesnard et al., 2016). A second method
defined variant mismatch as any allele difference between the
paired recipient and donor genomes (Pineda et al., 2017). This
study found that the total number of D/R variant mismatches
prior to transplant was significantly higher in the recipient
group that developed antibody-mediated rejection versus the
group with no rejection. The final method defined SNP
mismatch as the donor carrying an allele not present in the
recipient genome. These individual mismatches were then
summed over all non-synonymous SNPs (nsSNPs) in the
genome. After fitting a multivariate model that adjusted for
HLA eplet mismatch, the degree of nsSNP mismatch was
independently associated with graft loss (Reindl-Schwaighofer
et al., 2019). While these methods were able to find some
association between genome-wide mismatch and transplant
outcomes, the results are difficult to interpret due to the
scores spanning the entire genome. By extending existing
gene-based test ideas to use both the recipient and donor
genotype information, we have the potential to increase the
power and interpretability over single SNP and whole genome-
wide scoring methods.

Here we propose a new method called the “Joint Score Test
(JST).” JST is built upon marginal likelihood scores for testing
multiple SNP effects and a gene-based D/R matching score. JST
uses only the most informative linear combinations of single
recipient SNP marginal likelihood scores to allow for an increase
in statistical power. JST also allows for flexible adjustment for
covariates and therefore it can maintain nominal type-I error
rates in the presence of population stratification.

We organize our paper as follows. First, we discuss the
underlying model and the construction of JST. Then we
present the results of extensive simulation studies. Third, we
utilize JST in an association analysis of kidney transplant data.
Finally, we discuss the benefits and potential limitations of the
method.
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2 MATERIALS AND METHODS

JST jointly tests whether recipient genotype SNPs or a gene-based
D/R matching score are associated with the transplant phenotype
of interest.

2.1 Notation
Suppose that genotype data for m SNPs in a genomic region of
interest are available for n transplant D/R pairs. Let XR

ij and XD
ij

be the numerical coding of the genotype of the jth marker for the
ith recipient or donor, respectively (i � 1, . . . , n; j � 1, . . . , m),
which can be the number of minor alleles or another numerical
coding, and letWik be the kth covariate of D/R pair i. We consider
a regression setting with continuous or categorical outcomes, Yi,
and our generalized linear model (GLM) is of the form

g(μi) � α0 + Wiα + Xiβ + Zic,

where g () is the link function, μi � E(Yi|Wi, Xi, Zi), Wi �
(Wi1, ...,WiK) is the vector of K covariates for D/R pair i with
regression coefficients α � (α1, . . . , αk)T.
Let Xi � (XR

i1, X
R
i2, ..., X

R
im) denote the genotype vector of m

SNPs for recipient i with regression coefficients β �
(β1, . . . , βm)T, and let Zi denote the single gene-based genetic
matching score value for D/R pair i with regression coefficient c.
Note that W may include principal components (PCs) for
describing population substrata. We are interested in jointly
testing the null hypotheses

H0: β � 0 and c � 0

2.2 Gene-Based Scores
In general, each gene-based score can be written in the form

Zi � ∑m
j�1

D(XD
ij , X

R
ij )

where D(XD
ij , X

R
ij ) represents a function defining a distance

between the donor and recipient genotypes. We emphasize
that the donor and recipient SNPs used in the distance
calculations are not necessarily the same as those present in
the recipient genotype main effects vector Xi, and thus can be
greater or fewer in number. We will focus on four different single
SNP distance functions.

2.3 Single SNP Distance Scores
The first score, the identity-by-state (IBS) mismatch distance
function, is defined as

DIBS �
∣∣∣∣∣XD

ij − XR
ij

∣∣∣∣∣
assuming diallelic SNPs. This function is based on the degree of
identity-by-state between the donor and recipient genotypes,
measuring the number of alleles the pair shares at a SNP. IBS
has previously been used as a kernel function in the sequence
kernel association test (Wu et al., 2011) and in a kernel machine
approach to test multiple genetic markers in association with
quantitative traits (Kwee et al., 2008).

The second score considered, the incompatibility distance
function, is calculated as

DIncomp � { 1 if XD
ij ≠X

R
ij

0 otherwise.

This distance metric has been utilized in a kidney transplant
study, where single SNP incompatibility and a genome-wide sum
of this measure were found to be associated with antibody-
mediated rejection (Pineda et al., 2017). In addition, a similar
score was utilized in mother/child pairs in a genetic study of pre-
eclampsia (PE), where they found SNPs from three candidate
gene regions to be nominally associated with PE (Parimi et al.,
2008).

The third score, the Allogenomics Mismatch Score (AMS)
distance function, is defined as

DAMS � ∑
a ∈ XD

ij

{ 0 if a ∈XR
ij

1 otherwise,

where a denotes alleles of a genotype (Mesnard et al., 2016). The
underlying hypothesis of this method states that examining the
difference between transplant donor and recipient alleles in
coding regions of the genome can give insight into which
amino acids coded by the donor would present as non-self to
the recipient immune system, potentially leading to allograft
damage.

The fourth score, the binary mismatch score, is based off a
simplification of the AMS which assigned a score of 1 for all SNPs
where the donor genotype contained an allele that was not
present in the recipient genotype and a score of 0 otherwise
(Reindl-Schwaighofer et al., 2019). The single SNP distance
function can be defined as

DMM � { 1 if ∃ a ∈ Gdl such that a ∉ Grl

0 otherwise

2.4 A New Multi-Marker Test Statistic for
Paired Transplant Data
In this section we will focus on deriving our JST test statistic for a
binary outcome, Y. Additional derivation for a binary and a
continuous outcome is provided in the Online Resource. Let
p̂1(Wi) ≡ p(Yi � 1|Wi; α̂0; α̂) denote the predicted probability of
Yi � 1 based on the null model

logit Pr(Yi � 1|Wi; α0, α) � α0 +∑K

k�1 Wikαk ≡ α0 +Wiα.

Here α̂0 and α̂ are themaximum likelihood estimates of α0 and α.
Additionally, we let X̂

R
ij denote the fitted value for the jth SNP

genotype for recipient i from a weighted linear regression model
XR

ij � θ0 + ∑K
k�1 Wikθk + εX and let Ẑi denote the fitted value for

the gene-based genetic matching score of D/R pair i from a weighted
linear regression model Zi � τ0+ ∑K

k�1 Wikτk + εZ. In both cases,
the weights are p̂1(Wi){1 − p̂1(Wi)} for recipient i or D/R pair i.
As derived in theOnline Resource, the likelihood score for testing the
marginal association with the jth recipient SNP is equivalent to
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UR
j � ∑n

i�1(XR
ij − X̂

R

ij){Yi − p̂1(Wi)} ≡ ∑n

i�1Q
R
ij

Similarly, the likelihood score for testing the marginal
association with the gene-based D/R SNP genetic matching
score is equivalent to

US � ∑n

i�1(Zi − Ẑi){Yi − p̂1(Wi)} ≡ ∑n

i�1Q
S
i

Denote the vector of scores for all m recipient genotype SNPs
and the gene-based genetic matching score as U ,
U � (UR

1 , ..., U
R
m, U

S)T, let Bi � (Xi, Zi) and B̂i � (X̂i, Ẑi).
Then U can be written into the matrix form,

U � (B − B̂)T{Y − p̂1}
which is asymptotically distributed as a (m + 1) dimensional
normal random variable with variance-covariance matrix V �
nQTQ where Q � (QR,QS). The element of V at position
(a, b), a � 1, ..., (m + 1) and b � 1, ..., (m + 1), is estimated as
n∑n

i�1 QT
iaQib. A Hotelling’s T2 statistic can be constructed as

nUTV̂
−1
U , which asymptotically follows a Chi-squared

distribution with (m + 1) degrees of freedom. It is well known
that the Hotelling’s T2 statistic has low power when (m + 1) is
large, and that eliminating V̂

−1
from the test statistic could lead to

an improvement in power (Bai and Saranadasa, 1996). Along this
line, a squared score test (Pan 2009, referred to as “SSU”) and a
kernel-machine based test with the linear kernel (Wu et al., 2010,
referred to as “SKAT”) have increased power for testing multiple
marker main effects. These methods do not distinguish between
the matching score effects and recipient SNP effects, however,
which may have different underlying biological mechanisms. The
sequence kernel association test (SKAT) method, for example,
assumes that β and c have the same underlying variance
component (Wu et al., 2011), which therefore does not
distinguish recipients’ SNP main effects and the effect of the
matching score.

Here we propose a new statistic as follows. V can be
decomposed as

[ VR CRS

CSR VS ] � [Var(UR) Cov(UR, US)
Cov(US, UR) Var(US) ]

Our statistic is based on Eigen decomposition of the sample
variance-covariance matrix V̂

R
. Let A � [a1, a2, . . . , am] denote a

m × m matrix with the pth column being the pth eigenvector of
V̂

R
, and (λ1, λ2, . . . , λm), λ1 ≥ . . . ≥ λm, denote the

corresponding eigenvalues. We extract the first s (s < m)
principal components (PCs, the choice of s is discussed
below). Let As � [a1, a2, . . . , as] Define UPR as the vector of(UR)Tal/ ��

λl
√

, l � 1, 2, . . . , s. Our test statistic is constructed
based on UP � (UPR, US).

(UPR

US )T[Is×s Côv(UPR, US)
Côv(US, UPR) Vâr(US) ]−1(UPR

US )
where Is×s is the s by s identity matrix.

We can show that this statistic is asymptotically distributed as
a Chi-squared random variable with s+1 degrees of freedom
under the null. Therefore, Is×s is there under the null due to the
orthogonality between the eigenvectors. Under the alternative
hypothesis, this statistic is distributed as a non-central Chi-
squared random variable with s+1 degrees of freedom and
non-centrality parameter that is equal to its value.

2.5 Selection of s for JST
Choosing the number of PCs to retain (s) is always a difficult task
in principal component analysis. One common method is to
choose the number of PCs to keep based on a predefined
percentage of total variance explained. We utilize this method
in our simulation studies, looking at a range of 65–99% total
variance explained by the retained PCs.

2.6 Simulations
Simulation studies were conducted to assess type I error and
power levels of the JST, as well as to determine the number of
principal components to maintain after Eigen decomposition, s.

2.6.1 Simulation Study Design
Datasets were sampled from 1,000 Genomes Phase 3 reference
using HapGen2 (Su, Marchini and Donnelly, 2011). Briefly,
subsets of the reference data were created based on three gene
regions starting and ending positions, NAT2, CHI3L2, and
ASAH1. These genes were chosen due to their differing
number of SNPs and LD structures (Supplementary Figure
S1). SNPs with minor allele frequency less than 0.05 were
excluded from analyses. The subset reference data was then
sampled with HapGen2 to generate 2n control individuals
which were then paired into n donor/recipient pairs. A small
sample size, n � 500, and a large sample size, n � 1,000, were
considered. Recipient and donor genotype information was
then extracted from these sampled datasets and used to
calculate gene-based scores. A total of 5,000 simulations
were conducted for each gene region and sample size
combination.

For type I error analysis, null phenotypes were generated using
the model

logit Pr(Yi � 1|W) � α0 + 0.5W1 + 0.5W2

for binary outcome Yi, and using the model

Yi � 0.5W1 + 0.5W2 + ε

for continuous outcome Yi, whereW1 is a binary covariate taking
a value of either 0 or 1 with probability 0.5, W2 is a continuous
covariate drawn from a standard Normal distribution, and ε is an
error term drawn from a standard Normal distribution.

For power analyses, phenotypes were generated using the
model

logit Pr(Yi � 1|W ,X,Z) � α0 + 0.5W1 + 0.5W2 + Xiβ + Zic,

for binary outcome Yi, or using the model

Yi � 0.5W1 + 0.5W2 + Xiβ + Zic + ε
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for continuous outcome Yi. For both models, a variety of true
associations were tested, where either recipient genotype SNPs were
associated (β ≠ 0, c � 0), or D/R matching was associated
(β � 0, c≠ 0). When recipient genotype SNPs were associated,
we considered scenarios in which 5, 15, or 25% of the SNPs in
the gene region were truly associated with outcome, and this group
of SNPs was either in high linkage disequilibrium (LD) or low LD.
When D/R matching was associated, we considered scenarios in
which 5, 15, 25, 50, 75, or 100% of the SNPs in the gene region were
important to match between D/R. For cases where less than 100% of
the SNPs were important to match, we included only the associated
SNPs in the summedmatching score when deriving phenotypes, and
then utilized the full gene-based matching score for testing. Similarly
to the recipient genotype SNPs, these groups of matched SNPs were
either in high or low LD with one another. We considered a small,
0.14, medium, 0.41, and a large, 0.69, effect size resulting in odds
ratios of 1.25, 1.50, and 2.00. Prevalence of the binary outcome Yi

ranged from 5 to 20% in order to see the effects of rare versus
common outcomes. In addition, several values of s were examined,
accounting for 65–99% of total variance explained by the principal
components, to determine its effect on type I error and power levels.
All analyses were run using R (v4.0, R Core Team, 2021). Code to
run all simulations can be found online (https://github.com/
arthurvickie/Multi-Marker_Method).

2.6.2 Comparison to Existing Methods
In addition to testing the type I error and power levels of JST, we
compared our method with a standard GLM and the SKAT. For all
comparisons, phenotype generationwas the same as for JST.We used
the same n x (m+1)matrix of combined recipient genotype SNPs and
gene-based D/Rmatching score as input as was used for JST. For our
standard GLM, we fit separate models under the null and alternative
hypotheses respectively, and then calculated the likelihood ratio test
(LRT) statistic using the lrtest function from the lmtest (v0.9-37,
Zeileis and Hothorn, 2002) package in R or the score test statistic
using the anova function in R. SKAT analysis was performed using
the unweighted linear kernel and the unweighted IBS kernel as
implemented in the SKAT (v1.3.2.1, Lee et al., 2017) package in R.

2.7 Real Data Analysis
2.7.1 Sample Information
Kidney transplant data was collected from two cohorts:
Deterioration of Kidney Allograft Function (DeKAF, 2005–2011,
NCT00270712) Genomics Study and Genomics of Kidney
Transplantation (GEN-03, 2012–2016, NCT01714440) study.
Genotypes from the DeKAF cohort (n � 784 donor-recipient
pairs) were determined with the AFR-AMR Axiom chip
(Affymetrix, Santa Clara, CA) (Hoffmann et al., 2011), which
contains 837,930 variants. Genotyping of GEN-03 cohort (n �
404 donor-recipient pairs) was performed on a custom exome-plus
Affymetrix TxArray SNP chip (Li et al., 2015), which contains
approximately 782,000 variants. Genotype calling was performed in
one batch on the Affymetrix Genotyping Console v4.0 using the
GT1 algorithm, which is based on BRLMM-P (Affymetrix, Santa
Clara, CA). Genotyping details can be found in our previous paper
(Oetting et al., 2016). Non-Caucasian recipients were excluded from
this study. In both data sets the outcome of interest incidence of

acute rejection (AR) after transplant (161 cases in DeKAF cohort
and 50 cases in GEN-03 cohort), was coded as a binary variable. AR
was defined as time to first T-cell, antibody mediated, or mixed
T-cell and antibody mediated rejection post-transplant as
determined by the enrolling center and treating physician.
Rejection was biopsy confirmed in ∼96% of the cases.

2.7.2 Statistical Analysis
The common SNPs in the two cohorts were grouped by physical
locations within 23,062 genome-wide genes (GRCh38. p13) and then
analyzed using both JST with s � 85% variance explained and SKAT
with an unweighted IBS kernel. Covariates were included for
recipients’ age, gender, PRA status, prior non-kidney
transplantation, and an indicator for the cohort membership.
p-values were adjusted for multiple comparisons using the
Benjamini-Hochberg procedure to control false discovery rate (FDR).

3 RESULTS

3.1 Results of Simulation Studies
A subset of the total simulation results is presented for both type I
error testing and power testing. In all scenarios, results were
similar for all combinations of gene, sample size, and any

TABLE 1 | Results of Type I Error simulations for the gene NAT2 with 500 D/R
pairs. Method refers to one of the four multi-marker methods used for testing.
Score refers to the gene-based score that was fit as part of the modeling. The
columns Prevalence 20, 10, and 5% give results for binary outcome Y, and the
continuous column gives results for continuous outcome Y. JST stands for
Joint Score Test, with s value (percent of variance explained by the PCs)
indicated in parentheses. Results for s value between 70 and 95%were similar
to those for s � 65%. SKAT stands for Sequence Kernel Association Test.
SKAT (Linear) refers to using SKAT with an unweighted linear kernel. SKAT
(IBS) refers to fitting SKAT with an unweighted IBS kernel. GLM stands for
Generalized Linear Model.

Method Score Prevalence Continuous

20% 10% 5%

JST (s � 65%) IBS 0.05 0.05 0.06 0.05
Incompatibility 0.05 0.04 0.05 0.05
AMS 0.05 0.05 0.06 0.04
Binary MM 0.05 0.05 0.06 0.04

JST (s � 99%) IBS 0.04 0.05 0.01 0.04
Incompatibility 0.05 0.05 0.01 0.04
AMS 0.04 0.05 0.01 0.04
Binary MM 0.04 0.05 0.01 0.03

SKAT Linear IBS 0.05 0.05 0.05 0.05
Incompatibility 0.05 0.05 0.05 0.05
AMS 0.05 0.05 0.05 0.05
Binary MM 0.05 0.05 0.05 0.05

SKAT IBS IBS 0.05 0.05 0.04 0.05
Incompatibility 0.06 0.05 0.05 0.05
AMS 0.05 0.05 0.05 0.05
Binary MM 0.05 0.05 0.05 0.05

GLM IBS 0.05 0.07 0.10 0.06
Incompatibility 0.06 0.07 0.11 0.06
AMS 0.05 0.08 0.10 0.05
Binary MM 0.05 0.07 0.10 0.06
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additional variables tested. Table 1 is based on scenarios using
NAT2 with 500 D/R pairs, and all figures are based on 1000 D/R
pairs, using data from either NAT2 or CHI3L2.

3.1.1 Type I Error
Table 1 shows the results of type I error rates for joint testing. For
the proposed JST method, the type I error rate was around 0.05 for
all combinations of outcome prevalence and fitted gene-based score.
Type I error rates are nominal for s values between 65 and 90%, with
some conservative error rates seen with s � 99% for lower outcome
prevalence. Similar results can be seen for the SKAT method using
either the linear or IBS kernel. The standard score test based on
generalized linear model tends to have inflated type I error values
when the outcome is binary, ranging from around 5–11%.When the
outcome is continuous, the type I error is slightly inflated, at 6%.

3.1.2 Power—Recipient Genotype SNPs Associated
Figure 1 shows results from power analyses where the recipient
genotype SNPs are associated with outcome, but the gene-based
matching score is not associated. Under this scenario, SKAT using
the IBS kernel performs better than SKAT using the linear kernel, so
we use the IBS kernel results for our comparisons. The GLM LRT
tends to have the lowest power, ranging from around 50% (Figures
1B,C) to around 80% (Figure 1D). It is probable that the power
levels in panel D are being artificially inflated due to inflation of type
I error rate. The power difference between the proposed JST and
SKAT using the unweighted IBS kernel varies. When the R genotype
SNPs associated with outcome are in low LD, JST tends to have
higher power than SKAT, as seen in the Figure 1A where JST with
s � 95% reaches close to 90% power but SKAT does not reach 80%
power. When the SNPs associated with the outcome are in high LD,

FIGURE 1 | Power estimates from simulations using the genes NAT2 (Panels (A,B)) and CHI3L2 (Panels (C,D)) with 1,000 pairs of donors and recipients under the
scenario that recipient genotype SNPs were associated with outcome. Panels (A,B) show an outcome prevalence of 10%. Panel (C) has an outcome prevalence of 5%
and Panel (D), 20%. Panels (A–C) show results for a medium OR (1.25) and Panel (D) for a large OR (2.00). Panels (A, C) show results when 25% of recipient SNPs are
associated, while 15% are associated in Panel (B) and only 5% in Panel (D). In panels (A, D), SNPs are in low LD while in panels (B, C) they are in high LD. The four
colored bars represent which gene-based score was fit in the model, with red corresponding to the allogenomics mismatch score (AMS), orange to binary mismatch
score, green to identity-by-state (IBS) score, and blue to Incompatibility score. From left to right in panels (A, C,D), the method used for model fitting was the joint score
test (JST), with s values of 85, 90, 95, and 99% of variance explained by the principal components (PCs), the sequence kernel association test (SKAT) with the
unweighted IBS kernel, and a generalized linear model (GLM) likelihood ratio test (LRT). Panel (B) shows results for JST with s values of 65–80%. The y-axis shows
estimated power from 0 to 100%. The horizontal blue line corresponds to 65% power and the horizontal red line corresponds to 80% power.
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SKAT and the JSTmethod can have similar power levels. This can be
seen in the Figure 1B where both SKAT and JST with s � 65–80%
reach around 85% power. When the size of the gene is increased, as
in panels C and D, we see that JST tends to have higher power than
SKAT in both scenarios. Additionally, when a continuous outcome
is examined, JST with any value of s tends to have much higher
power than SKAT using either kernel (Supplementary Figure S2).

For this scenario, there is not a singular s value that always
results in the highest power. Figures 1A,D both show that JST has
the highest power when s corresponds to 95% variance explained.
Panel B shows that under different circumstances, retaining a
smaller number of principal components may result in higher
power, while the opposite is seen to be true for Figure 1D. We
note that power levels for JST in all panels are around 80%, so
changing the number of principal components retained does not
seem to drastically affect the overall power of the method.

3.1.3 Power—Donor/Recipient Gene-Based Matching
Score Associated
Figure 2 shows an example of results on power when the D/R gene-
based matching score was associated with outcome and recipient
genotype was not associated. Under this scenario, SKAT
performance is slightly better using the linear kernel versus the IBS
kernel, so we use the linear kernel results in our comparison. We can
see that overall, SKAT has the highest power under these simulation
conditions, with power levels reaching at least 80% for all four
associated scores. The proposed JST method has the second highest
power ranging from around 60% when the binary mismatch score is
associated to around 90% when the IBS score is associated. The GLM
LRT has the lowest power, ranging from around 25% to almost 65%.
We note that JST tends to have the highest power when the percentage
of variance explained by the s PCs is the smallest (65%).When the IBS
gene-based score or the AMS is truly associated (Figures 2A,C), power

FIGURE 2 | Power estimates from simulations using the gene CHI3L2 and 1,000 pairs of donors and recipients under the scenario that the gene-based score was
associated with outcome. All plots shown are for a binary outcome with prevalence 10%. A small odds ratio (1.25) was used for phenotype generation. For these
simulations, 50% of SNPs in the gene score were associated with the outcome, and these SNPs were in low LD. From left to right, and top to bottom the true associated
gene-score is the allogenomics mismatch score (AMS), the Binary Mismatch, the identity-by-state (IBS), and the Incompatibility score. The four colors represent
which score was used to fit the model, where red is the AMS, yellow is the Binary Mismatch score, green is the IBS, and blue is the Incompatibility score. In each plot, the
x-axis corresponds to the method used, where from left to right methods are joint score test (JST) with s values of 65, 70, 75, and 80% of variance explained by the
principal components used, the sequence kernel association test (SKAT) with unweighted linear kernel, and a generalized linear model (GLM) likelihood ratio test (LRT).
The y-axis shows estimated power from 0 to 100%. The horizontal blue line corresponds to 65% power and the horizontal red line corresponds to 80% power.
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tends to be higher overall than when the binary scores are associated,
with all s values leading to over 80%power. The Binarymismatch score
being truly associated (Figure 2B) tends to have the lowest overall
power of the four scores, with four scenarios in which power does not
reach 65%. Similar results are seen when outcome is continuous
(Supplementary Figure S3).

3.2 Data Analysis Results
Table 2 shows the top five genes from analysis of the combined
GEN03 and DeKAF data sets using JST with an s value of 85% and
the top five genes from SKAT analysis of the combined data sets,
using an unweighted IBS kernel. Gene ranking is based on the
smallest p-value for all four score models. p-values for the four
different models are relatively similar for each of the five genes.
The number of genotyped SNPs in the genes ranges from 3 to 15
for the JST results and from 3 to 104 in the SKAT results. Only
one of the top genes found using SKAT analyses was also found in
the top five for JST analysis. All five of the genes from JST analysis
are significant using a FDR cutoff of less than 0.10, while none of
the genes found by SKAT are significant using this method.

4 DISCUSSION

We propose a multi-marker test statistic designed for use with
paired genetic data in transplantation. The joint score test, or JST,
can be used for testing whether specific gene regions are
associated with transplant outcomes, either through the
recipient genotype or D/R genetic matching. Compared to

other statistical tests in this setting, the JST has the potential
for increased power and reproducibility as compared to single
SNP tests, as well as increased interpretability as compared to
multi-SNP methods that sum across large regions of the genome.

The Eigen decomposition of the recipient genotype covariance
matrix allows for a potential increase in power for JST as
compared to a standard GLM likelihood ratio test. By
transforming the covariance matrix into its principal
components, we are able to select only those components that
are most likely to be associated and discard the remaining
components. We chose to keep principal components with
large eigenvalues in accordance with previous theoretical and
empirical work by Liu et al. (2020) in order to have the greatest
power to detect genetic associations.

Our simulations showed that JST is a competitive method as
compared to standard GLM, and SKAT. Type I error rates were
conserved for both JST and SKAT but were inflated for GLM.
This inflation could be due to the larger number of covariates
being fit in this model. In power simulations, JST tended to
outperform SKAT when recipient genotype SNPs, in low LD with
all other SNPs in the region, were truly associated with outcome.
When the recipient SNPs were in high LD, SKAT and JST
performed similarly for the smallest gene but increasing the
gene size while keeping the percentage of associated SNPs
constant led to JST surpassing SKAT in power. These findings
agree with those found by Liu et al. (2020) where the SKAT
method performed closer to use of the first principal component
when LD between SNPs increased, due to the increase of the first
eigenvalue weighting the first PC higher in the SKAT test statistic.

TABLE 2 |Results of JST and SKAT analysis of combined GEN03 and DeKAF data sets. The top 5 genes sorted by p-value from fitting a model with the any of the four gene-
based score are shown. JST was calculated using p � 85% of variance explained. SKAT was run using the IBS kernel. Adj. p-value: p-value adjusted for multiple
comparisons using FDR, IBS: identity-by-state, Incomp: incompatibility, AMS: allogenomics mismatch score.

Gene ID IBS
Score

p-value Adj.
p-value

Incomp.
Score

p-value Adj.
p-value

AMS
Score

p-value Adj.
p-value

Binary
Mismatch
Score

p-value Adj.
p-value

JST Analysis Results

IFNA5 22.62 4.86E-
05

0.25 27.2 5.33E-
06

0.09 30.29 1.20E-
06

0.05 30.29 1.20E-
06

0.05

AC002511.1 22.66 1.20E-
05

0.09 26.77 1.54E-
06

0.05 17.92 1.28E-
04

0.38 23 1.01E-
05

0.09

NTRK3-AS1 25.15 1.44E-
05

0.09 27.58 4.44E-
06

0.09 16.29 9.90E-
04

0.65 17.1 6.75E-
04

0.56

Z98752.3 28.4 1.04E-
05

0.09 27.94 1.28E-
05

0.09 28.16 1.16E-
05

0.09 27.81 1.36E-
05

0.09

SGK2 27.66 1.46E-
05

0.09 27.59 1.51E-
05

0.09 27.6 1.50E-
05

0.09 27.58 1.51E-
05

0.09

SKAT Analysis Results

AC002511.1 150.97 6.49E-
06

0.32 151.46 5.28E-
06

0.32 86.24 7.36E-
05

0.80 87.86 5.71E-
05

0.80

AC117569.1 79.7 1.29E-
03

0.82 72.84 1.67E-
03

0.82 109.16 9.65E-
05

0.80 111.07 3.64E-
05

0.80

AC104041.1 42.43 3.79E-
04

0.80 35.16 1.26E-
03

0.82 45.09 5.40E-
05

0.80 38.05 1.71E-
04

0.80

LINC01968 92.71 8.58E-
05

0.80 84.02 8.07E-
05

0.80 66.94 1.06E-
03

0.82 65.23 4.97E-
04

0.80

COG4 19.18 2.11E-
04

0.80 14.35 1.80E-
03

0.82 19.87 8.95E-
05

0.80 16.97 2.52E-
04

0.80
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When gene-based score was associated with outcome, SKAT
tended to have higher or similar power to JST depending on
which gene-based score was used in modeling. When the AMS
and IBS score were associated with the outcome, they tended to
have higher power than when the Binary Mismatch score and
Incompatibility score were associated. Additionally, when the
Binary Mismatch score or Incompatibility score were associated
with outcome, the AMS or IBS score respectively maintained
relatively high power. Following these observations, it is
recommended that the AMS or IBS score be used for testing.
Ideally, the choice of score should be determined based on prior
knowledge of the genetic mechanism.

JST and SKAT behaved similarly in some of the simulation
scenarios but the construction of these two test statistics is
different. Using the linear kernel, the SKAT statistic is
equivalent to summing the squared score statistics of the
genetic data (Wu et al., 2011). Under this scenario, SKAT is
similar to JST but does not involve the variance between the
marginal score functions. The main difference between the two
approaches lies in different modeling approaches. SKAT is also
based on a generalized linear model, but the log-odds ratio
parameters for both the recipient genotypes and gene score
are further modeled as following a mean zero distribution.
Different ways of specifying variance in such mean zero
distribution correspond to different kernel functions chosen
for SKAT analysis (Sun et al., 2013). It is not straightforward
to derive general insights on which method may be more
powerful, but it does seem that their power would differ at
least according to the true underlying genetic model and the
LD structures of the genetic variants. We recommend both
methods be applied for analysis with adjustment to multiple
testing.

To the best of our knowledge, SKAT has not previously been
evaluated under the scenario of jointly testing for an association
between a set of SNPs and a gene-based score and has not been
utilized with paired transplant genetics data. Our evaluation of
SKAT under these circumstances found that the method works
well and is robust. We determined that the choice of kernel often
impacted power levels, however, such as when the SKAT method
using the linear kernel had minimal power as compared to the
SKAT method using the IBS kernel under the scenario where R
genotype SNPs were associated with outcome. Investigation into
this phenomenon found that scaling the gene-based scores from
between 0 and 1, before running SKAT with a linear kernel leads
to an improvement in power (Supplementary Figure S4). The
IBS kernel had relatively high power under both power scenarios,
with power levels only about 5% less than those of the linear
kernel when gene-based score was associated, so use of the IBS
kernel may be preferred when the true underlying association is
unknown.

Based on the simulation studies, there is no clear value of s that
leads to the highest power in all scenarios. When gene-based
score was associated with the outcome, the smallest s value we
considered tended to have the highest power, but power tended to
be similar for s values corresponding to between 65 and 80%
variance explained by the PCs. When recipient genotype SNPs
were associated with the outcome, changing the value of s did not

tend to drastically change the power levels. Since the true
association mechanism is unknown for real data analysis, it
may be beneficial to run models using a few different s values,
although this will increase the number of tests. An alternative is to
choose a middling value of s, around 80 or 85%, which tends to
have high power under either scenario of association.

Our analysis of kidney transplant data found five genes to be
statistically significant after accounting for multiple comparisons
at FDR<0.10. These include genes that could plausibly lead to AR
after kidney transplant. Three of the five genes, IFNA5, Z98752.3,
and SGK2, have been found to be associated with the immune
system or specific types of immune cells which could attack a
transplanted kidney if the graft is recognized as non-self (Kichaev
et al., 2019; Chen et al., 2020). IFNA5, for example, is known to be
involved in differentiation and proliferation of B and T cells, as
well as being involved in the adaptive immune response, which
involves the creation of antibodies that may attack a donor organ
(Huntley et al., 2015). In previous GWAS analyses, SNPs located
in SGK2 were found to be associated with leukocyte and
monocyte counts which are directly associated with immune
response (Kichaev et al., 2019; Chen et al., 2020). Replication
of these results will be needed to verify the significance of these
findings.

The JST method does have some limitations. Transplant data
analysis was limited to data from paired kidney transplants. The
method can be applied to other organ data as well, as long as
genotype data is available for both the donor and the recipient.
For our simulation studies, we only focused on unrelated D/R
pairs, but it is possible that the degree of relatedness between a
donor and a recipient may impact whether the recipient
experiences acute rejection. We were able to look at related
versus non-related pairs in our combined kidney data sets and
found that these two groups had no overlap in their top five
potentially associated genes. Based on these results, we believe it is
important to account for relatedness between a D/R pair in
analyses. We restricted our analyses to only include common
SNPs, but rare variants can be used in JST analyses. If there is
interest in the association of rare variants, it is possible to
construct a weighted version of the distance function as,

Zi �
∑m

j�1 wjD(XD
ij , X

R
ij )∑m

j�1 wj

Then a simple weighting option that will help upweight rarer
minor allele frequencies is the use ofwj � 1/ ������

MAFj
√ (Kwee et al.,

2008). Additionally, the JST method gives results based on the
joint null hypothesis of either recipient genotype SNP effects and/
or gene-based score effect but cannot specify which effect is
driving the results. Work is ongoing to determine a testing
method for gene-based score effect that can account for any
recipient genotype SNP effect simultaneously.

In summary, the JST is a powerful method that can be used for
the analysis of paired genetic data. Use of this method could lead
to the discovery of gene regions potentially important to
transplant outcome, which could be further studied to try and
determine the biological mechanisms behind acute rejection.
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