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Breast cancer is the most frequently diagnosed cancer and the second leading cause of
cancer death among women worldwide. Therefore, the need for effective breast cancer
treatment is urgent. Transcription factors (TFs) directly participate in gene transcription,
and their dysregulation plays a key role in breast cancer. Our study identified 459
differentially expressed TFs between tumor and normal samples from The Cancer
Genome Atlas database. Based on gene expression analysis and weighted gene co-
expression network analysis, the co-expression yellow module was found to be integral
for breast cancer progression. A total of 121 genes in the yellow module were used for
function enrichment. To further confirm prognosis-related TFs, COX regression and
LASSO analyses were performed; consequently, a prognostic risk model was
constructed, and its validity was verified. Ten prognosis-related TFs were identified
according to their expression profile, survival probability, and target genes. COPS5,
HDAC2, and NONO were recognized as hub TFs in breast cancer. These TFs were highly
expressed in human breast cancer cell lines and clinical breast cancer samples; this result
was consistent with the information from multiple databases. Immune infiltration analysis
revealed that the proportions of resting dendritic and mast cells were greater in the low-
risk group than those in the high-risk group. Thus, in this study, we identified three hub
biomarkers related to breast cancer prognosis. The results provide a framework for the
co-expression of TF modules and immune infiltration in breast cancer.

Keywords: transcription factors, WGCNA, COX regression analysis, LASSO analysis, immune infiltration,
breast cancer
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INTRODUCTION

Transcription factors (TFs) identify specific DNA promoters to
control chromatin and transcription in the process from gene to
protein (1). TFs are spatially, temporally, and sequentially
expressed in tissues during cell development, proliferation, or
differentiation processes; and any modification of their
expression and functional disorder may result in master
deregulation of cell integrity or organism homeostasis leading
to pathologies. TFs are able to activate or repress gene
transcription depending on the specific structure of their
DNA-binding domain, including structural motifs, such as the
C2H2 homeodomain, helix–loop–helix, helix–turn–helix, and
leucine zipper (2). Similarly, the expression of TFs is tissue-
and cell-type-specific and often indicative of corresponding
specific functions (3). Numerous diseases arise from a
breakdown in the regulation of TFs: a third of human
developmental disorders have been attributed to dysfunctional
TFs, and a majority of oncogenes are also TFs (4–6). In recent
years, an increasing number of studies have found that drugs
targeting TFs can modulate some hallmark properties of cancer.
For example, MLL-AF9 is a driver of the leukemia stem cell
population (7); GABP increases expression of TERT in
glioblastomas with a mutant TERT promoter (8); PML–RARa
blocks cell differentiation in acute promyelocytic leukemia (9);
RUNX1–ETO reduces CD48, thereby decreasing NK cell killing
(10); Runx2 and SIX1 induce epithelial-mesenchymal transition
(EMT) and breast cell invasion (11, 12).

Breast cancer is the most frequently diagnosed cancer and is
the leading cause of cancer death among women worldwide (13).
Breast cancer is a heterogeneous disease, which is a result of
genetic alteration or epigenetic modifications by multiple factors,
especially the TFs. TFs are divided into three groups in breast
cancer: steroid receptors, resident nuclear TFs, and latent
cytoplasmic factors (14). These TFs regulate cell cycle, stem
cell differentiation, apoptosis, migration, and cell differentiation
and modulate breast cancer progression. In our previous study,
we demonstrated that the TF, GATA3, could recruit histone
demethylase UTX to suppress metastasis of breast cancer (15). In
addition, the TF, RUNX2, can promote CD44/CD24 breast
cancer stem cell properties and breast cancer tumorigenesis
through the EMT process (16). Furthermore, the TF, GATA4,
induces cell cycle arrest and apoptosis through NF-kB signaling
in breast cancer cells (17). To date, there are approximately 1508
TF genes that participate in sequencer-specific DNA binding (2);
however, their roles in breast cancer have not been elucidated.

The availability of complete genome sequences and the
development of high-throughput sequencing techniques have
provided complementary information describing the function of
TFs in cancer. Weighted gene co-expression network analysis
(WGCNA) is a new bioinformatics method, which allows for a
comprehensive interpretation of gene expression data by
constructing gene networks based on similarities in expression
profiles among samples based on microarray or RNA-seq data
(18). Closely connected genes that have been proven to be
conserved across phylogenies and enriched in protein-protein
interactions are grouped into one module (19). WGCNA is the
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most widely used co-expression network technique and is often
used in genetic analysis of cancer (20). By constructing two gene
networks according to normal and tumor tissue gene expression
data, it is possible to identify critical modules and genes that
might be involved in pathological processes and, subsequently,
are able to serve as diagnostic or prognostic biomarkers, or
potential therapeutic targets. In breast cancer, the novel
microRNA biomarkers for each subtype of breast cancer can
be detected using WGCNA (21). In addition, our previous study
identified one lncRNA and five mRNA that serve as important
prognostic biomarkers in breast cancer (22).

In this study, we usedWGCNA to compare the TF expression
of a patient with breast cancer and that of a normal patient, based
on information from The Cancer Genome Atlas (TCGA), and
identified the most significant modules related to breast cancer.
More importantly, we also used the Least Absolute Shrinkage
and Selection Operator (LASSO) to construct a TF–target
network and identify 10 key TFs related to patient survival and
immune infiltration in breast cancer. Upon further analysis,
three hub TFs, COPS5, HDAC2, and NONO were identified
and were demonstrated to be highly expressed in human breast
cancer samples when compared to adjacent tissues using western
blotting and quantitative reverse transcription polymerase chain
reaction (qRT-PCR). Our study not only detected 10 TFs
correlated with breast cancer prognosis, but also provides a
direct reference for exploring the roles of TFs and target genes
in breast cancer.
RESULTS

Identification of Differentially Expressed
TFs and Subsequent Gene Function
Enrichment Analysis
JASPAR, TRANSFAC, CISBP, and TRRUST databases were used
for the bioinformatics analysis process. A total of 1930 TFs were
obtained after the removal of duplicated TFs from the four
databases, as shown in Table 1. The raw counts data and
clinical data (Table 3) of breast cancer were download from
TCGA. After the raw data were statistically analyzed using the
DESeq2 R package, 295 significantly upregulated and 164
significantly downregulated TFs were screened out
(Supplemental Table 1). A volcano plot and heatmaps were
generated to demonstrate the distribution of 459 differentially
expressed TFs (Figures 1A, B). In order to further analyze the
function of these TFs, the “clusterProfiler” R package was used to
conduct the Gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway annotation analyses for
the 459 differential TFs (Supplemental Table 2). Enrichment
results were visualized using the “ggplot2” R package
(Figures 1C, D). Signaling pathways found to regulate the
pluripotency of stem cells, Th1 and Th2 cell differentiation, the
Notch signaling pathway, the TGF-beta signaling pathway,
cellular senescence, and the cell cycle, among others, were
obtained from the KEGG pathway enrichment analysis
(Figure 1C). Moreover, GO analysis showed that these TFs
December 2021 | Volume 11 | Article 742792
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FIGURE 1 | Heatmap, volcano plots, and gene enrichment analyses of differential transcription factors (TFs). (A) Heatmap of differential TFs. (B) Volcano plot of
differential TFs. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of differential TFs. Red pathways are common between the total
differential TFs of the yellow module. (D) Gene ontology (GO) enrichment of total differential TFs.
TABLE 1 | TFs database information.

Database CISBP TRRUST JARSPAR TRANSFAC Total

TFs 1639 795 111 287 1930
Frontiers in Oncology | www.fro
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were significantly enriched in histone methylation, histone
acetylation, DNA damage response, stem cell differentiation,
and TF binding activation (Figure 1D).

Construction of Co-Expression Modules of
Differentially Expressed TFs Using WGCNA
WGCNA was used to construct a co-expression network and
modules of differentially expressed TFs exhibiting a strong
correlation with breast cancer. The Pearson’s correlation matrix
of the genes was converted into a strengthening adjacency matrix
Frontiers in Oncology | www.frontiersin.org 4
by power b = 4 based on a scale-free topology with R2 = 0.97
(Figure 2A). All of the TFs were clustered using a topological
overlap matrix (TOM)-based dissimilarity measure according to
the Dynamic Tree Cut algorithm to divide the tree into eight
modules (Figures 2B, C) labeled with different colors. Then, we
summarized the gene co-expression by eigengenes and calculated
the correlation of each eigengene with breast cancer. The
association between co-expression modules and breast cancer is
shown in Figure 2D. The yellow module exhibited a strong
positive relationship with breast cancer and was used for further
A B

C E

D

F

FIGURE 2 | Construction of co-expression modules by weighted gene co-expression network analysis (WGCNA). (A) Analysis of network topology for various soft-
threshold powers. Check scale-free topology; the adjacency matrix was defined using soft-thresholds with b = 4. (B) Clustering dendrograms of transcription factors
(TFs), with dissimilarity based on topological overlap, together with assigned module colors. (C) Bar plot of mean significance across modules; gene significance
represented the correlation between module and breast cancer. (D) Analysis of module-breast cancer relationships. (E) Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment of TFs in the yellow module. (F) Gene ontology (GO) enrichment of differential TFs in the yellow module. Red pathways are common
with total differential TFs.
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analysis. The TFs in the yellow module are listed in
Supplemental Table 3.

We used the “clusterProfiler” R package to analyze the GO
and KEGG pathway enrichment of the 121 TFs in the co-
expression yellow module (Supplemental Table 4). The
significant enrichment function and pathways (p-value < 0.05)
are shown in Figures 2E, F. KEGG signaling pathways possibly
related to breast cancer progression were identified (Figure 2E),
including the cell cycle, cellular senescence, the TGF-b signaling
pathway, and the Hippo signaling pathway. GO data revealed
that the TFs were enriched in pathways such as DNA damage
response, DNA methylation, TF complex, SWI/SNF
superfamily-type complex, and histone binding (Figure 2F),
which represent the classical function of TFs.
Frontiers in Oncology | www.frontiersin.org 5
Construction of Prognostic TFs of
Breast Cancer
In order to determine the key TFs related to the prognosis of breast
cancer, TFs significantly related to cancer prognosis were identified
by single variable Cox regression analysis. As shown in Figure 3A,
11 TFs were obtained with p-values <0.05. Next, LASSO regression
analysis was used to remove redundant TFs to get the prognostic
TFs based on the result of single variable Cox regression analysis
(Figure 3B). One TF was abandoned, and the remaining 10 TFs
further analyzed were SIM2, PTMA, NONO, COPS5, HDAC2,
ZNF706, ZNF250, ALX3, HNRNPD, and TBPL1. They were
analyzed using multivariate Cox regression analysis and utilized
to construct a final prognostic model associated with TFs of breast
cancer. The coefficients of each TF are shown in Figure 3C. The
A

C

D

F

E

B

G

FIGURE 3 | Construction of prognostic transcription factor (TF) model of breast cancer. (A) Single variable Cox regression analysis of differential TFs. (B) Line plot of
Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis of 11 TFs in breast cancer. (C) LASSO model (l) of breast cancer. (C) Coefficient
spectrum of the 10 prognosis-related TFs. (D) Distribution of risk score in breast cancer. (E) Heatmap of the 10 prognosis-related TF expression profiles combined
with clinical traits in the high- and low-risk groups. (F) Kaplan–Meier analysis of high- and low-risk groups for breast cancer from TCGA. (G) ROC curve of 3- and 5-
year survival probability in breast cancer from TCGA.
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prognosis of breast cancer was evaluated by calculating the risk
score of each patient on the basis of the expression and coefficients
of each TF. breast cancer patients were divided into high-risk and
low-risk groups according to their risk score (Figure 3D). A
heatmap was generated to directly present the relationship
between the differential genes of high-risk and low-risk groups
and the related traits (Figure 3E). Furthermore, to test the
effectiveness of the prognostic model, a breast cancer dataset,
Metabric, from the Cbioportal database was used as a training set
and plotted using a Kaplan–Meier analysis and receiver operating
characteristic (ROC) curve of 3- and 5-year survival probability. The
survival time of patients with a low-risk score was significantly
longer than that of patients with a high-risk score in both models
(Figure 3F and Supplemental Figure 1A), and the area under curve
of the model indicated that it had the ability to predict the prognosis
of breast cancer (Figure 3G and Supplemental Figure 1B).

Finally, we assessed the prognosis value of ten TFs based on risk
score, age, gender, and tumor stage. According to univariate cox
regression analysis, the risk score was significantly correlated with
overall survival (OS) (HR = 0.367, 95% CI = 0.26–0.52, p-value <
Frontiers in Oncology | www.frontiersin.org 6
1.7e-08) (Figure 4A); meanwhile, according to multivariate Cox
regression analysis, the risk score was an independent prognostic
indicator (HR = 0.402, 95% CI = 0.28–0.57, p-value < 4.2e-07)
(Figure 4B). Nomogram and calibration maps were used to
quantify the contribution of individual factors in the clinical
prognosis and verify the validity of this model, respectively
(Figures 4C, D). The results indicated that this prognostic model
had good predictive capabilities.

Analysis of Immune Infiltration
The tumor microenvironment plays a crucial role in tumor
progression, therapeutic response, and patient outcomes.
Immune-infiltrating cells are an important component of the
tumor microenvironment (23). To detect the difference in the
immune infiltration status of the high-risk and low-risk groups,
CIBERSORT was used to screen 22 immune cell types, including T
cells, B cells, macrophages, natural killer cells, eosinophils,
neutrophils, and dendritic cells, for significant immune
infiltration-related cells. There were 22 kinds of immune
infiltration-related cells that were different between the high-risk
A B

C D

FIGURE 4 | Prediction of the prognosis probability in breast cancer. (A) Single variable Cox regression analysis in breast cancer cohort. (B) Multivariate Cox
regression analysis in breast cancer cohort. (C) A nomogram of the breast cancer cohort. (D) Calibration maps of the breast cancer cohort.
December 2021 | Volume 11 | Article 742792
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and low-risk groups (Figure 5A). Resting dendritic and resting mast
cells were the most significant immune infiltration-related cells and
were highly expressed in low-risk group (Figure 5B).

Construction of the TF–Target Gene
Network and Expression Profile of 10 TFs
TFs generally regulate gene expression by binding with the
promoter of target genes. To predict the target genes of 10
prognostic TFs, the TRRUST database was used to construct a TF
regulatory network (Supplemental Table 5). HDAC2 had 28 target
genes; PTMA had 4 target genes; SIM2 had 3 target genes; COPS5
had 2 target genes; and HNRNPD, NONO, and TBPL1 had one
target gene (Figure 5C). However, ZNF706, ZNF250, ALX3 had no
target genes. In addition, we compared the expression profile of
these 10 TFs in normal and breast cancer tissue obtained from
TCGA. The expression of COPS5, HDAC2, HNRNPD, NONO,
PTMA, SIM2, ZNF250, and ZNF706 was significantly higher in
breast cancer tissue than that in normal tissue, whereas ALX3 and
TBPL1 exhibited higher expression in normal tissue than in breast
cancer tissue (Figure 6A). Moreover, Kaplan–Meier analysis of each
TF indicated that COPS5, HDAC2, NONO, and ZNF250 are
associated with a lower survival probability in the high-risk group
than in the low-risk group (Figure 6B). Results of the TF–target
gene network, expression panel, and survival analysis revealed that
COPS5, HDAC2, and NONO served as the hub TFs for breast
cancer. Moreover, these three TFs were verified in other databases.
High expression of COPS5, HDAC2, and NONO was associated
with poor OS and disease-free survival in patients with breast cancer
(Figures 6C–E) (http://gepia.cancer-pku.cn/ and https://kmplot.
com/analysis/), and the associated protein expression was also
high in breast cancer (Figure 6F) (https://www.proteinatlas.org/).
Altogether, these data suggested that COPS5, HDAC2, and NONO
were related to poor prognosis.

Validation of the Hub TF mRNA and
Protein Expression Using qRT-PCR and
Western Blotting
To further confirm whether COPS5, HDAC2, and NONO
performed similar functions in normal and breast cancer cells, we
measured themRNA and protein levels in breast cancer and normal
breast epithelial cells. Consistent with the bioinformatics analysis,
COPS5, HDAC2, and NONO were more highly expressed in breast
cancer cell lines than in normal breast epithelial cells (Figures 7A,
B). Furthermore, we collected tumor and adjacent tissues from 10
breast cancer patients from the National Cancer Center of China
and analyzed the mRNA and protein expression in tumor and
adjacent tissues. The results showed that both mRNA and protein
levels were significantly higher in tumor tissues than in adjacent
tissues (Figures 7C–F), which is consistent with the results of the
TCGA breast cancer cohort analysis.
DISCUSSION

TFs are involved in various human diseases, such as cancers, for
which they account for about 20% of all oncogenes identified so
Frontiers in Oncology | www.frontiersin.org 7
far. Currently, studies have shown that TFs might be as new
therapy target for cancer in clinical settings by modulating their
expression or degradation, blocking protein/protein interactions,
or targeting the TF itself to prevent its DNA binding either
through a binding pocket or at the DNA-interacting site (4, 24,
25). It is urgent to screen out critical TFs and explore their
mechanism in cancers to estimate whether they could be a
potential therapy target. In our study, we present for the first
time, to our knowledge, the identification of prognosis-related
TFs in breast cancer using WGCNA and COX regression
analysis. Briefly, WGCNA was used to identify biologically
meaningful modules within the key networks involving
functionally related TFs in breast cancer. Multiple co-
expression modules were constructed combined with breast
cancer processing. The yellow module was selected for further
analysis because of its strong positive correlation with breast
cancer. In order to screened for prognostic TFs, univariate and
multivariate COX regression analyses were used to construct and
verify the breast cancer prognosis model. Ten prognostic TFs
(SIM2, PTMA, NONO, COPS5, HDAC2, ZNF706, ZNF250,
ALX3, HNRNPD, and TBPL1) were identified by LASSO
regression analysis. Meanwhile, we also analyzed the immune
infiltration in the high- and low-risk groups, the results of which
demonstrated that resting dendritic and mast cells were
significantly higher in the low-risk group. To further isolate
the hub TFs from these 10 TFs, we constructed a TF–target gene
network, and statistically analyzed the expression level of the 10
TFs in normal and breast cancer samples and determined the
survival probabilities for the high- and low-risk groups. Finally,
COPS5, HDAC2, and NONO were selected as hub TFs because
of their significantly higher expression in breast cancer, lower
survival probability in the high-risk group, and specific target
genes. We combined WGCNA and COX regression analysis to
establish the independent prognostic factor as well as validity of
the prognostic model and validated the three hub genes COPS5,
HDAC2, and NONO as breast cancer prognosis factors.

As one of the hub genes of breast cancer prognosis, COPS5,
also known as JAB1 or CSN5, was initially identified as c-Jun
activation domain-binding protein-1 and is aberrantly
overexpressed in various human cancers including breast
cancer. Previous studies have demonstrated that COPS5 is
involved in controlling cell proliferation, cell cycle, apoptosis,
DNA damage response, and drug resistance, which are critical
processes in tumorigenesis (26–29). The TF–target gene network
showed that the target genes of COPS5 in breast cancer were
CDKN1B and VEGFA (Figure 5C), which were suggested to
block G1 growth induced by COPS5 in MDA-MB-453 cells (30),
promote breast cancer progress via the HIF1A signaling
pathway, and degrade p53 (31). In this regard, we speculate
that COPS5 may regulate VEGFA to promote breast cancer
progression, although the mechanism between VEGFA and
COPS5 needs to be further explored. Furthermore, COPS5 was
found to be involved in breast cancer metastasis as a target gene
of miRNA let-7d (32). HDAC2 is an important histone
deacetylase that is overexpressed in breast cancer. According to
the TF–target gene network, HDAC2 might participate in
December 2021 | Volume 11 | Article 742792
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various cellular processes, such as the EMT (target genes: E-
cadherin, Slug, Twist), immunoreaction (target genes: ALOX5,
CCL2, CD1D, CXCL8, SP1, TGFBR2), and cell stem (target
genes: KLF4, MYC) (Figure 5C). HDAC2 can be recruited by
PELP1 to miR-200a and miR-141 promoters and suppress their
expression to promote EMT in breast cancer (33). Another study
also revealed that the Snail/HDAC1/2 complex was recruited by
SREBP1 to repress E-cadherin expression in breast cancer (34).
Moreover, HDAC2 transcription is promoted by the YAP/
RUNX1 complex to induce chemoresistance and stemness in
breast cancer, indicating that HDAC2 plays a role in cell stem
progress (35). Consistent with our results, HDAC2 might be
involved in the immune response by regulating the expression of
proinflammatory genes following stimulation with LPS (36).
Moreover, HDAC2 also promoted IFNg-induced PD-L1
expression to enhance antitumor immunity and tumor
proliferation and metastasis (37). More importantly, our recent
study demonstrated that the COPS5-associated protein CUL4B
could interact with HDAC-containing complexes to promote
EMT and stem cell production in breast cancer (38).
Additionally, we reported that an epigenetic small-molecule
inhibitor of HDACs, PCI-24781, could target RGS2 to reduce
cell proliferation, metastasis, and differentiation, resulting in cell
death during breast cancer progression (39). Thus, HDACs
Frontiers in Oncology | www.frontiersin.org 8
might serve as a potential therapeutic target for breast cancer.
Apparently, NONO is also a prognostic factor of breast cancer.
Several studies have indicated that NONO is a factor that
controls DNA damage (40), cell proliferation (41), metabolism
(42), and drug resistance (43, 44) in breast cancer. In addition,
NONO, a nuclear protein, could interact with MSN to
phosphorylate CREB and upregulate downstream gene
expression as well as promote the progression of breast cancer
(44). Furthermore, NONO promoted breast cancer metastasis
through induction by lncRNA T-UCRs (45). Thus, we observed
that these three hub genes acted as pro-metastatic and prognostic
factors in breast cancer; however, the specific mechanism behind
this discrepancy requires further investigation.

In the breast tumor microenvironment, intimate mixtures of
cancer cells and non-cancer cells subsist. Recent drug trials that
target immune checkpoints indicate that infiltrating immune cells,
not cancer cells, seems the most likely to improve clinical
outcomes and to be effectively targeted by drugs (46, 47).
According to the results of our CIBERSORT analysis, the
number of resting dendritic and mast cells was significantly
higher in the low-risk group. Dendritic cells are professional
antigen presenting cells that function as the basis of the adaptive
immune response. As antigen-presenting cells, dendritic cells help
shape the adaptive immune response (23). Therefore, dendritic
A

B C

FIGURE 5 | Analysis of immune infiltration and construction of transcription factor (TF)-target gene network. (A) Analysis of immune infiltration in the high- and low-
risk groups. (B) violin plot of resting dendritic and mast cells in the high- and low- risk groups. (C) Seven TF–target gene network.
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cells are being extensively evaluated for their clinical potential as
an anticancer immunotherapeutic cell product to induce and/or
enhance tumor-specific immune response (48). Mast cells are
tissue-resident, innate immune cells that play a key role in the
Frontiers in Oncology | www.frontiersin.org 9
inflammatory response and tissue homeostasis. These cells
accumulate in the tumor stroma of different human cancer
types, and their increased density has been associated with
either good or poor prognosis, depending on the tumor type
A

B C

F

E

D

FIGURE 6 | Expression profile and survival analysis of 10 transcription factors (TFs) in breast cancer. (A) Expression profile of 10 TFs (ALX3, COPS5, HDAC2,
HNRNPD, NONO, PTMA, SIM2, TBPL1, ZNF250, and ZNF706) in normal and breast cancer samples. (B) Kaplan–Meier analysis of 10 TFs (ALX3, COPS5, HDAC2,
HNRNPD, NONO, PTMA, SIM2, TBPL1, ZNF250, and ZNF706) in breast cancer. (C, D). Association of COPS5, HDAC2, and NONO with overall survival in the
online database (http://gepia.cancer-pku.cn/ and https://kmplot.com/analysis/). (E) Association of COPS5, HDAC2, and NONO with disease-free survival in the
online database (https://kmplot.com/analysis/). (F) Immunohistochemistry (IHC) of COPS5 (COPS5 in normal sample from 2419; COPS5 in breast cancer sample
from 2091), HDAC2 (HDAC2 in normal sample from 2773; HDAC2 in breast cancer sample from 2392), and NONO (NONO in normal sample from 3856; NONO in
breast cancer sample from 2805) in breast cancer and normal samples from the HPA database (https://www.proteinatlas.org/).
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and stage (49). Mast cells are immune cells present in all classes of
vertebrates, which have the capacity to rapidly perceive metabolic
and immunologic insults and initiate different biochemical
programs of homeostasis or inflammation (50). These cells are
recruited into the tumor microenvironment by several tumor cell-
derived chemotactic factors such as VEGFs and ANGPT1, and
exert pro- or anti-tumorigenic effects depending on tumor type,
model, and stage (51–53). One recent study showed that mast cells
exhibit diverse functional potential in different cancer types and
have higher proportions in most cancer types, supporting the
assertion that mast cells accumulate in tumors and play important
roles in tumorigenesis and tumor progression (54). Our results
might demonstrate that resting dendritic and mast cells might play
an anti-tumorigenic role in breast cancer.

In conclusion, our study used a breast cancer dataset from the
TCGA database and compared differential TFs between normal and
Frontiers in Oncology | www.frontiersin.org 10
breast cancer samples. WGCNA was used to construct a free-scale
network between normal and breast cancer samples to further
identify the co-expression yellow module. This module was found
to be significantly associated with breast cancer progression. Gene
function enrichment and a prognosis-related risk model were
performed to identify 10 prognosis-related TFs (SIM2, PTMA,
NONO, COPS5, HDAC2, ZNF706, ZNF250, ALX3, HNRNPD,
and TBPL1). Moreover, three hub TFs (COPS5, HDAC2, and
NONO) were isolated as the prognostic biomarkers of breast
cancer through the TF–target gene network, expression profile,
and survival probability of the 10 prognosis-related TFs in breast
cancer. In addition, these three TFs were verified in multiple
databases and human breast cancer cell lines and samples.
However, there were some inevitable limitations of our study.
First, the target genes of TFs and their molecular mechanism
need to be confirmed and explored in vivo and in vitro. Second,
A

B C

D

F

E

FIGURE 7 | Validation of three key genes. (A) Expression of COPS5, HDAC2, and NONO mRNAs in the normal breast epithelial cell line MCF10A and the triple-
negative breast cancer cell lines T-47D, MDA-MB-231, and SUM159 evaluated using quantitative reverse transcription polymerase chain reaction (qRT-PCR).
(B) Expression of COPS5, HDAC2, and NONO the normal breast epithelial cell line MCF10A and the triple-negative breast cancer cell lines T-47D, MDA-MB-231,
and SUM159 analyzed using western blotting. (C) Gray scanning of the protein expression results in (B, D). Analysis of expression of COPS5, HDAC2, and NONO
mRNAs in adjacent and tumor tissues of breast cancer samples using qRT-PCR (n = 10 in each group). (E). Analysis of expression of COPS5, HDAC2, and NONO
proteins in adjacent and tumor tissues of breast cancer samples using western blotting (n = 10 in each group). (F) Gray scanning of the protein expression results in
(E). Error bars represent mean ± SD of three independent experiments. *p < 0.05, **p < 0.01. Student’s t-test.
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other key clinical pathological features, such as metastasis, were not
included. Further studies are warranted to explore and demonstrate
the molecular mechanism of breast cancer and provide convincing
data for clinical treatment of breast cancer.
MATERIALS AND METHODS

Collection of TF Dataset and
Preprocessing of TCGA Data of Breast
Cancer Patients
The workflow of data analysis is shown in Figure 8. TFs from the
four most common TF databases, JASPAR (http://jaspar.genereg.
net/), TRANSFAC (http://gene-regulation.com/pub/databases.
html), CISBP (http://cisbp.ccbr.utoronto.ca/), and TRRUST
(https://www.grnpedia.org/trrust/), were overlapped and used to
construct the dataset. Breast cancer-related raw RNA-seq and
clinical data (Table 2) were downloaded from TCGA database
(https://www.cancer.gov/about-nci/organization/ccg/research/
structural-genomics/tcga). Differential geneswere identified between
the tumor and normal samples using the DESeq2 R package, at
thresholds of |log2FC| >1 and adj-p <0.05. Thereafter, 459
differential TFs were selected for further analysis by taking the
intersection of the TF dataset and the breast cancer differential genes.

WGCNA of Differential TFs
WGCNA was run as described previously (22). Briefly, a similarity
matrix was constructed using expression data and converted into an
adjacency matrix, aij. Next, the adjacency matrix was converted into
a TOM as an input for the hierarchical clustering analysis of genes.
The most representative genes, module eigengenes (MEs), were the
first principal components, representing the overall level of gene
Frontiers in Oncology | www.frontiersin.org 11
expression in individual modules. Finally, the gene significance (GS)
was evaluated using other biological information. The expression
profile of TFs was used to construct a free-scale network and
identify significant modules between normal and breast cancer-
related genes to analyze differential genes in these modules.

Gene Function Enrichment of
Differential TFs
Functional and pathway enrichment of differential TFs were
performed using the KOBAS 3.0 online database (http://kobas.cbi.
pku.edu.cn/kobas3). Significantly enriched functions and pathways
were visualized by R package ggplot2 with RStudio (Version 3.6.3).

Construction of Cox Regression Model
Differential TF expression profiles in the yellow module were
used for single variable Cox proportional risk regression analysis
by using “survival” and “survminer” R packages to screen for TFs
significantly correlated to breast cancer prognosis (p-value <
FIGURE 8 | Flow chart of analyses.
TABLE 2 | TCGA-breast cancer clinical Information.

Characteristic No. of Patients

Stage
I & II 797
III & IV & V 271
Status
Alive 149
Dead 919
Age
≤60 597
>60 471
Gender
Male 12
Female 1056
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0.05). These prognosis-related TFs were included in the LASSO
regression analysis by using the “glmnet” R package to remove
redundant factors and minimize the variation in the predictive
effect of the model. Next, the significant prognosis-related TFs
were used to construct the prognostic risk model, and a
comprehensive risk prediction model according to the
contribution coefficient of each gene to the risk. Finally, in
order to further visualize the influence of various factors in the
risk model on prognosis, a multivariate Cox regression model
was constructed and visualized using the “rms” R package.

Evaluation of Prognosis Model and
Validation of Dataset
TCGA-breast cancer data of the risk prediction model were
divided into two groups according to the risk value, to test the
relationship between the risk value and patient prognosis.
Meanwhile, external data (METABRIC) was used to verify the
model. The ROC curve and survival curve were visualized using
“survivalROC” and “survival” R packages, respectively. A heat
map depicting the model-related genes associated with high-risk
and low-risk groups combined with the clinical status of patients
was constructed using the “heatmap” R package.

Analysis of Immune Infiltration
The CIBERSORT algorithm (http://cibersort.stanford.edu/) was
employed to determine the composition of 22 types of immune
infiltration-associated cells by analyzing breast cancer tissue
expression profiles. CIBERSORT infers immune cell type
proportions by using a signature matrix (containing 547 genes)
as a reference, which represents the marker genes for each cell
type via support vector regression. Pearson correlation analysis
was used to obtain the related coefficient between the 22 immune
cells. A p-value <0.05 was considered statistically significant.

Construction of the TF–Target
Gene Network
Target genes of differential TFs were obtained using the TRRUST
transcription database (https://www.grnpedia.org/trrust/). The
network graph was visualized and analyzed using Cytoscape
(Version 3.6.0).

Cell Culture
The MCF10A, MDA-MB-231, T-47D, and SUM159 cells utilized
in this study were purchased from the American Type Culture
Frontiers in Oncology | www.frontiersin.org 12
Collection (Manassas, VA, USA). MCF10A cells were cultured in
the base medium for this cell line (MEBM) supplemented with
100 ng/mL cholera toxin. MDA-MB-231 cells were maintained
in Dulbecco’s modified Eagle’s medium (DMEM; GIBCO,
Invitrogen, Grand Island, NY, USA) supplemented with 10%
fetal bovine serum (FBS). T-47D and SUM159 cells were
cultured in RPMI 1640 culture medium supplemented with or
without bovine insulin. All the cells were maintained in a
humidified incubator equilibrated with 5% CO2 at 37°C.

Patients and Samples
Ten patients diagnosed with breast cancer were recruited in this
study. All patients received a surgical resection at the National
Cancer Center of China. The para-carcinoma and carcinoma
tissues were collected immediately after surgery and stored in a
preservation buffer at −80°C. Informed consent was obtained from
all patients, and the use of clinical samples in this studywas approved
by the ethics committee of theNational Cancer Center of China. The
clinical characteristics of the patients are shown in Table 3.

Quantitative Real-Time PCR
Total cellular RNA was extracted fromMCF10A, MDA-MB-231,
T-47D, and SUM159 cells, as well as breast cancer tissues, using
TRIzol reagent (Roche, Basel, Switzerland). cDNA was prepared
using the Transcriptor First Strand cDNA Synthesis Kit (Roche,
Basel, Switzerland). Relative quantification of select genes was
determined via RT-PCR using the ABI PRISM 7500 System
(Applied Biosystems). SYBR Green fluorescence was measured
and quantified using the comparative Ct method (2-DDCt) with
the expression of GAPDH as an internal control. This assay was
performed in triplicate. The primers used are listed in Table 4.

Western Blotting
Sample tissues were lysed and grinded in RIPA lysis buffer (Cell
Signaling Technology, USA) containing protease inhibitor cocktail
(Cell Signaling Technology, USA). Total protein concentrations
were determined using the Pierce™ BCA Protein Assay kit
(Thermo Scientific, USA). Then, the lysed sample was mixed
with an equal volume of 2× SDS-PAGE loading buffer and boiled
for 10 min. The resultant materials obtained from tissues were
subjected to 10% SDS-PAGE and transferred onto polyvinylidene
fluoride membranes. Membranes were blocked and incubated
with the appropriate antibodies (Table 5) overnight at 4°C,
followed by incubation with secondary antibodies for 1 h at
TABLE 3 | The clinical characteristics of breast cancer patients.

Clinical Characteristics Age (years) TNM ER Status PR Status HER2 status Ki67 Grade

Patient 1 67 T2N1aM0 – – + 50% G3
Patient 2 63 T2N0M0 + + – 10% Not applicable
Patient 3 56 T1cN2aM0 + + – 10% G2
Patient 4 75 T1miN0M0 + + – 15% G1
Patient 5 57 T1miN0M0 – – + 15% Not applicable
Patient 6 63 T3N3M0 + + – 25% G2
Patient 7 46 T2N0M0 – – + 50% G3
Patient 8 32 T2N2aM0 – – + 70% G3
Patient 9 54 T2N0M0 – – + 20% G3
Patient 10 40 T2N3aM1 + + – 60% G3
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25°C. Immunoblotting signals were detected using enhanced
chemiluminescence (ECL System, Thermo Scientific, USA)
according to the manufacturer’s instructions.

Statistical Analysis
RStudio software (version 3.4.3) and GraphPad prism (version 8.0)
were used to analyze the data of our study. Results are presented as
the mean ± standard deviation (SD) from at least three
independent experiments. Student’s t-test of variance was
performed to compare the difference between two groups, and
one-way ANOVA was used to analyze data between more than
two groups. A p-value <0.05 was considered statistically significant.
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