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Abstract: Amyotrophic lateral sclerosis is a neurodegenerative disease of the upper and lower motor
neurons resulting in death from neuromuscular respiratory failure, typically within two to five years
of first symptoms. Several rare disruptive gene variants have been associated with ALS and are
responsible for about 15% of all cases. Although our knowledge of the genetic landscape of this disease
is improving, it remains limited. Machine learning models trained on the available protein–protein
interaction and phenotype-genotype association data can use our current knowledge of the disease
genetics for the prediction of novel candidate genes. Here, we describe a knowledge-based machine
learning method for this purpose. We trained our model on protein–protein interaction data from
IntAct, gene function annotation from Gene Ontology, and known disease-gene associations from
DisGeNet. Using several sets of known ALS genes from public databases and a manual review as
input, we generated a list of new candidate genes for each input set. We investigated the relevance
of the predicted genes in ALS by using the available summary statistics from the largest ALS
genome-wide association study and by performing functional and phenotype enrichment analysis.
The predicted sets were enriched for genes associated with other neurodegenerative diseases known
to overlap with ALS genetically and phenotypically, as well as for biological processes associated with
the disease. Moreover, using ALS genes from ClinVar and our manual review as input, the predicted
sets were enriched for ALS-associated genes (ClinVar p = 0.038 and manual review p = 0.060) when
used for gene prioritisation in a genome-wide association study.

Keywords: gene prioritisation; machine learning; gene discovery; amyotrophic lateral sclerosis;
motor neurone disease; knowledge graph

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the upper and lower motor
neurons resulting in death from neuromuscular respiratory failure, typically within 2–5 years of the
first symptoms [1]. Genetic factors are an important cause of ALS, and over 130 genes [2] have been
linked to the disease, although only a subset have strong and replicated supporting evidence [3].
Rare disruptive variants are responsible for about two-thirds of familial cases [4] and 10–15% of the
remaining 90–95% of patients who do not report a family history of ALS [4–6]. Therefore, for most
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people with ALS, the cause of the disease remains unexplained. Gaining a better insight into the
disease genetics could lead to the development of new treatments and, ultimately, a cure.

With the advance of high-throughput technologies, we now have large amounts of protein–protein
interaction and phenotype-genotype data available [7,8]. Although such big data offer great potential
for the study of human diseases, their use presents significant challenges, including the interpretation
and prioritisation of the results [3,9]. Studies have shown that genes involved in specific or related
diseases tend to be located in neighbouring regions of the protein–protein interaction network [10],
and their interactions often follow similar network patterns [11]. Machine learning methods,
such as graph-based methods, are well-positioned to exploit this valuable source of information
for candidate-gene prioritisation.

Accordingly, many methods to date have been developed and applied to predict new candidate
disease-associated genes based on prior biological knowledge and phenotype information. Many use
graph-based methods, the most widely used being diffusion or random walk algorithms [12–17]. Other
graph-based approaches include N2VKO [18], using node embeddings based on node2vec [19],
CIPHER [20], based on gene network closeness and phenotype similarity, a gene gravity-like
algorithm [21], and deep learning [22]. Other approaches not based on graphs include machine
learning algorithms trained on functional similarity [23]. In this work, we explored the use of our
in-house machine learning method [24] that, given a prior definition of the genes linked with the
disease, exploits the phenotypic and biological information from publicly available databases, to predict
new candidate ALS genes. We explored how the initial definition of the known ALS-linked gene set
impacts results. We also investigated the relevance of the predicted putative ALS genes by studying
their role in other diseases known to be related to ALS, the biological processes they are involved in,
and by using the results from the most recent ALS genome-wide association study (GWAS) for which
summary statistics were publicly available.

2. Materials and Methods

2.1. Data Sources

The disease-gene prediction was based on protein–protein interaction data from IntAct [25],
gene function annotation from Gene Ontology [26,27] release 2019-07-01, and known disease-gene
associations from DisGeNet v6.0 [28]. The edge was placed between the genes that encode each protein,
to model the protein–protein interactions.

2.2. Definition of ALS-Linked Genes

In total, five sets of ALS-linked genes were used in this study: (1) DisGeNet—101 genes [28],
(2) tALSoD—126 genes [2,29], (3) ClinVar—44 genes [30], (4) a manually-curated list—40 genes [3] and
(5) the union of all other sets—199 genes. DisGeNet contains several specific subtypes of ALS as UMLS
identifiers. For this study, we chose to merge these subtypes to prevent the presence of very similar
diseases making the learning unrealistically easy. Gene lists are available as Supplementary File 1.
Note that while multiple definitions of ALS-linked genes were used, all other disease-gene associations
were from DisGeNet.

2.3. Machine Learning

We used our recently published method for knowledge graph completion (available at https:
//github.com/KHP-Informatics/ADR-graph) (version 0.1) [24]. In brief, the method takes as input a
graph of known data related to the prediction task, in this case, gene-disease links, gene functions,
and others, and returns a list of predicted edges missing from that graph. These relationships are
predicted to exist based on similar patterns found in the graph. For example, to predict new genes
linked to ALS, the algorithm compares all genes known to be linked to ALS to all other genes and
builds a predictive profile based on a weighted combination of existing relationships in the graph.

https://github.com/KHP-Informatics/ADR-graph
https://github.com/KHP-Informatics/ADR-graph
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Every gene is then scored for its similarity to this profile. Predictions are made by applying a threshold
to this similarity score, with all genes above the threshold predicted as candidate ALS-linked genes.
The optimum weighting and score threshold are learned from the known set of linked genes [24].

2.4. Cross-Validation

The goal of the machine learning algorithm is to predict new genes linked to ALS based on facts
about the genes known to be associated. In the cross-validation, this task is simulated by deleting a
proportion of the known genes and training the algorithm on the remaining data before testing whether
it can predict the link to the missing genes correctly. Unlike a typical machine learning cross-validation,
where the training and test sets are entirely separate, here, the algorithm was trained on the full set of
genes, but the link to ALS of the test set was deleted from the graph. This means that during training,
the “missing” linked genes were labelled as not linked to ALS. Therefore, the job of the algorithm was
to replace this missing link in the graph, making the task harder as genes that were linked to ALS were
included during training as true negatives. This is an exact simulation of the use-case.

2.5. Gene Set Function and Phenotype Enrichment Analyses

Gene ontology term overrepresentation was analysed using Pantherdb [31] version 15.0. All tests
were performed using the “Panther GO slim for biological process” and the Fisher′s exact test for
overrepresentation with the Bonferroni correction for multiple testing. Enrichment vs. the background
list with p-value < 0.05 after the Bonferroni correction was considered significant. Similar biological
processes were grouped with Revigo [32]. For the predicted ALS-linked gene sets, the genes in the
knowledge graph that were not linked to ALS according to the relevant definition were used as the
background gene list (i.e., the set of all genes that could have been predicted).

We used the Enrichr webserver [33] to test our predicted gene lists for the enrichment of
genes linked to human diseases in the OMIM database [34,35]. An adjusted p-value < 0.05 was
considered significant.

2.6. GWAS Validation

To validate the association between the candidate genes proposed by our method and ALS, we
used the largest ALS GWAS for which summary statistics were publicly available at the time [36].
It included 80,610 individuals (20,806 cases and 59,804 controls) of European ancestry. For each set
of genes, only SNPs mapped onto those genes were used for validation. The single-test p-value
threshold to indicate statistical significance was 0.05. When multiple tests were performed, we used
the Bonferroni correction [37] based on the number of genes being tested. All annotations, genomic
positions, and variants refer to the reference human genome hg19/GRCh37. The 1000 Genomes Project
Phase 3 reference panel was used to compute the r2 and MAF [38]. The gene-based and gene-set
association analyses were performed with Magma v1.07b [39]. In the gene-based and gene-set analyses,
the associations of all SNPs within each gene or gene-set were tested simultaneously.

3. Results

3.1. Definition of Known ALS-Linked Genes

Given that there is no consensus on what genes increase the risk of ALS, we chose to separately
model lists of genes from a range of sources (Supplementary File 1). These included a specialized public
database of ALS gene mutations in humans, the ALS Online Database (ALSoD), a general database of
clinical relevant mutations, ClinVar, a general database of all disease-associated (in the broadest sense)
genes, DisGeNet, our manual review of ALS-linked genes curated by scientists working in the field,
and the union of these four lists. The overlap between these lists is shown in Figure 1.
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Figure 1. Overlap between lists of ALS-linked genes from different sources. Note that areas are not to
scale. There are no genes that are listed in both ClinVar and DisGeNet but not found in either ALSoD
or the manual review. In total, there are 199 unique genes linked to ALS across all lists.

3.2. Model Training and Cross-Validation

We trained a model for each of the sets of ALS-linked genes separately and used 5-fold
cross-validation to estimate the performance of each predictive model (Table 1). The purpose
of the cross-validation was to estimate how well a model trained on all known ALS-linked genes
would perform in predicting novel associations, by testing whether it would have predicted some of
the known genes based on the rest.

Table 1. Cross-validation performance for each definition of ALS-linked genes. Precision, recall, and
fold-change enrichment are given as the mean (standard deviation) for five folds. The numbers of
genes are minimum-maximum. The fold-change enrichment is based on the expected precision of
random guessing. Each of the five folds is considered significantly enriched if the p-value for predicting
at least as many genes correctly is < 0.05 under the hypergeometric distribution.

Training Validation

# of
Genes Precision Recall # of

Genes Precision Recall Fold-Change
Enrichment

Number of Significantly
Enriched Folds

ALSoD 60–61 0.23
(0.16)

0.55
(0.09) 15–16 0.07

(0.08)
0.45

(0.17) 23.33 (23.53) 5/5

ClinVar 29–30 0.16
(0.09)

0.86
(0.04) 7–8 0.05

(0.02)
0.82

(0.17) 30.05 (15.64) 5/5

DisGeNet 54–55 0.44
(0.33)

0.23
(0.16) 13–14 0.15

(0.22)
0.09

(0.08) 55.90 (81.66) 2/5

Manual 21–22 0.27
(0.01)

0.85
(0.04) 5–6 0.09

(0.01)
0.86

(0.14) 84.54 (13.27) 5/5

Union 96 0.16
(0.04)

0.73
(0.05) 24 0.04

(0.02)
0.67

(0.07) 8.92 (4.28) 5/5

For all lists, the training precision was low, which was expected for this task as the validation
genes remained in the graph and were considered true negatives during training. Ideally, the model
should have labelled these as positives (which would be considered “false positives” by standard
evaluation metrics). These “false positives” were taken as a prediction that we subsequently validated.
The performance of the DisGeNet list was notable. Although the precision was relatively high,
the standard deviation was also much greater. This indicated that performance was very sensitive to
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randomisation of the folds, possibly due to a less uniform set of genes in terms of the available data.
The model also achieved much lower recall for DisGeNet (only 23% in training and 9% in validation),
and only 2/5 training folds were significantly enriched for validation. The lower recall of the DisGeNet
list could be due to DisGeNet being a broad database, with no manual curation that also includes genes
linked to ALS only in model organisms. Models based on all other lists significantly outperformed
random guessing in all folds, indicating the model has learned discriminative features of the provided
ALS-linked genes.

3.3. Prediction of New ALS-Linked Genes

For each set of ALS-linked genes, we trained a model on the full list and generated new predictions
based on the learned profile. Taking the full set of new ALS-linked genes predicted from each list gave
45 (Manual list), 176 (DisGeNet), 192 (ClinVar), 327 (ALSoD), and 575 (union) predicted linked genes
(Figure 2). The genes predicted by the model trained on the manually curated list are shown in Table 2.
The full set of predicted genes from all models are available in Supplementary File 2.

As shown in Figure 2, there were no genes predicted by all definitions of known ALS-linked
genes. The main reason for this is that the input lists are not identical and frequently predict members
of other lists. For example, a prediction made from ALSoD cannot be predicted from DisGeNet if it is
already linked to ALS in the DisGeNet list. Moreover, 91 genes were uniquely predicted by the union
set, meaning that this list did not simply produce the union of the outputs of all other lists.

In contrast, 15 genes were predicted from at least one other list but not the union list and which
were not part of any list themselves. Although there are 73 genes outside of the union predictions in
Figure 2, many were linked to ALS in other lists. In other words, combining all lists, and then training
the model is not the same as training a model on each list and then combining the results. This is likely
due to the impact of combining lists of genes on the enrichment test in the feature selection step of
model training. Figure 3 shows the number of predictions from each list that were already considered
to be linked to ALS in at least one other list.
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Table 2. Genes predicted to be linked to ALS by the model trained on the manually curated list. For each gene, we reported the Ensembl gene name, coordinates
(hg19) of the longest transcript, strand, and whether the gene was present in the other lists of genes or among their model predictions. Please note that if a gene were
present in one list, it could not be predicted by its corresponding model.

Ensembl Gene
Name

Ensembl Transcript
Name Chr Transcript

Start Transcript End Strand ClinVar Genes ClinVar
Predictions

DisGeNet
Genes

DisGeNet
Predictions ALSoD Genes ALSoD

Predictions

ALS2 ENSG00000003393 ENST00000489440 2 202581364 202591275 − TRUE FALSE TRUE FALSE TRUE FALSE

BCL2L1 ENSG00000171552 ENST00000307677 20 30252254 30310701 − FALSE TRUE TRUE FALSE FALSE TRUE

BSG ENSG00000172270 ENST00000573216 19 572571 581376 + FALSE TRUE TRUE FALSE FALSE TRUE

CASP1 ENSG00000137752 ENST00000436863 11 104896234 104905977 − FALSE TRUE TRUE FALSE FALSE TRUE

CHMP2B ENSG00000083937 ENST00000466696 3 87302198 87303063 + TRUE FALSE TRUE FALSE TRUE FALSE

CLU ENSG00000120885 ENST00000522413 8 27463898 27472209 − FALSE TRUE TRUE FALSE FALSE TRUE

CNTF ENSG00000242689 ENST00000361987 11 58390145 58393198 + TRUE FALSE TRUE FALSE TRUE FALSE

CREBBP ENSG00000005339 ENST00000574740 16 3786508 3794958 − FALSE TRUE TRUE FALSE FALSE TRUE

CST3 ENSG00000101439 ENST00000398409 20 23614293 23619110 − FALSE TRUE TRUE FALSE TRUE FALSE

CTSD ENSG00000117984 ENST00000438213 11 1775253 1782770 − FALSE TRUE TRUE FALSE FALSE TRUE

DPP6 ENSG00000130226 ENST00000377770 7 153749764 154685161 + FALSE TRUE TRUE FALSE TRUE FALSE

ERBB4 ENSG00000178568 ENST00000484594 2 212426486 213403306 − TRUE FALSE TRUE FALSE TRUE FALSE

FOS ENSG00000170345 ENST00000556324 14 75745530 75746234 + FALSE TRUE TRUE FALSE FALSE TRUE

GDI1 ENSG00000203879 ENST00000465640 X 153670112 153671075 + FALSE TRUE TRUE FALSE FALSE TRUE

GFAP ENSG00000131095 ENST00000253408 17 42982993 42992920 − FALSE TRUE TRUE FALSE FALSE TRUE

GLE1 ENSG00000119392 ENST00000309971 9 131266978 131304567 + FALSE TRUE TRUE FALSE TRUE FALSE

GSR ENSG00000104687 ENST00000221130 8 30535582 30585443 − FALSE TRUE TRUE FALSE FALSE TRUE

GSTP1 ENSG00000084207 ENST00000489040 11 67351604 67352535 + FALSE TRUE TRUE FALSE FALSE TRUE

GSX2 ENSG00000180613 ENST00000326902 4 54966197 54968672 + FALSE TRUE TRUE FALSE FALSE TRUE

HSF1 ENSG00000185122 ENST00000529630 8 145532954 145533780 + FALSE TRUE TRUE FALSE FALSE TRUE

INA ENSG00000148798 ENST00000369849 10 105036919 105050108 + FALSE TRUE TRUE FALSE FALSE TRUE

JAK3 ENSG00000105639 ENST00000526008 19 17949078 17958841 − FALSE TRUE TRUE FALSE FALSE TRUE

JUND ENSG00000130522 ENST00000600972 19 18390828 18391739 − FALSE TRUE TRUE FALSE FALSE TRUE

KIF3C ENSG00000084731 ENST00000455394 2 26149470 26205366 − FALSE TRUE TRUE FALSE FALSE TRUE

LAT ENSG00000213658 ENST00000566415 16 29000897 29001776 + FALSE TRUE TRUE FALSE FALSE TRUE

LDLR ENSG00000130164 ENST00000560467 19 11215982 11224300 + FALSE TRUE TRUE FALSE FALSE TRUE

PARK7 ENSG00000116288 ENST00000465354 1 8021807 8031581 + TRUE FALSE TRUE FALSE FALSE FALSE

PLA2G4A ENSG00000116711 ENST00000466600 1 186823417 186908362 + FALSE TRUE TRUE FALSE FALSE TRUE

PPARGC1A ENSG00000109819 ENST00000264867 4 23793643 23891700 − FALSE TRUE TRUE FALSE FALSE TRUE

PRPH ENSG00000135406 ENST00000551194 12 49687034 49687780 + TRUE FALSE TRUE FALSE TRUE FALSE

RXRA ENSG00000186350 ENST00000484822 9 137208943 137298240 + FALSE TRUE TRUE FALSE FALSE TRUE

SELPLG ENSG00000110876 ENST00000228463 12 109016604 109025854 − FALSE TRUE TRUE FALSE FALSE TRUE
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Table 2. Cont.

Ensembl Gene
Name

Ensembl Transcript
Name Chr Transcript

Start Transcript End Strand ClinVar Genes ClinVar
Predictions

DisGeNet
Genes

DisGeNet
Predictions ALSoD Genes ALSoD

Predictions

SHC1 ENSG00000160691 ENST00000448116 1 154934773 154943223 − FALSE TRUE TRUE FALSE FALSE TRUE

SLC1A2 ENSG00000110436 ENST00000531628 11 35287147 35323075 − FALSE TRUE TRUE FALSE TRUE FALSE

SNAI1 ENSG00000124216 ENST00000244050 20 48599535 48605423 + FALSE TRUE TRUE FALSE FALSE TRUE

SOD2 ENSG00000112096 ENST00000541573 6 160103513 160113110 − FALSE TRUE TRUE FALSE TRUE FALSE

TIAM1 ENSG00000156299 ENST00000455508 21 32638611 32716594 − FALSE TRUE TRUE FALSE FALSE TRUE

TLE3 ENSG00000140332 ENST00000557815 15 70341315 70351129 − FALSE TRUE TRUE FALSE FALSE TRUE

TMSB4X ENSG00000205542 ENST00000451311 X 12993226 12995346 + FALSE TRUE TRUE FALSE FALSE TRUE

TNF ENSG00000232810 ENST00000449264 6 31543344 31546113 + FALSE TRUE TRUE FALSE FALSE TRUE

TP53 ENSG00000141510 ENST00000574684 17 7577571 7578437 − FALSE TRUE TRUE FALSE FALSE TRUE

TRPM7 ENSG00000092439 ENST00000558444 15 50867155 50874661 − TRUE FALSE TRUE FALSE TRUE FALSE

VIM ENSG00000026025 ENST00000544301 10 17270257 17279584 + FALSE TRUE TRUE FALSE FALSE TRUE

WNT7A ENSG00000154764 ENST00000285018 3 13857754 13921618 − FALSE TRUE TRUE FALSE FALSE TRUE

XIAP ENSG00000101966 ENST00000496602 X 123046609 123047465 + FALSE TRUE TRUE FALSE FALSE TRUE
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Figure 3. Overlap of the predicted ALS-linked genes from each input list with the other lists of
known genes. All the predictions from the Manual list are already contained in at least one other list.
By definition, none of the predictions from the union list are in any other list.

The 45 genes predicted from the Manual list of ALS-linked genes were all contained in at least
one other list. All 45 were in DisGeNet, 12 were in ALSoD, and seven were in ClinVar.

3.4. Functional and Phenotypic Enrichment Analyses of Predicted ALS-Linked Genes

Given that our trained models were significantly enriched for ALS-linked genes in a simulation
of this task (the cross-validation), the new predictions from the full models, using the whole lists as
training datasets, might contain new ALS-linked genes. The predicted sets of genes overlapped to
varying degrees and could be functionally similar. We used GO term overrepresentation applied to each
set of predicted genes to investigate which biological processes they were enriched for. A complete list
of significantly enriched processes and corresponding GO terms is available in Supplementary File 3.
All predicted sets were enriched for genes involved in biological processes associated with ALS.
For example, considering the 20 processes with the highest enrichment fold for practicality (Table 3),
several processes related to angiogenesis [40], lipid metabolism [41], mitochondria activity [42],
protein kinase activity [43], superoxide metabolism [44,45], vesicle-trafficking [46], neurotransmitter
regulation [47], and behaviour [48] were widely shared across the sets.

We also investigated whether the sets of predicted ALS-linked genes were enriched for genes
associated with other related neurodegenerative diseases. In this test, we used Enrichr with the
disease-gene sets from the OMIM database (Table 4). Several neuromuscular diseases, e.g., Dystonia
and Cardiomyopathy, and neurodegenerative disorders, e.g., Charcot-Marie-Tooth disease (CMTD),
Parkinson′s disease (PD), Frontotemporal dementia (FTD), Schizophrenia (SCZ) and Alzheimer's
Disease (AD), were among the top 5 significant hits (Table 4). For some of these diseases, e.g., FTD,
SCZ, PD, and CMTD, the genetic and phenotypic overlap with ALS has been shown previously [49–55].
Interestingly, type 2 diabetes was among the top 5 DisGeNet hits and has been proposed as an ALS risk
factor and phenotypic modifier [56,57]. The predictions from the Manual list were enriched for genes
already linked to ALS in the OMIM database, again highlighting the importance of using different
gene lists.
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Table 3. Top 20 most enriched Revigo-grouped biological processes (ranked by enrichment fold) for each set of predicted ALS-linked genes. Enrichment was calculated
using Pantherdb. All terms are significant at p-value < 0.05 level following the Bonferroni correction.

Rank DisGeNet ALSoD Manual ClinVar Union

1 Smooth muscle contraction Peripheral nervous system development Erythrocyte differentiation Cardiac muscle tissue development Peripheral nervous system development

2 Response to xenobiotic stimulus Response to xenobiotic stimulus Translational termination Nuclear migration Protein localization to Golgi apparatus

3 Response to antibiotic Phosphatidylcholine metabolic process Phospholipid catabolic process Nucleus localization Response to antibiotic

4 Tissue remodelling Inactivation of MAPK activity
Regulation of transcription from RNA

polymerase II promoter in response
to stress

Heart contraction Regulation of neuron death

5 Sprouting angiogenesis Ammonium transport Response to heat Cellular component assembly involved in
morphogenesis Mitochondrial fusion

6 Peripheral nervous system development Protein localization to Golgi apparatus Endosome transport via multivesicular
body sorting pathway (GO:0032509) Myofibril assembly Response to mechanical stimulus

7 Response to hypoxia Response to antibiotic Multivesicular body sorting pathway Response to mechanical stimulus Regulation of phosphatidylinositol
3-kinase signalling

8 Regulation of blood pressure Triglyceride homeostasis Glutathione metabolic process Skeletal muscle contraction Ammonium transport

9 Ammonium transport Behaviour Regulation of cysteine-type
endopeptidase activity Protein homooligomerization Regulation of phospholipase activity

10 Regulation of phospholipase activity Ammonium ion metabolic process Cellular modified amino acid
metabolic process Muscle structure development Regulation of lipase activity

11
Phospholipase C-activating G

protein-coupled receptor
signalling pathway

Positive regulation of lipase activity Wnt signalling pathway Cellular lipid catabolic process Protein targeting to the vacuole

12 Regulation of mitochondrion
organization Organophosphate ester transport Apoptotic process Synapse organization

Phospholipase C-activating G
protein-coupled receptor

signalling pathway

13 Positive regulation of protein
kinase B signalling Phospholipid transport Cell death Lipid catabolic process Positive regulation of blood pressure

14 Response to oxidative stress Phospholipase C-activating G protein-coupled
receptor signalling pathway Sulfur compound metabolic process Circulatory system process Action potential

15 Regulation of lipase activity Positive regulation of the cellular catabolic
process Response to abiotic stimulus Actomyosin structure organization Membrane protein proteolysis

16 Superoxide metabolic process Regulation of neurotransmitter levels Positive regulation of DNA-binding
transcription factor activity

Cell-cell adhesion via plasma-membrane
adhesion molecules Behaviour

17 Membrane protein proteolysis Regulation of trans-synaptic signalling Response to cytokine Regulation of canonical Wnt signalling pathway Protein localization to the vacuole

18 Behaviour Regulation of lipase activity Positive regulation of molecular function Negative regulation of the apoptotic process Vacuolar transport

19 Glycolytic process Glutamate receptor signalling pathway Cell surface receptor signalling pathway Circulatory system development Ammonium ion metabolic process

20 Cyclic nucleotide metabolic process Response to drug Regulation of molecular function Maintenance of location Regulation of trans-synaptic signalling
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Table 4. Top 5 most enriched human diseases in Enrichr analysis based on the OMIM disease database for each set of predicted ALS-linked genes. Overlapping genes
are between brackets. Only diseases significant at adjusted p-value < 0.05 are reported.

Rank DisGeNet ALSoD Manual ClinVar Union

1
Parkinson disease

(PRKN;NR4A2;PINK1;UCHL1;TBP;
HTRA2;MAPT;SNCAIP;FBXO7;SNCA)

Parkinson disease
(PRKN;NR4A2;PINK1;UCHL1;

TBP;HTRA2;DBH;SNCAIP;FBXO7;SNCA)

Amyotrophic lateral sclerosis
(ALS2;CHMP2B;TRPM7;PRPH)

Cardiomyopathy(DSP;MYBPC3;CAV3;
ACTN2;TPM1;LDB3;

ABCC9;PSEN1;TAZ;TTN;PLN;
SGCD;DES;ACTC1;MYL2;LMNA;MYL3;

TCAP;TNNI3;DMD;SCN5A;MYH6;VCL;MYH7)

Cardiomyopathy (DSP;MYBPC3;CAV3;
ACTN2;TPM1;PSEN2;LDB3;ABCC9;TAZ;

TTN;PLN;SGCD;DES;ACTC1;MYL2;
LMNA;MYL3;TCAP;TNNI3;

DMD;SCN5A;MYH6;VCL;MYH7)

2 Dystonia (SGCE;GCH1;PRKRA;
ATP1A3;DRD2;THAP1;TAF1)

Alzheimer′s disease
(APP;NOS3;PSEN2;APBB2;
BLMH;A2M;MPO;SORL1)

Frontotemporal dementia
(CHMP2B;TRPM7;TNF)

Cardiomyopathy, dilated
(DSP;MYBPC3;ACTN2;TPM1;LDB3;

ABCC9;PSEN1;TAZ;TTN;PLN;
SGCD;DES;ACTC1;LMNA;TCAP;
TNNI3;DMD;SCN5A;VCL;MYH7)

Cardiomyopathy, dilated
(DSP;MYBPC3;ACTN2;TPM1;PSEN2;

LDB3;ABCC9;TAZ;TTN;PLN;SGCD;DES;ACTC1;
LMNA;TCAP;TNNI3;DMD;SCN5A;VCL;MYH7)

3 Diabetes (IL6;EPO;IRS1;HFE;
INSR;IRS2;PPARG;SLC2A4;GCK)

Dystonia
(SGCE;GCH1;PRKRA;ATP1A3;DRD2;THAP1;TAF1)

Charcot-Marie-Tooth disease
(PRPS1;MTMR2;EGR2;

HSPB8;LITAF;NDRG1;DNM2;MPZ;LMNA;
MFN2;NEFL;KIF1B;GARS;SBF2)

Ataxia
(PRKCG;TBP;ABCB7;FMR1;KCNA1;ITPR1;

SLC1A3;CP;APTX;SYNE1;TTBK2;
ATCAY;CACNB4;ATXN1;ATXN7;PPP2R2B;
TDP1;SACS;ATXN10;FXN;POLG;SPTBN2)

4 Diabetes mellitus, type 2
(IRS1;INSR;IRS2;PPARG;SLC2A4;GCK)

Schizophrenia
(CHRNA7;DTNBP1;AKT1;MTHFR;NRG1;HTR2A;COMT)

Neuropathy (EGR2;CTDP1;HSPB8;BSCL2;
SPTLC1;GAN;WNK1;MPZ;TDP1;
PRX;MFN2;GARS;CCT5;POLG)

Charcot-Marie-Tooth disease
(PRPS1;MTMR2;EGR2;HSPB8;LITAF;NDRG1;
DNM2;MPZ;LMNA;MFN2;NEFL;KIF1B;SBF2)

5 Alzheimer disease (NOS3;HFE;PSEN1;MPO) Colorectal cancer
(PLA2G2A;AKT1;BAX;CTNNB1;TLR4;TP53)

Cardiomyopathy, hypertrophic
(MYBPC3;ACTC1;CAV3;MYL2;

TPM1;MYL3;TNNI3;MYH6;TTN;MYH7)

Cardiomyopathy, hypertrophic
(MYBPC3;ACTC1;CAV3;MYL2;TPM1;

MYL3;TNNI3;MYH6;TTN;MYH7)
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3.5. Validation of Predicted ALS-Linked Genes in GWAS Data

In GWAS, multiple testing correction approaches, such as the Bonferroni method, are used to
protect from Type I errors. However, at a genome-wide scale, the price to pay for a minimal Type
I error is the limitation of the statistical power provided by the sample. One way to overcome
this issue is to restrict the number of tests to a limited number of candidate genes, such that a less
stringent p-value threshold can be used. To test the relevance of the predicted genes in ALS further,
and explore the feasibility of using our method to prioritise GWAS hits, we used our predicted gene
sets to identify new ALS genes based on a previously published ALS GWAS. This study involved
over 80,000 individuals of European ancestry, about a quarter of whom were people with ALS and the
remainder unaffected controls.

Using the publicly available summary statistics, we performed a Magma gene-based analysis
that combined all SNPs within each gene to test their association with ALS simultaneously.
The ~10,000,000 SNPs from the GWAS were mapped onto 18,067 protein-coding genes. For each list,
a p-value smaller than 0.05/N was used to indicate a significant association. N was the number of genes
in the set that were effectively tested in the Magma gene analysis. At least one new prediction was
validated for each model by this method (Table 5). However, when we tested the likelihood of our
findings occurring by chance, only the ClinVar model (p = 0.038) passed the significance threshold,
while the Manual model was close (p = 0.060).

Table 5. Validation of predicted ALS-linked genes. *ZFP91-CNTF is a read-through transcript of both
ZPF91 and CNTF. CNTF was predicted to be ALS-linked by the model. The p-value and number of
validated genes shown in brackets indicate results if the ZFP91-CNTF transcript is not considered.

p-Value Predicted (n) Mapped (n) Validated (n) Significant genes (p-Value) Magma Gene set p-Value

DisGeNet 0.49 176 166 1 ATXN3 (6.8 × 10−7) 0.44

ALSoD 0.33 327 305 2 SCFD1 (5.4 × 10−7)
ATXN3 (6.8 × 10−7)

0.24

Manual 0.060
(0.33) 45 41 2 (1) WNT7A (0.00019)

ZFP91-CNTF* (0.00091) 0.057

ClinVar 0.038 192 170 3
WNT7A (0.00019)
SCFD1(5.4 × 10−7)

UNC13A (2.9 × 10−6)
0.065

Union 0.67 575 534 1 ATXN3 (6.8 × 10−7) 0.72

ATXN3 was predicted and validated for three models and WNT7A for two models. For the
ZFP91-CNTF locus, the whole co-transcript, including both ZFP91 and CNTF was used instead
of the two individual genes, as the SNPs within these two adjacent genes were in strong linkage
disequilibrium (Supplementary Figure S1). Note that even if more than one model predicted the same
gene, it would not have necessarily been validated by all of them as the p-value threshold depended
on the total number of genes predicted by each model. The Magma gene-set analysis allowed us to
test all the genes within each list simultaneously. Similar to the single-gene analysis, the Manual and
ClinVar models were the ones with the lowest p-values (p = 0.057 and p = 0.065, respectively).

4. Discussion

In this study, we trained machine learning models to predict new ALS genes based on multiple
available definitions of the currently known ALS genes. Overall, all models performed well in
simulations and were able to predict genes involved in ALS-related diseases and biological processes.
Only one of the five models (based on ClinVar) produced significant results (p = 0.038) when validated
in human GWAS data.

There are several databases of disease-gene associations, as well as several literature reviews,
but there is no consensus list of all currently known ALS-linked genes. Partly, this is because ALS
is a complex, rare, and rapidly progressive disease whose study involves elaborate designs that are
difficult to implement and replicate; partly because such lists and databases utilise different definitions
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of ALS-linked genes according to their aim. For example, we used a manually curated list of genes
containing only genes with strong and replicated evidence of association with ALS. In contrast,
large non-specialist databases might consider weaker evidence such as non-replicated differential
expression in a transgenic animal model as sufficient evidence. Neither of these examples is necessarily
correct or incorrect, but the choice of genes is very likely to impact the results of a predictive study such
as this, where predictions are based on similarity to the genes that we use to define ALS. Our choice
to build four models based on four different definitions of ALS genes and a fifth model based on the
union of the four gene lists reflects such considerations.

We trained our models using only known disease-associated genes, protein–protein interactions,
and gene functional annotations. We anticipate that the inclusion of additional data could significantly
improve the performance of the models. However, care must be taken to ensure that additional data
types do not inadvertently leak information. By this, we mean that the indirect relationships between
nodes in the graph can imply information we intended to remove. For example, we considered the
inclusion of drug-disease and drug-target data in the model, but as ALS is the only disease linked
to Riluzole, this would link all ALS genes indirectly to Riluzole [58], making the edges deleted in
the cross-validation, trivial to predict. Furthermore, some types of information are not independent.
For example, a drug treatment might only be developed based on a known ALS gene, making the
cross-validation challenging to evaluate fairly. In effect, this means the time series of events must be
known so that it can be used to filter out subsequently derived information and exclude it from the
graph, but this information is not trivial to access at scale for many data types.

Beyond the specific genes, our results also have important implications for the use of genetic
databases in machine learning in general. We have shown that when used to train the models,
the different definitions of known ALS genes derived from different data sources produced very
different results, such that simply combining these definitions produced further distinct predictions.
The key implication of this result is that the outputs of separate studies can only be compared with
considerable caution, if at all, and future work should be very transparent as to the definitions and
sources of data used.

The major challenge for the use of this knowledge-based machine learning approach to predict
new ALS genes is the validation of the predicted genes. We attempted several approaches to test the
performance of the models and assess the relevance of the predictions in ALS. First, the cross-validation
test showed that by using a subset of the genes in the lists, the models were able to predict a
significant part of the missing data in most cases. The model cross-validation performance was
higher for the Manual list, matching the expectation that the genes from a manually curated and
conservative source might represent a more homogeneous and reliable description of the disease
genetics. Secondly, we assessed which biological processes were over-represented in our predictions.
All the predicted sets of genes were enriched for biological processes known to be affected by ALS
including processes related to angiogenesis [40], lipid metabolism [41], mitochondria activity [42],
protein kinase activity [43], superoxide metabolism [44,45], vesicle-trafficking [46] and neurotransmitter
regulation [47]. Interestingly, behaviour related processes [48] were over-represented in the DisGeNet,
ALSoD, and Union predictions. Behavioural changes are frequent in ALS patients [48] and closely related
to the cognitive decline observed in a significant proportion of patients [59,60]. Thirdly, we performed
a phenotype enrichment analysis to test whether our predictions were significantly enriched for genes
linked to other diseases. This test showed that all models predicted a significant number of genes
that are involved with other neurodegenerative and neuromuscular diseases whose genetic overlap
with ALS is either known or for which there is increasing recognition. These included FTD, SCZ, PD,
and CMTD. Again, the Manual predictions were the most conservative as the only other enriched
disease was FTD whose genetic overlap with ALS is established, and the two phenotypes often coexist
in patients [61].

Finally, we used our predictions in a candidate gene approach to discover new genes associated
with ALS using a Magma gene analysis based on the publicly available summary statistics of the
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most recent ALS European GWAS. We were able to validate several associations, including some
known candidate genes such as SCFD1 [62] and UNC13A [62]. However, when we considered the
number of validated genes per model, only for ClinVar was this significantly larger than what was
expected by chance (3 genes validated out of 170, p = 0.038). For the Manual set, this was close to
significance (2 genes out of 41, p = 0.060). The Manual and ClinVar sets were also the only ones close to
the significance threshold in the gene-set analysis that evaluated the association of all genes in each set
and the disease simultaneously (p = 0.057 and p = 0.065 respectively). It is important to acknowledge
that although the SNP based GWAS offered a possibility to validate our predictions, and machine
learning methods such as ours are often used for variant prioritisation in GWAS, SNPs represent a
limited amount of ALS heritability (~8%) [62]. Therefore, we expected a limited number of genes to be
validated in this test. Given that a larger part of ALS heritability is due to rare gene mutations [62],
we considered using a rare variant GWAS for validation, but the lack of publicly available summary
statistics of well-powered studies of this kind limited this possibility.

We aimed to test the performance of our prediction method [24], previously validated for predicting
drug side effects, in the context of gene discovery and prioritisation in ALS. However, we cannot
claim that our method would perform better than alternative approaches as we did not perform
any comparative assessment with respect to other techniques. The major difference between our
method and most others is that ours is not based on a diffusion process such as random walks with
restarts, and instead uses the local neighbourhood and an enrichment test to build the model. It will be
important for future work to benchmark multiple methods across diseases to establish performance
characteristics systematically across approaches, but that was not the aim of this work.

The genetics of ALS has proven challenging, and even though great progress has been made by
generating and analysing large multi-omics datasets [36,62–71], the causes of ALS in most patients
(~85%) remain unexplained. Using machine learning models to leverage our current knowledge of
ALS and other diseases could allow us to accelerate our progress in the understanding of the genetic
causes of ALS and lead towards new avenues of treatment.
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