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Abstract
Purpose  The lateral elbow musculature conveys a dynamic valgus moment to the elbow, increasing joint stability. Muscu-
lar or tendinous lesions to the anterior half of the common extensor origin (CEO) may provoke a deficiency in the elbow 
dynamic stabilizers, regardless of their traumatic, degenerative, or iatrogenic aetiology. Furthermore, a role for the radial 
band of the lateral collateral ligament (R-LCL) has been postulated in the aetiology of lateral elbow pain. This study aimed 
to evaluate the effects of sequential lateral releases with dynamic ultrasound, evaluating its capability to detect lesions of 
the CEO and of the R-LCL.
Methods  Ultrasound investigation of the lateral compartment of the elbow was performed on nine cadaveric specimens 
with a 10 MHz linear probe in basal conditions, after the release of the anterior half of the CEO and after complete R-LCL 
release. The lateral joint line widening (λ) was the primary outcome parameter, measured as the linear distance between the 
humeral and radial articular surfaces.
Results  The release of the anterior half of the CEO significantly increased λ by 200% compared to the starting position 
(p = 0.0008) and the previously loaded position (p = 0.0015). Conversely, further release of the R-LCL caused only a mar-
ginal, non-significant increase in λ.
Conclusions  Ultrasound evaluation can detect changes related to tendon tears or muscular avulsions of the CEO and can 
depict lateral elbow compartmental patholaxity by assessing articular space widening while scanning under dynamic stress. 
However, it cannot reliably define if the R-LCL is injured. Iatrogenic damage to the CEO should be carefully avoided, since 
it causes a massive increase in compartmental laxity.
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Introduction

Both tendinous and ligamentous structures convey the lat-
eral stability of the elbow: the collateral ligament (LCL) 
complex is a reinforcement of the lateral capsule, which 
consists of three components, including the ulnar band 
(U-LCL), the radial band (R-LCL) and the annular liga-
ment [1–4]. Superficial to this structure, the wrist exten-
sors contribute as dynamic stabilizers to lateral elbow 
stability. Among these, the extensor carpi radialis brevis 
(ECRB) gained popularity as possible source of lateral 
elbow pain, leading to the development of open and arthro-
scopic surgical release techniques to relieve pain. How-
ever, when examining the different approaches, conclusive 
evidence in favour of any technique is lacking; persistent 
post-operative pain is reported in a significant proportion 
of patients, and concerns about the possibility of an iat-
rogenic deficiency in the elbow dynamic stabilizers after 
ECRB release have been raised, questioning the role of 
ECRB release procedures [5–9]. The lateral elbow mus-
culature conveys a dynamic valgus moment to the elbow, 
increasing joint stability and reproducibility of motion 
pathways by contraction [10–12].

The R-LCL is also believed to play a role in recalci-
trant lateral elbow pain, but its pathology has not been 
extensively examined yet, as opposed to that of the U-LCL 
[13–16]. After a first description by Ciaudo et al. in 1980 
[1] a possible role of this ligament in the aetiology of 
lateral elbow pain was postulated in the “symptomatic 
minor instability of the lateral elbow” (SMILE) concept 
[5]. However, as opposed to direct arthroscopic assess-
ment, image-based preoperative diagnosis and classifica-
tion of intra-articular findings and R-LCL abnormalities 
are challenging, and currently there is no gold standard in 
diagnosing lateral epicondylalgia [17, 18].

Ultrasound (US) examination is a first-step exam to 
approach lateral elbow pain, thanks to its low-cost and 
wide availability; it can detect changes related to tendon 
tears or muscular avulsions of the common extensor ori-
gin (CEO), evaluate U-LCL injuries, and depict compart-
mental patholaxity by assessing articular space widening 
while scanning under dynamic stress [19–22]. However, 
US sensibility in detecting lateral elbow instability has 
never been fully analysed and the available literature is 
limited to nonquantified and nonvalidated descriptions of 
US varus stress testing [20, 23–25]. Therefore, this study 
aimed to evaluate the effects of sequential lateral release 
with the dynamic US, evaluating the capability of this 
technique to detect tendinous tears at the level of the CEO 
and lesions of the R-LCL. The current study hypothesized 
that dynamic US evaluation of abnormal widening of the 
lateral joint line is sufficient to allow distinct identification 

of a simulated tear of the CEO and of the R-LCL. This will 
help define the role of US in the diagnostic approach to 
elbow instability and lateral elbow pain.

Materials and methods

Institutional approval of the study protocol was obtained 
prior to study begin (Nicola’s Foundation & ICLO Research 
Center, ID19504).

Nine fresh-frozen cadaver specimens of upper extremities 
from human donors, including the complete middle third of 
the humerus and the entire hand, were available. Before the 
investigation, signs of previous trauma, stiffness, instability, 
or deformity were excluded. The distal radioulnar joint was 
transfixed with a 1.6 mm Kirschner wire in neutral posi-
tion of the forearm to prevent undesired prosupination, since 
rotational movements are associated with muscular and liga-
mentous tension changes in the lateral aspect of the elbow 
[12, 26, 27]. Radiographs were taken to confirm integrity 
of bony structures, joint congruency, and correct Kirsch-
ner wire placement. The specimens were then mounted on 
a custom-made support designed to set elbow flexion and 
extension and allow controlled varus stress; the humeral 
position was set to mimic that obtained with the shoulder 
in 90° of forward flexion and 90° of internal rotation (i.e. 
lateral epicondyle facing upwards and transcondylar axis 
perpendicular to the floor).

Dynamic US examination of the lateral compartment was 
performed with a 10 MHz linear probe (Esaote MyLab 30, 
Esaote, Genova, Italy) placed on the skin of the lateral aspect 
of the elbow.

To obtain standardized images with the most distinct bony 
articular margins, the transducer was oriented perpendicular 
to the radial head, centred in the coronal plane at the level 
of the midpoint of the radiocapitellar joint. The lateral joint 
line widening (λ), defined as the linear distance between the 
proximal end of the articular surface of the radial head and 
the articular surface of the capitellum, was considered as 
the primary outcome parameter and was measured in mil-
limetres (mm) with electronic callipers with one decimal 
accuracy (Fig. 1).

Initial US investigation of the lateral compartment was 
performed in basal conditions, first with the elbow in full 
extension and then in 60° flexion and applied gravitational 
torque only. Subsequently, a 0.5 kg load was applied to the 
specimens’ hand, and the US evaluation was repeated in full 
extension and in 60° flexion.

A lateral approach according to Kocher was then per-
formed on each specimen; the CEO was identified, and its 
midline was marked from the bony insertion to the myo-
tendinous junction; the fibres were divided longitudinally 
along the midline, and the anterior half of the CEO was 
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detached from the humeral epicondyle and reflected dis-
tally, exposing the underlying layer. Dynamic US investi-
gation of the lateral compartment was repeated after this 
first soft tissue release (Fig. 1).

Finally, the R-LCL was identified and completely 
detached from its proximal insertion, and the US investi-
gation was repeated.

All surgical procedures were performed by a single 
examiner with extensive experience in elbow surgery 
(P.A.). Care was taken to leave the anterior elbow joint 
capsule as intact as possible and not to damage the U-LCL, 
which lies under the unreleased posterior half of the CEO. 
Two dedicated musculoskeletal radiologists performed all 
dynamic US examinations, reaching mutual agreement on 
the obtained values (A.Z., M.C.).

Statistical analysis

Statistical analysis was performed using GraphPad Prism 
v 6.0 software (GraphPad Software Inc.). Continuous var-
iables were expressed as the mean ± standard deviation 
(SD) or medians and first and third quartiles [Q1–Q3], as 
appropriate. The Shapiro–Wilk normality test was used 
to evaluate the normal distribution of the sample and, if 
the null hypothesis of this test could not be rejected, the 
non-parametric Mann–Whitney test (U test) was applied 
for the analysis of the samples. Variables with a Gaussian 
distribution were analysed with Student’s t test. For all 
analyses, the significance level was set at a p value lower 
than 0.05. The sample size was based on similar publi-
cations dealing with releases and reconstructions of the 
lateral elbow ligaments; based on these previous reports, 
a number of n = 9 specimens was deemed appropriate to 
perform this study [28, 29].

Results

Nine specimens underwent US evaluation in basal con-
dition and after both releases (females: 66.7%; right 
elbows: 44.4%; mean age at death: 76.7 ± 15 years; tran-
sepicondylar axis: 6.2 ± 1.2 cm; forearm and wrist length: 
29.6 ± 4.3 cm). No complications were encountered during 
the surgical procedures, and no difficulties emerged in per-
forming US measurements. The capitellar and the radial 
articular surfaces were always easily identifiable, and λ 
could be calculated for each measurement.

Effect of elbow flexion and gravitational torque

No significant differences were demonstrated when per-
forming pairwise comparisons of the parameter λ meas-
ured in basal conditions with the elbow in full extension 
and in 60° of flexion, in both testing conditions with 
gravitational varus torque only and an additional 0.5 kg 
varus load. With the elbow kept in full extension, adding 
a 0.5 kg varus load did not produce significant changes 
in λ as compared to an extended elbow with gravitational 
varus torque only; on the other hand, with the elbow in 
60° flexion adding a 0.5 kg varus load produced a minimal 
but statistically significant increase in λ, with an average 
elongation (Δλ) of 46% (p = 0.0038, Table 1). 

Considering these results in the basal conditions, fur-
ther analyses were performed with 0.5 kg varus load and 
with the elbow in 60° flexion, which is believed to better 
simulate the effect of varus loading on the lateral elbow in 
everyday activities [5].

Fig. 1   Dynamic ultrasound evaluation of the lateral compartment 
with 0.5 kg load applied to the hand before (A) and after (B) release 
of the anterior half of the common extensor origin. The arrow and the 

arrowhead indicate the lateral cortex of the radial head and the lateral 
cortex of the capitellum
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Effect of surgical release of lateral stabilizing 
structures

The surgical release of the anterior half of the CEO produced 
a mean increase in λ of approximately 3 mm, which corre-
sponded to a statistically significant change in λ by + 200% 
as compared to the starting position (p = 0.0008).

A further release of the R-LCL caused only a marginal 
increase in λ of less than 1 mm, which did not reach statisti-
cal significance compared to the previous release (Table 2, 
Fig. 2).

Discussion

The most relevant finding of this study is that in a simulated 
setting of sequential soft tissue release of the lateral compart-
ment of the elbow, US evaluation can detect changes related 
to tendon tears or muscular avulsions of the CEO but cannot 
reliably distinguish an associated R-LCL rupture. Dynamic 
US is, therefore, a suitable technique to evaluate compart-
mental laxity, which may be associated to traditional dynamic 
fluoroscopy; nevertheless, a second level imaging technique 

is necessary to provide a detailed assessment of capsular and 
ligamentous structures, which can neither be adequately visu-
alized, nor provoke sufficient indirect changes.

Furthermore, this study showed that, in an outside-in 
release sequence, the peak increase in joint line widening 
(Δλ) is obtained when releasing the anterior half of the 
CEO. Two relevant clinical consequences can be derived 
from this finding: first, iatrogenic damage to the CEO can 
produce undesired compartmental laxity, potentially leading 
to R-LCL overload and failure on the long run; second, intra-
articular, arthroscopic R-LCL reconstruction procedures can 
be an option to address lateral elbow pain without damaging 
the CEO but require an intact overlying musculotendinous 
sheath to be successful.

Table 1   Results of the initial ultrasound investigation before perform-
ing lateral releases

Bold indicates p < 0.05
The lateral joint line widening (λ) was measured as the linear distance 
in millimetres between the humeral and radial articular surfaces. Con-
tinuous variables were expressed as mean ± standard deviation (SD) 
or as median and interquartile range (first and third quartiles, Q1–
Q3), as appropriate
kg kilogram, n.s not significant

Basal condition 0.5 kg varus stress p value

Full extension 2.20 (±0.55) 2.63 (±0.81) n.s
60° flexion 2.13 (±0.46) 3.11 (±0.45) 0.004
p value n.s n.s

Table 2   Summary of the main study results: the lateral joint line widening (λ) was measured after sequential lateral releases

Bold indicates p < 0.05
Continuous variables were expressed as mean ± standard deviation (SD) or as median and interquartile range (first and third quartiles, Q1–Q3), 
as appropriate
CEO common extensor origin; kg kilogram; λ lateral joint line widening; n.s not significant; R-LCL radial band of the lateral collateral ligament

Basal condition (no 
releases, no stress)

0.5 kg varus stress Release of the anterior half 
of the CEO

Complete 
release of the 
R-LCL

2.13 (± 0.46) 3.11 (± 0.45) 6.39 (± 1.67) 7.00 [5.25–7.65]
Elongation (% increase) –  + 46%  + 200%  + 228%
p value to basal condition 0.004  < 0.001 0.016
p value to previous release step 0.002 n.s

Fig. 2   Effect of sequential lateral releases on the lateral joint 
line widening (λ). Only P values < 0.05 are indicated: *P < 0.05; 
**P < 0.01; ***P < 0.001. CEO common extensor origin; kg kilo-
gram; λ lateral joint line widening; R-LCL radial band of the lateral 
collateral ligament
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Knowledge of lateral elbow anatomy is important to 
understand the pathology related to R-LCL abnormali-
ties. However, the role of the R-LCL and of reconstructive 
procedures directed to this ligament is limited in literature, 
although its importance as lateral stabilizer has been sug-
gested in biomechanical and clinical studies [1, 5, 26, 30, 
31]. This broad diamond shaped ligament originates from 
the lateral epicondyle at a mean distance from its apex of 
approximately 7 mm and blends, in its distal part, with the 
fibres of the annular ligament, covering the broadest surface 
area among the lateral elbow ligaments [32, 33].

In the recently developed SMILE model, the role of the 
R-LCL as a static stabilizer was emphasized, suggesting that 
patholaxity and elongation of the R-LCL caused by mild, 
repetitive varus/pronation stresses can lead to relative hyper-
mobility of the radial head, minor incongruence of the proxi-
mal radioulnar joint, subsequent intra-articular alterations 
and finally ECRB tendinopathy and lateral elbow pain [5]. 
This model is gaining popularity and an increasing number 
of reports are being published, reporting on MRI findings 
of R-LCL abnormalities in patients affected by recalcitrant 
lateral elbow pain [34–37].

Limited evidence exists regarding the specific contribu-
tion of the R-LCL to a pattern of minor elbow instability 
related to varus-pronation overload [38]. Previous studies 
mainly focussed on detecting major posterolateral rotatory 
instability in terms of pivot shift test, radial head translation 
or subluxation, or degrees of rotation or varus, being unable 
to detect a significant contribution of isolated sectioning of 
the R-LCL [26, 39–41].

These findings are only partially confirmed by the cur-
rent study, which suggests that no US detectable significant 
changes in λ occur with sectioning the R-LCL after the pre-
vious muscular release; however, this study does not have 
the elements to define if the R-LCL gets loose before or 
after CEO damage. For surgeons approaching recalcitrant 
lateral elbow pain, this indicates that extra-articular open 
approaches releasing the CEO can produce an iatrogenic 
compartmental laxity, potentially leading to undesired 
R-LCL overload and failure. Further studies with a differ-
ent setting are required to verify if reversing the release 
sequence (i.e. performing an intra-articular R-LCL release 
first) can lead to the appearance of US detectable changes 
and to define the possible role of arthroscopic approaches to 
address lateral elbow pain without damaging the CEO [42].

Preoperative diagnostic techniques to detect R-LCL 
patholaxity or elongation are still lacking. Some new clinical 
tests have been proposed to identify lateral pain of articu-
lar origin, but have not been validated yet on large cohorts 
[43]. Similarly, although US investigation has been demon-
strated being to visualize the R-LCL effectively, only limited 
evidence exists on its capability to detect direct or indirect 
signs of R-LCL pathology [44, 45]. This study, which was 

designed to evaluate if dynamic US is capable of indirectly 
detecting a lesion of the R-LCL, distinguishing this from a 
tendon tear at the level of the CEO, could not confirm this 
hypothesis, suggesting that the λ is not a suitable parameter 
to evaluate this pattern of minor elbow instability.

This is probably caused by the fact that US indirect signs 
of lateral instability, including λ, are designed to investigate 
U-LCL lesions and no specific protocols are designed for 
the R-LCL [22, 46–48]. Therefore, efforts should be made 
to develop specific diagnostic protocols to better evaluate 
isolated R-LCL laxity, especially in patients affected by 
SMILE [36].

This study demonstrated that the US is suitable to indi-
rectly evaluate integrity of the muscles and tendons of the 
lateral elbow, confirming the results of previous studies [20, 
49, 50]. Muscles are important dynamic elbow stabilizers, 
as initially described by An et al. and Dunning et al. and 
more recently confirmed by Seiber et al. [10–12]. Among the 
extensor muscles, the ECRB plays a distinct role in lateral 
elbow stability: the position of its tendinous insertion, just 
extra-capsular and parallel to R-LCL, suggests a similar role 
of this muscle and the R-LCL [2]. Within the SMILE theory, 
the pathological elongation of the static stabilizer R-LCL 
could require the ECRB tendon to act as an extra-articular 
secondary dynamic stabilizer, resisting varus-pronation 
forces in support of a deficient or lax R-LCL, with tendinop-
athy being a possible consequence of excessive strain [5].

In this study, the release of the anterior half of the CEO, 
which includes the ECRB, significantly increased λ by 200% 
as compared to the starting position (p = 0.0008): this result 
recommends care when performing open surgical treatment 
of lateral elbow pathology or when repeating steroid injec-
tions in lateral epicondylitis, since an excessive release or an 
iatrogenic injury may trigger undesired instability [13, 36]; 
furthermore, it indicates that at the end of the a pathological 
cascade starting from patholaxity and elongation of R-LCL 
initially caused by mild, repetitive varus-pronation stresses, 
major stability changes may occur if the ECRB is involved. 
These findings support the hypothesis that R-LCL plication 
may work in reducing this instability pattern, direct reinforc-
ing the R-LCL and thus unloading the ECRB [42]. Consider-
ing the results of this study, the authors advise against open 
approaches, which can lead to undesired damage to the CEO, 
with the risk of creating iatrogenic compartmental laxity.

The position of the forearm could also affect elbow 
stability. In the current study setting, the distal radioulnar 
joint was transfixed in neutral position to prevent undesired 
prosupination; the neutral position was chosen because it 
is the one which best resembles the position used in many 
office-based jobs, which is based on elbow suspension, varus 
stress and only minimal pronation of the forearm. However, 
conflicting results on the contribution of forearm rotation 
to elbow stability have been published [10, 12, 26, 27, 41, 



4072	 Knee Surgery, Sports Traumatology, Arthroscopy (2021) 29:4067–4074

1 3

51, 52], encouraging future studies aimed at comparing the 
differences in elbow laxity caused by R-LCL release at dif-
ferent degrees of forearm rotation. Flexion angles also affect 
ligamentous tension, but were not shown to affect the sta-
bility patterns significantly after muscular releases [12, 31, 
41]. Our study included a preliminary analysis of the intact 
specimens with different flexion angles and different initial 
loads, which could not show any significant differences in 
λ between US examination with the elbow in full exten-
sion and in 60° flexion. Therefore, further analyses were 
performed only in 60° flexion and with 0.5 kg varus stress, 
which is believed to better simulate the effect of varus stress 
on the lateral elbow in everyday activities.

Limitations of this study include that it is an anatomical 
study on a limited number of specimens, examined in an open 
setting, which allowed performing soft tissue release only in 
a single sequence. Like the arthroscopic one proposed by 
McAdams et al. a different setting, could be helpful for future 
studies to verify if reversing the release sequence produces 
similar US changes [40]. Unfortunately, the subjective evalua-
tion of the results chosen by McAdams and colleagues did not 
allow comparison with the results of the current study. Future 
studies should also consider a larger sample size, since the 
chosen one was based on previous publications dealing with 
releases and reconstructions of the lateral elbow ligaments and 
not on a dedicated power analysis [28, 29]. The contribution 
of progressive tissue creep on the laxity measurements was 
not evaluated; however, adequate preconditioning of the speci-
mens was performed, cyclic loading was avoided, and care 
was taken to maintain the specimen moisture and temperature 
at constant levels [53]. Nevertheless, the authors suggest care 
when transferring these results to clinical practise, since the 
biomechanical properties of fresh-frozen cadaveric specimens 
may differ from that of living tissue.

Finally, the US is considered an operator-dependent inves-
tigation: to reduce bias, two dedicated musculoskeletal radi-
ologists were involved for the whole duration of the study 
and performed all US examination together, reaching mutual 
agreement on the obtained values. Magnetic resonance imag-
ing is regarded as a second level diagnostic tool established 
as gold standard for detecting capsular and ligament lesions 
[36]. However, it is expensive, time consuming, and was not 
available for a biomechanical cadaveric study involving repeti-
tive evaluations and stress testing [34, 35, 37]. Furthermore, 
magnetic resonance imaging lacks functional and dynamic 
information, which is an advantage of US techniques.

Conclusion

US evaluation of the lateral compartment of the elbow can 
detect changes related to tendon tears or muscular avul-
sions of the common extensor origin, and it can depict 

compartmental patholaxity by assessing articular space 
widening while scanning under dynamic stress. However, it 
cannot reliably define if the R-LCL is injured. The increase 
in λ obtained when releasing the anterior half of the CEO 
suggests care should be taken when performing open surgi-
cal treatment of lateral elbow pathology or when repeating 
steroid injections in recalcitrant lateral elbow pain, since 
iatrogenic undesired compartmental laxity could lead to 
R-LCL overload and failure, with subsequent aggravation 
of intra-articular pathologies.
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