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Abstract: A growing body of literature has documented the negative impacts of air pollution on labor
productivity, especially the effects of fine particulate matter. In this paper, we build on this literature
by dissecting two channels of how particulate matter affects labor productivity: decreasing labor
supply through damaging the physical functioning of the human body, and decreasing the marginal
productivity of labor through damaging the cognitive functioning of the human brain. Using the
household panel survey from the China Health and Nutrition Survey (CHNS) spanning 2000 to 2015
and combining that information with remotely sensed data on exposure to particulate matter (PM2.5),
namely, the most harmful air pollution, we find a significantly negative effect of PM2.5 (instrumented
by thermal inversion) on labor productivity. We also find that workers who are male, without a
college degree, and are employed in outdoor occupations are mainly affected by PM2.5 through
decreasing working hours, whereas college-educated workers employed in indoor occupations are
mainly affected by PM2.5 through decreasing unit wages. We provide suggestive evidence that
health impacts are behind our measured labor-productivity losses as we find significantly lower
metrics in physical activity and increasing disease prevalence under higher exposure to PM2.5.

Keywords: air pollution; particulate matter; labor productivity; CHNS

1. Introduction

Air pollution has become one of the greatest public health threats, with the most
damaging air pollutant being fine particulate matter (PM2.5, i.e., any particles that have a
diameter of 2.5 µm or less). Currently, 5.5 billion people around the world live in places
that exceed the World Health Organization’s (WHO’s) safety guidelines for fine particulate
matters. Research indicates that exposure to air pollution reduces the global average life
expectancy by 1.8 years [1,2], and in the pollution-heavy China, by three years [3,4]. Studies
have found exposure to fine particulate matter can result in physical health impairments,
including respiratory and cardiovascular diseases such as impaired lung functioning,
chronic obstructive pulmonary disease, asthma, or congestive heart failure [5–8]. At the
same time, exposure to pollution also leads to impairment in brain functioning through
systemic or brain oxidative stress and inflammation [9–11], which in turn leads to damaged
cognitive functioning and dementia [12,13], and mental health problems [14,15].

A growing body of literature has also documented the socioeconomic impact of air
pollution, especially in human capital and labor productivity. These studies showed
productivity is negatively affected by exposure to air pollution in a variety of contexts,
including test-takers in Israel [16], Brazil [17], and China [18], farmworkers in Califor-
nia [19], pear packers in Northern California [20], manufacturing firms in China [21,22],
and call-center workers in China [23]. However, one point that is still unclear in the liter-
ature is the channels through which exposure to particulate matters affects productivity.
Exposure to particulate matters may affect productivity from two distinct channels. First,
it impairs the physical functioning of human bodies, including respiratory and cardio-
vascular diseases. This impairment will likely reduce the extensive margin of the labor
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supply, that is, limit the workers’ hours of work, requiring them to take longer breaks or
drop out of the labor force temporarily or permanently. Second, exposure to air pollution
also affects the cognitive function of human brains, which will likely reduce the intensive
margin of labor productivity, that is, reductions in the quality of labor output per unit of
working time. In a labor market equilibrium, this effect will eventually lead to decreases in
workers’ unit wages as workers’ marginal products of labor decrease. Past studies on the
productivity consequences of air pollution have primarily focused on the labor produc-
tivity consequences under a specific occupational context dominated by either physical
functioning (e.g., [20,23]) or cognitive functioning [16,24]. As such, those studies have
difficulty quantifying the effects on both margins and linking the estimated effects to their
subjects’ underlying health conditions that drive the estimated labor market outcomes.

In this paper, we quantify the labor market impacts from exposure to fine particulate
matter, analyze heterogeneities of those impacts between the physical versus cognitive
channels, and shed light on the underlying mechanisms in health conditions and subjective
well-being metrics that drive the observed labor market outcomes. We use the household
panel survey from the China Health and Nutrition Survey (CHNS), a nationally represen-
tative panel survey that tracks individuals’ health conditions and labor market outcomes
for over a decade. (The respondents are randomly selected, and all of them use the same
questionnaire) We match these individual-level data, covering 19,455 adults spanning 2000–
2015, with data on exposure to particulate matter, weather conditions, and socioeconomic
covariates. Following Graff Zivin and Neidell, we focus on three outcomes of interest:
working months, which capture the longevity of a worker’s labor supply; annual working
hours, which capture both the longevity and the intensity aspects of labor supply; and
hourly wage, which captures a worker’s marginal productivity during his/her working
time [25]. We choose annual working hours to reflect the overall working hours in the
survey year. We also use working months to capture the seasonal nature of occupations
such as farmers and fishers, who only work in certain months in a year. The last measure
for productivity is individuals’ average hourly wage, which shows the marginal effect of
productivity-ty in a different dimension from working hours.

There are three main empirical challenges in identifying the causal effect of air pollu-
tion on labor productivity. The primary empirical obstacle in estimation is reverse causality,
such that higher individual productivity simultaneously leads to more industrial output
and therefore more pollution, leading to an upward bias in the estimated effects [21]. The
second empirical challenge is potential omitted-variable bias at the individual level, which
may bias the estimated effect in both directions [26]. The last challenge is measurement
error, such that air-pollution data might be manipulated [27]. To address these challenges,
we use remote-sensing-based measures of particulate matter [28] and instrument that with
the number of thermal inversion occurrence, a natural phenomenon that occurs when the
temperature in the lower atmosphere is lower than that of the upper layer. In addition, we
also add two-way fixed effects at the individual and year levels. Our identification relies
on the assumption that thermal inversion is plausibly random, such that it is uncorrelated
with most individual or regional characteristics that affect labor productivity or health
outcomes.

Our empirical results suggest robust adverse effects of PM2.5 on labor productivity.
On average, a 1 µg/m3 increase in PM2.5 concentration leads to 26.6 fewer working hours
annually per person. It also decreases our subjects’ hourly wage by 0.34 yuan (USD 0.053)
on average. We also find these results vary systematically by gender, education, and the
nature of the employment. The impact of pollution exposure on working hours and months
is more pronounced for men, rural residents, individuals without a college degree, and
those engaging in low-skilled, outdoor occupations. This finding provides suggestive
evidence in support of our hypothesis that the pollution impact through the physical-
function channel mainly affects the supply of labor, that is, how long the worker can work
in the short to medium term. On the other hand, the impact of pollution exposure on
wages is more pronounced for men, people with a college degree, and individuals working
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in indoor occupations. This supports our hypothesis that the pollution impact through
the cognitive-function channel mainly affects the marginal productivity of labor, that is, a
worker’s effectiveness on the job.

We further examine health mechanisms that potentially drive our estimated effects.
We construct a version of the Quality of Well-Being (QWB) scale [29] using CHNS, compre-
hensively tracking an individual’s well-being in four distinct dimensions: mobility, physical
activity, social activity, and disease symptoms. Consistent with prior literature [30,31],
we find higher PM2.5 concentrations lead to lower metrics in physical activity, disease
prevalence, and overall subjective well-being. We also find statistical evidence showing
higher levels of exposure to particulate matter increases the probability of the residents
having diabetes and asthma.

This paper contributes to two distinct streams of literature. First, we contribute to the
growing literature in public health and economics on the social impacts of air pollution.
We quantify the causal effects of fine particulate matter on workers’ labor supply and wage
outcomes in the context of the largest developing country, where over 90% of the citizens
breathe air that is above the WHO safety guideline. Within a single labor-force sample
(the CHNS), we seek to distinguish the effects of air pollution on physical versus cognitive
functions. We shed light on two different channels, namely, the impairment of physical
versus cognitive functions, through which air pollution can affect labor market outcomes.
Past studies have primarily focused on identifying the impact of one such channel due to
limitations in their respective study settings.

Second, we contribute to the environmental justice literature on the differential impact
of air pollution on the population from two angles. For one, we add to this literature
by documenting the differential social impact of air pollution along the lines of existing
social and economic inequalities. However, unlike most studies that focus on developed
countries, a majority of the population we study are individuals who are relatively poor and
are employed in agriculture or an otherwise blue-collar sector that work mostly outdoors.
They are more likely to be directly exposed to air pollution and thus see impacts on their
health and reductions in their capacity to work. We indeed find a substantial decrease in
those workers’ labor supply and suggestive evidence that this decrease in working capacity
is related to impaired physical activity and disease prevalence. The situation is comparable
to the case in developed countries where the burden of exposure disproportionately falls
on vulnerable groups within the society, but it is different in that the majority rather
than the minority are experiencing the impact of reduced work capacity. We note here
that more affluent, high-skilled, and college-educated workers are also affected by air
pollution through the channel of decreasing wages, and the net wage impact differs across
different divides. (We see low-skilled workers taking a heavier hit in total wage income
than high-skilled workers. On the other hand, college-educated workers are hit heavier by
air pollution in terms of total wage income, because their marginal productivity is more
severely impacted. Table A6 presents those estimates).

Our results also indicate a potential vicious trap of pollution exposure, where low-
skilled workers are more likely to be exposed to air pollution and more likely to suffer
from health consequences, and thus fall further down the social ladder in terms of income
and welfare. This vicious trap has been documented in other settings, for example, the
differential access among racial and income groups to air conditioning as an adaptation
mechanism for climate-induced extreme heat [25,32,33], or migration and sorting into
dirtier neighborhoods as a result of the income gap [34,35].

The remainder of the paper is organized as follows. Section 2 describes the data sources
and summarizes the statistics. Section 3 introduces our empirical methods. Section 4
presents our main results. Section 5 provides discussions and concludes.

2. Method

The main goal of this paper is to estimate the causal effect of air pollution on labor
productivity. Identification of the causal effect faces three empirical challenges. The
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primary empirical challenge is reverse causality. Higher economic output intensifies local
air pollution, which in turn decreases labor productivity. Through this channel we would
expect a negative relation between labor productivity and better ambient air quality at
a local level [21]. Reversely, there is also empirical evidence suggesting regions with
higher incomes are more likely to have stricter regulations, better enforcement, and a
cleaner mix of industries with more advanced technologies in China [36,37]. Either way,
typical linear regression (OLS) will result in biased estimates of pollution’s effect on labor
productivity [21]. The second empirical challenge is potential omitted-variable bias, which
may bias the main estimation in either direction. For instance, air pollution is typically
positively correlated with confounders such as local economic conditions, which are in turn
correlated with better healthcare infrastructure over time. In this case, the omitted factor
causes an underestimation of pollution impact because better preventive and treatment
measures are now available to residents, potentially leveling the negative effect of air
pollution on productivity. The last challenge is measurement error in terms of pollution
levels. References [27,38] provide cautionary tales on using monitoring-station data in
China because those pieces of information may be subject to data manipulation. (Also
see [39] for manipulation of monitoring-station data in the context of the U.S.) We address
the last challenge by using remotely sensed pollution data provided by [28,40], which are
largely free from manipulation.

To address the first two main empirical challenges, we adopt the instrumental variable
approach to identify the causal effect of air pollution on productivity. Specifically, we
use thermal inversions to instrument for PM2.5 concentrations in our analysis, an instru-
ment first proposed by [41]. Thermal inversion is a natural phenomenon whereby the
temperature in the upper atmospheric layer is higher than the layers below. Airborne
pollutants, including particulate matter, are thus trapped near the ground, leading to higher
human exposure to air pollution. Because the formation of a thermal inversion is purely
created by complex meteorological processes, it should be independent from other local
socioeconomic factors that may affect pollution. This independence creates an exogenous
variation in PM2.5 exposure, which we can use to instrument for air pollution. Studies
have found a robust positive relationship between thermal inversion and local air-pollution
exposure (e.g., [42], and have subsequently used thermal inversion to explore the effects of
air pollution on various economic and social outcomes, including children’s health [43],
migration [34,44], obesity [45], and mental health [14] (The relevance condition of the IV
model is statistically examined using KP F-test [46] for weak instruments, which we present
in the results section). Admittedly, we are unable to statistically test for the validity of the
exclusion restrictions with a just-identified instrumental variable model. Thus, to provide
an extra safeguard for the exogeneity of our instrument, we subsequently control for a
variety of ground-level weather variables that may correlate with both air pollution and
the formation of thermal inversion [47,48].

We propose the following panel-data regression framework, in which we regress
different metrics for labor productivity on local levels of particulate matter. Our preferred
estimation framework is thus given by the following instrumental variable approach,
estimated via two-staged least squares (2SLS):

Y_ict = β_0 + β_1 [Pollution]_ct + f([Controls]_ict) + µ_i + v_t + ε_(ict) (1)

[Pollution]_ct = α_0 + α_1 [ThermalInv]_ct + g([Controls]_ict) + γ_i + σ_t + ε_ict (2)

where Y_ict denotes labor-productivity measures for individual i residing in county c
in year t, including annual working hours, working months, and average hourly wage.
[Pollution]_ct is the average annual PM2.5 in the year prior to the survey in county c,
which matches up with the period of exposure for the reported working activities by
our survey respondents. We instrument [Pollution]_ct using the total number of thermal
inversion occurrences in the corresponding county and year, denoted by [ThermalInv]_ct
in the first stage of the 2SLS model. As we discussed above, we include the same set of
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control variables in both stages of the estimation, include variables for 5 ◦C temperature
bins, second-order polynomials in average snow thickness, vapor pressure, wind speed,
sunshine duration, relative humidity, cumulative precipitation, rain duration, and snow
duration. These local weather shocks have known effects on labor supply and productivity
(e.g., [49,50]). Controls also include time-varying individual characteristics: retirement
status and marital status, noting that any time-invariant individual characteristics will be
absorbed by our individual fixed effect. Following Chen, Oliva, and Zhang (2018), we
use individual fixed effects, µ_i, to control for any individual-specific characteristics such
as gender, occupation, age, etc. We also include year fixed effects, v_t, to capture any
time-specific shocks to productivity, such as business cycles, pollution-control policies, or
national pandemics. ε_ict is the idiosyncratic error term, for which we employ two-way
clustering at the county and year levels for all our models to control for autocorrelation in
the measurements for the same county across different survey years [51].

3. Data

Our empirical analysis is facilitated by the CHNS, one of the most comprehensive
longitudinal surveys that track individuals’ health, work, and nutritional status in multiple
waves in China. The CHNS is jointly administered by the University of North Carolina at
Chapel Hill and the Chinese Center for Disease Control and Prevention. We use six waves
of the CHNS survey: years 2000, 2004, 2006, 2009, 2011, and 2015. The nationwide CHNS
baseline survey in 2000 selected its samples using a multi-level clustered sampling method,
interviewing 15,319 individuals selected from 225 communities located in 12 provinces.
In 2015, the CHNS successfully followed up with 11,487 of the original individuals and
added 3574 new individuals. (The new added individuals are randomly selected from the
225 communities.) The survey has been used in other studies on air pollution [45], dietary
consumption [52], and environmental footprints (e.g., [53]. We then match individual
responses in the CHNS with information on county-level averages for PM2.5 and climatic
characteristics, using the six-digit community identifier provided by the CHNS (CNHS
provides identifiers for province (two-digit code), city and prefecture (four-digit code), and
county (six-digit code)).

The rest of the section documents our data-construction methods, starting from ex-
ternal datasets on air pollution, thermal inversion, and other climatic variables. We then
document how we measure productivity and health outcomes from the CHNS.

3.1. Air Pollution

We measure surface PM2.5 concentration using the regional annual PM2.5 reanalysis
product[28,40]. (The dataset is available on the Atmospheric Composition Analysis Group
website: http://fizz.phys.dal.ca/~atmos/martin/?page_id=140, accessed on 8 October
2020). The product measures PM2.5 using satellite-based aerosol optical depth (AOD)
retrievals, which measures the amount of sunshine duration that is absorbed, reflected, and
scattered by the particulates suspended in the air [54–56]. According to [40], AOD-retrieved
surface PM2.5 concentration is highly accurate (R2 = 0.9–0.92). We obtain data with a spatial
resolution of 0.01 × 0.01 degrees (approximately 1 km by 1 km).

3.2. Thermal Inversions

We obtain the thermal-inversions data from NASA’s MERRA-2 project (Modern-
Era Retrospective analysis for Research and Applications, Version 2, available online:
https://doi.org/10.24381/cds.6c68c9bb, accessed on 3 March 2020). The data report six-
hour air temperature for 42 atmospheric layers ranging from 110 m to 36,000 m, at a spatial
resolution of 0.5 degree × 0.625 degree (around 50 km × 65 km). We follow Chen et al.,
(2018)’s method to calculate thermal inversion—comparing the temperature in the lowest
layer (110 m) with the temperature in the second-lowest layer (320 m) for every six hours
and count the occurrence of a thermal inversion over the entire year, that is, when the
temperature in the second-lowest layer is higher than in the lowest layer, for each grid cell.

http://fizz.phys.dal.ca/~atmos/martin/?page_id=140
https://doi.org/10.24381/cds.6c68c9bb
https://doi.org/10.24381/cds.6c68c9bb
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Figure 1 plots the sample averages of thermal-inversion frequency and PM2.5 from 2000 to
2018. From a visual perspective, thermal inversion is positively correlated with the local
level of PM2.5.
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3.3. Weather

Weather data are collected from AgERA5, a global atmospheric reanalysis dataset
constructed by the European Center for Medium-Term Weather forecasting. (Available
online: https://doi.org/10.24381/cds.6c68c9bb, accessed on 3 March 2020) Similar to the
air-pollution data, AgERA5 has a spatial resolution of 0.01 × 0.01 degrees. We construct
average annual climate data, including temperature bins, total precipitation, total snow
thickness, and cloud cover, by averaging over all grid points in each county [57,58]. Fol-
lowing past literature [14,32], we count the number of days in the year within each 5 ◦C
interval using daily average temperature, in order to control for the potentially non-linear
impacts of temperature on productivity.

3.4. Labor Productivity

We measure survey respondents’ labor productivity at two margins: (1) the amount of
time they work and (2) their unit wage. We expect air pollution to affect both margins. On
the time margin, severe air pollution could reduce a worker’s ability to work for longer
hours in a prolonged period of time by negatively affecting the worker’s health. We expect
the impact to be more pronounced for outdoor, labor-intensive occupations. We also explore
the health-pollution linkage in the mechanism section. On the wage margin, air pollution
could also affect a worker’s ability to perform both labor-intensive and cognition-intensive
tasks, thus reducing their marginal product of labor.

We construct three variables as our outcomes of interest: (1) annual working hours,
that is, the aggregate amount of time a worker has worked in the past year (we calculate
the annual working hours by multiplying the responses from three survey questions: the
average number of days per week worked last year, the average number of months worked
last year, and the average number of hours per day worked last year.) (2) average working
months, i.e., the number of months a respondent worked in the past year, which help us
dissect the potential impact of seasonal workers; and (3) the average hourly wage, inflation-
adjusted to the year 1999. CHNS documents monthly salary for each survey respondent,
and we calculate hourly wage by: hourly wage = monthly wage/working hours per day

https://doi.org/10.24381/cds.6c68c9bb
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× working days per week × 4 weeks per month). We also conduct robustness checks by
using monthly salary as the outcome variable, noting that monthly salary may also pick up
some of the labor supply effects. The results are very similar. We obtained the data for the
GDP deflator in China from the world bank, (https://databank.worldbank.org/reports.
aspx?source=world-development-indicators, accessed on 23 December 2020). Then, we
applied the obtained deflation rate to convert the wages in each year to 1999 yuan. The
first two variables measure potential changes in labor supply [21], and the third measures
potential changes in labor productivity. The sample sizes for these variables are different
due to some respondents did not report annual hours worked or their hourly wage.

3.5. Human Health

We construct measures on human health from the CHNS, available from 2000 to 2011
(the 2015 wave is not covered in the CHNS). The CHNS includes 215 questions about
individuals’ health status, and our goal is to reconcile these individual measures into a
universal metric. We adopt the framework of QWB, a metric widely used and extensively
validated in the medical literature as a comprehensive measure of health-related quality
of life, and robust to multiple underlying diseases, such as lung disease, tumor/cancer,
and asthma [29,59–62]. The QWB scale is shorter, cheaper, and more sensitive to changes
in disease symptoms than other measures of human health such as the Sickness Impact
Profile, (SIP), the Health Utilities Index Mark 3 (HUI3), and the Assessment of Quality of
Life (AQOL).

We follow Kaplan, Atkins, and Timms’s (1984) and Zhao and Hou’s (2005) method in
constructing the QWB scale, which contains four indexes: mobility scale (MOB), physical
activity scale (PAC), social activity scale (SAC), and symptom/problem complex (CPX). We
calculate the four indices based on our subjects’ answers and weigh their answers based on
guidance from [63]. We aggregate using W = 1 + CPX + MOB + PAC + SAC (See questions
and weights provided in Appendix A Table A1). The QWB scale then provides a numerical
point-time expression of well-being, ranging from 0 when a respondent is deceased to 1
when a respondent is asymptomatic and fully functional. In addition to the QWB index,
we also construct disease-specific indicator variables for high blood pressure, diabetes,
cancer, and asthma.

3.6. Summary Statistics

Table 1 presents our summary statistics, and Figure 2 maps the spatial variation in
PM2.5 concentrations at the county level (in µg/m3) for the years 2001, 2006, 2011, and
2015. PM2.5 concentration increased in 2006 and 2011, followed by a decline in 2015
due to the anti-pollution campaign starting in the 2010s [64]. Still, the average level of
PM2.5 exposure in our sample is 51.3 µg/m3, five times more than the WHO’s annual
safety guideline [1]. In the meantime, the spatial distribution of PM2.5 exposure is highly
heterogeneous: the Northeastern part of China, including Beijing, Tianjin, Hebei, Henan,
and Shanxi, experienced much higher exposure to fine particulate matter than the rest of
the country, partly due to the centralized winter-heating program that ran on coal [3,4].
The highest PM2.5 exposure appears in Henan province in 2011, reaching an astonishing
107 µg/m3, more than 10 times above the WHO guideline.

Table 1. Summary statistics.

Variable Description N Min Max Mean SD

County County 225
Year 2000, 2004, 2006, 2009, 2011, 2015 6

Productivity Variables
AWH Annual working hours 25,452 0 8064 1423.37 1070.96
Month Working months 26,068 0 12 9.76 3.24
Wage Average hourly wage (1999 yuan) 12,401 0.13 427.17 6.98 13.26

https://databank.worldbank.org/reports.aspx?source=world-development-indicators
https://databank.worldbank.org/reports.aspx?source=world-development-indicators
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Table 1. Cont.

Variable Description N Min Max Mean SD

Health Variables
QWB Quality of well-being 14,244 0.32 1 0.68 0.20
MOD Mobility scales 14,579 −0.09 0 −0.05 0.04
PAC Physical activity scales 14,470 −0.77 0 −0.03 0.03
SAC Social activity scales 46,495 −0.11 0 −0.01 0.03
CPX Symptom/problem complexes 64,564 −0.41 0 −0.06 0.12
HB High blood pressure patient = 1 64,564 0 1 0.08 0.28

Diabetes Diabetes patient = 1 64,564 0 1 0.02 0.14
Cancer Cancer patient = 1 13,032 0 1 0.01 0.11
Asthma Asthma patient = 1 23,752 0 1 0.01 0.11

Air pollution

PM2.5
Fine particulate matter concentration

(µg/m3) 64,564 6.27 110.60 49.77 18.54

Climate Variables
Inversions6 h Times in 12 months (over 6 h) 64,564 0 143.75 48.64 39.40
Inversions12 h Times in 12 months (over 12 h) 64,564 0 213 81.68 65.87
Inversions24 h Times in 12 months (over 24 h) 64,564 0 282 111.89 87.25
Temperature Temperature at the surface (◦C) 64,564 12.62 37.74 12.62 11.38

Rain Precipitation at the surface (mm/hour) 64,564 36.37 264.34 113.89 58.49
Wind speed Windspeed 10 m 64,564 1.52 5.26 2.90 0.58

Snow Snow thickness (mm) 64,564 0 2346.54 129.18 364.17
Individual characteristics

Marital status Married = 1; Otherwise = 0 24,817 0 1 0.96 0.19
Retirement Retired = 1; Otherwise = 0 29,350 0 1 0.14 0.36

Notes: Unit of observation is individual year. The survey covered 15,319 adult individuals (age ≥ 18) from 225 counties across 12 provinces
during 2000–2015 in China. QWB-scale indexes are calculated by authors. The variables measure the individuals’ health condition one
year prior to the survey year. Thermal inversion is determined within each 6 h period, 12 h period, 24 h period, and then aggregated to
12 months.
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Month Working months 26,068 0 12 9.76 3.24 
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SAC Social activity scales 46,495 −0.11 0 −0.01 0.03 
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Diabetes Diabetes patient = 1 64,564 0 1 0.02 0.14 

Cancer Cancer patient = 1 13,032 0 1 0.01 0.11 

Asthma Asthma patient = 1 23,752 0 1 0.01 0.11 

Air pollution       

PM2.5 
Fine particulate matter concentration 

(μg/m3) 
64,564 6.27 110.60 49.77 18.54 

Climate Variables        

Inversions6 h Times in 12 months (over 6 h) 64,564 0 143.75 48.64 39.40 

Inversions12 h Times in 12 months (over 12 h) 64,564 0 213 81.68 65.87 

Inversions24 h Times in 12 months (over 24 h) 64,564 0 282 111.89 87.25 

Temperature Temperature at the surface (OC) 64,564 12.62 37.74 12.62 11.38 

Rain Precipitation at the surface (mm/hour) 64,564 36.37 264.34 113.89 58.49 

Figure 2. Average Annual PM2.5 Concentration by county. The (top-left) panel shows the annual
average PM2.5 concentration (in µg/m3) in year 2001; the (top-right) panel maps the year 2006;
the (bottom-left) panel maps the year 2011; the (bottom-right) panel maps the year 2015. Source:
Authors’ calculation.

4. Results
4.1. Effect of Thermal Inversions on PM2.5 Concentrations

We start by demonstrating the relevance of our instruments, that is, how thermal
inversions correlate with PM2.5 concentrations in the first-stage equation of Equation (2).
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Table 2 reports the estimated effect of thermal inversions on PM2.5 concentrations. All
three models’ estimations include individual and year fixed effects and all other control
variables except for PM2.5, identical to our main specification.

Table 2. First-sage estimation: effect of thermal inversions on PM2.5 concentrations.

PM2.5(µg/m3)

(1) Annual Working
Hours (2) Working Months (3) Average Hourly

Wage

Thermal inversions 0.268 ***
(0.010)

0.270 ***
(0.009)

0.247 ***
(0.057)

R-squared 0.70 0.70 0.54
Individual FE Yes Yes Yes

Year FE Yes Yes Yes
Individual control Yes Yes Yes
Weather controls Yes Yes Yes

KP F-statistic 31.96 34.02 35.03
Observations 18,346 18,711 9376

Notes: The dependent variable is annual local county PM2.5 concentrations in the last year. We exclude individuals
whose hourly wage (1999 Yuan) is above 430 (the top 0.3%) or below 0.128 RMB (the bottom 0.3%) in column (3)
to avoid outlier bias. Thermal inversions are aggregated from every 6 h to 12 months for the last year. Weather
controls include 5 ◦C temperature bins, second-order polynomials in average snow thickness, vapor pressure,
windspeed, sunshine duration, relative humidity, cumulative precipitation rain duration, and precipitation solid
duration for the last year. Individual controls include variables indicating the individual’s marital status, retired
or not, etc. Standard errors are listed in parentheses and clustered by both county and year (two-way clustering).
*** p < 0.01. The numbers of observations in columns (1)–(3) are different because of missing dependent variables,
especially hourly wage.

We find a significant positive relationship between the prevalence of thermal inver-
sions and PM2.5 concentrations, suggesting that thermal inversion increases local exposure
to particulate matter. A one-standard-deviation increase in the occurrence of thermal inver-
sion increases average PM2.5 concentrations by 0.66 standard deviation, or 13.0 µg/m3,
which is statistically significant at the 1% level. We report Kleibergen-Paap’s F-statistic [65]
in Table 2. All the KP values in columns (1)–(3) are larger than the critical value of 16.38 for
the Stock-Yogo weak identification test [46]. This suggests thermal inversion satisfies the
relevance condition as an instrument for PM2.5.

4.2. Instrumental Variable Estimates of the Effect of PM2.5 Concentrations on Productivity

We now turn to the main result of the paper. Table 3 reports the estimates of the impact
of air pollution on various measures of labor productivity. The dependent variables are
annual working hours in columns (1) and (2), monthly working hours in columns (3) and
(4), and average hourly wage in columns (5) and (6). Columns (2), (4), and (6) report the
instrumental variable estimates using 2SLS. We also include columns (1), (3), and (5) to
report the fixed effects estimates when air pollution is not instrumented (OLS). All columns
include two-way fixed effects by individual and year, and we report robust standard errors
two-way clustered at the county-year level.

In contrast with the 2SLS estimates, the OLS coefficient estimates are positive and sta-
tistically insignificant. They are also significantly different from the nested 2SLS estimates,
suggesting that without instrumenting for air pollution, the OLS estimates will be biased
upward. Thus, we interpret our results below using the 2SLS estimates.

We find a statistically significant negative effect of PM2.5 concentrations on labor
supply. In column (2), our estimates suggest a one µg/m3 increase in PM2.5 concentration
leads to a decrease of 26.6 working hours, which is significant at the 1% level. A one-
standard-deviation increase in PM2.5 concentration decreases annual working hours by
515.0 h, which is about half of a standard deviation decrease in annual working hours.
We also find PM2.5 concentrations have a negative effect on working months. Column (4)
shows a one µg/m3 increase in PM2.5 concentration leads to a decrease of 0.082 months
worked in the past year, which is significant at the 5% level. In other words, a one-standard-
deviation increase in PM2.5 concentrations decreases working months by 0.48 standard
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deviations. Combining those two outcomes together, we find that about half of the labor-
supply effects come from decreases in the duration of employment (−0.082 months, or
−12.8 h per year), and the rest of the effect comes from decreases in the intensity of
employment, that is, within a month (−1.16 h per month, or −13.8 h per year).

Table 3. Second-stage estimation: effect of PM2.5 concentrations on productivity.

Annual Working Hours Working Months Average Hourly Wage
(1) OLS (2) 2SLS (3) OLS (4) 2SLS (5) OLS (6) 2SLS

PM2.5 (µg/m3)
5.656

(3.851)
−26.60 ***

(10.09)
0.020

(0.013)
−0.082 **

(0.033)
−0.009
(0.053)

−0.34 **
(0.17)

KP F-statistic 63.92 68.04 40.97
Mean of Dep 1653 1653 9.760 9.760 6.98 6.98
S.D. of Dep 977.8 977.8 3.242 3.242 13.26 13.26

Individual FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes Yes Yes
Individual controls Yes Yes Yes Yes Yes Yes

Observations 18,346 18,346 18,711 18,711 9376 9376

Notes: The dependent variables are annual working hours in the last year in columns (1) and (2), working months last year in columns
(3) and (4), and average hourly wage last year in columns (5) and (6). We exclude individuals whose hourly wage (1999 Yuan) is above
430 (the top 0.3%) or below 0.128 RMB (the bottom 0.3%) in columns (5) and (6) to avoid outlier bias. Columns (1), (3) and (5) report the
OLS estimates in which air pollution is not instrumented. Columns (2), (4) and (6) report 2SLS estimates, in which we use the number of
thermal inversions to instrument for PM2.5. Weather controls include 5 ◦C temperature bins, second-order polynomials in average snow
thickness, vapor pressure, windspeed, sunshine duration, and relative humidity, cumulative precipitation rain duration, and precipitation
solid duration for the last year. Individual controls include variables indicating the individual’s marital status, retired or not, etc. Standard
errors are listed in parentheses and clustered by both county and year (two-way clustering). *** p < 0.01, ** p < 0.05.

We also find exposure to air pollution reduces workers’ marginal productivity, mea-
sured by a decrease in wages. Column (6) suggests a negative relationship between hourly
wage and PM2.5 concentrations: a one µg/m3 increase in PM2.5 concentrations decreases
the hourly wage by 0.34 yuan (USD 0.053), which is statistically significant at the 5% level.
The point estimates indicate that a one-standard-deviation increase in PM2.5 concentrations
leads to a decrease of 6.58 RMB, or a 0.49-standard-deviation decrease, in hourly wages. We
have tested the impacts of air pollution on labor productivity only for the 9175 respondents
who have reported all three measures, the results are shown in Table A3, it stays very
consistent with our main results. Selected control variables are reported in Table A4. To be
specific, we expect retirement to be negatively affecting labor supply, but has no impact on
wages; extreme weather such as extreme hot and cold days will lead to less productivity.

4.3. Heterogeneity

We now turn to analyze the heterogeneous effects of air pollution on labor productivity
by breaking down our sample by demographics, education, and type of employment. All
models are run with 2SLS with thermal inversion as the instrumental variable, identical to
our main model.

We first report results broken down by demographics and education, reported in
Table 4. We start with the differential impact of air pollution by gender. Male respondents
account for 58% of our sample, and they generally worked longer hours and more months
and received a higher hourly wage. Columns (1) and (2) of Table 4 show the estimated im-
pact of air pollution by gender. We find pollution disproportionately affects male workers,
reducing their annual working hours by 32 h, working months by 0.12 months, and hourly
wages by 0.37 RMB (USD 0.06). All three estimated outcome variables are statistically
significant. On the contrary, female workers are virtually not affected by air pollution: all
three outcome variables are statistically insignificant. These results are consistent with
previous findings on the differential impact of air pollution by gender, such that both infant
and adult males are more sensitive to the exposure of air pollution [12,66,67].

We then explore the heterogeneity by educational level in columns (3) and (4). We
divide the sample into two groups: 19% of our respondents have attended college, and the
remaining 81% have not. For college graduates, a one µg/m3 increase in PM2.5 decreases
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annual working hours by 43 h and working months by 0.033 months, though both effects
are statistically insignificant. On the other hand, we find a statistically significant negative
impact of air pollution on college-educated workers’ hourly wages. In comparison, air
pollution has a statistically significant negative effect on non-college-educated workers’
working time, but we find no statistical evidence to show air pollution can affect their
hourly wages. One reason that could explain this difference is the nature of occupation
across educational groups [45]. Relative to non-college-educated workers, college-educated
workers are more likely to work in sectors that require cognitive functioning rather than
physical functioning and receive much higher hourly wages (9.45 RMB) than non-college-
educated workers (6.23 RMB). Although evidence has suggested that air pollution affects
both the physical and the cognitive functioning of human beings, we expect non-college-
educated workers to be affected mainly through physical-functioning impairments, which
reduces their working hours. On the other hand, college-educated workers are mainly af-
fected by cognitive-functioning impairments, reflected by a wage decrease. The estimation
results match our expectations well, and this hypothesis is further corroborated when we
break down the impact of pollution by occupation. As a robustness check, we have divided
the data into five groups based on the individuals’ highest level of education attained.
The estimation results are shown in Table A5. It splits the individuals by graduation from
primary school, middle school, high school, technical or vocational school, or college and
above. The results are very consistent with our main estimation and showing that air
pollution is more likely to have negative impacts on less educated people’s working time
and more educated people’s hourly wage.

Table 4. Effect of air pollution on productivity: by gender, educational attainment, and residence.

Gender Education Residence

(1)
Male

(2)
Female

(3)
<College

(4)
≥College

(5)
Urban

(6)
Rural

Annual working hours

PM2.5 (µg/m3)
−32.03 ***

(11.42)
−15.92
(12.79)

−25.54 **
(10.88)

−43.26
(25.20)

10.63
(15.34)

−24.71 *
(12.76)

Mean of Dep 1712.2 1589.54 1634.37 1750.68 2002.30 1505.89
S.D. of Dep 963.2 989.08 1005.86 810.9 811.95 1004.21

KP F-statistic 61.76 56.34 61.31 62.92 24.21 64.93
Observations 10,144 8202 16,731 1615 5124 13,222

Working months

PM2.5 (µg/m3)
−0.118 ***

(0.037)
−0.029
(0.043)

−0.091 **
(0.037)

−0.033
(0.048)

−0.010
(0.037)

−0.078 *
(0.044)

Mean of Dep 9.853 9.658 9.613 10.533 10.959 9.257
S.D. of Dep 3.179 3.308 3.291 2.853 2.485 3.388

KP F-statistic 59.44 58.73 63.45 43.38 23.48 66.71
Observations 10,341 8370 17,088 1623 5210 13,501
Hourly wage

PM2.5 (µg/m3)
−0.37 **
(0.018)

−0.17
(0.25)

−0.16
(0.18)

−1.03 **
(0.42)

−0.15
(0.19)

−0.63
(0.44)

Mean of Dep 7.73 6.01 6.23 9.45 7.14 6.86
S.D. of Dep 13.72 13.10 12.43 15.41 12.29 14.02

KP F-statistic 41.51 30.17 39.93 24.60 24.93 25.43
Observations 5144 4232 7068 2308 4296 5080

Notes: The dependent variables are annual working hours in the last year in Section 1, working months in the last year in Section 2, and
average hourly wage in the last year in Section 3. To avoid outlier bias, we exclude individuals who earn the top 0.3% and the bottom 0.3%
in Section 3 (hourly wage). Regression models are estimated separately for each subsample. All the regressions report 2SLS estimates
with controls. Weather controls include 5 ◦C temperature bins, second-order polynomials in average snow thickness, vapor pressure,
windspeed, sunshine duration, relative humidity, cumulative precipitation rain duration, and precipitation solid duration for the last year.
Individual controls include variables indicating the individual’s marital status, retired or not, etc. Standard errors are listed in parentheses
and clustered by both county and year (two-way clustering). *** p < 0.01, ** p < 0.05, * p < 0.1.

The last two columns (columns (5) and (6)) focus on the heterogeneity of urban and
rural residencies. Urban individuals account for 28.5% of our sample. Our estimation
results suggest that PM2.5 concentrations have a negative impact on all three measures
for both rural and urban residencies. However, the estimates are only significant for rural
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residents’ working time. The underlying mechanism is likely similar to the college-educated
and non-college-educated divide: on average, rural residents conduct more physical work,
whereas urban residents are more likely to engage in white-collar, cognition-heavy jobs.

We continue our breakdown in Table 5, which reports estimates for the subsamples
divided by the nature of employment. Columns (1) and (2) in Table 5 report the breakdown
between high-skilled occupations, including senior professional/technical worker, army offi-
cer, police officer, foreman, and group leader in column (1), versus the rest of the occupations,
presented in column (2). The correlation between skill and college education in our sample is
modest, which explains why there are subtle differences between the subsample analysis
along the skills vs. educational divide. Many of our survey respondents are employed by
the public sector, including the government, public institutions (universities, hospitals, etc.),
and state-owned enterprises (SOEs). Part of the variations of the high skills vs. low skill
occupations we adopted here came from our respondents’ respective rank in the public sector.
Many high skilled workers rose through the ranks without obtaining a college degree, for
example, army and police officers, skilled laborers, village leader, etc. Our results suggest
higher PM2.5 concentrations have no significant effect on our three measures of high-skilled
workers’ productivity. On the other hand, we find significant decreases in working time as a
result of increasing air-pollution exposure of workers in low-skilled occupations.

Table 5. Effect of air pollution on productivity: by nature of occupation.

Skills Workplace

(1)
High Skilled

(2)
Low Skilled

(3)
Indoor

(4)
Outdoor

Annual working hours

PM2.5 (µg/m3)
−3.642
(12.63)

−31.86 **
(12.62)

2.499
(10.08)

−27.53 *
(13.39)

Mean of Dep 2005.48 1617.236 1970.03 1364.28
S.D. of Dep 565.94 1003.591 753.70 1065.47

KP F-statistic 38.71 58.93 36.57 65.76
Observations 1717 16,629 7439 10,907

Working months

PM2.5 (µg/m3)
−0.002
(0.022)

−0.102 **
(0.038)

0.012
(0.023)

−0.087 *
(0.050)

Mean of Dep 11.712 9.563 10.898 8.735
S.D. of Dep 1.384 3.310 2.422 3.530

KP F-statistic 29.06 61.43 37.26 47.51
Observations 1732 16,979 7509 11,202
Hourly wage

PM2.5 (µg/m3)
−0.23
(0.19)

−0.49
(0.31)

−0.51 ***
(0.20)

0.09
(0.37)

Mean of Dep 8.66 6.62 7.03 6.81
S.D. of Dep 13.48 13.19 11.99 16.90

KP F-statistic 25.46 35.52 38.54 29.04
Observations 1874 7502 7017 2359

Notes: The dependent variables are annual working hours in the last year in Section 1, working months the
last year in Section 2, and average hourly wage in the last year in Section 3. To avoid outlier bias, we exclude
individuals who earn the top 0.3% and the bottom 0.3% in Section 3 (hourly wage). Regression models are
estimated separately for each subsample. Column (1) estimates the high-skilled laborers, including senior
professionals/technical workers, army officers, police officers, forepersons, and group leaders. Column (2)
uses the data for the remaining jobs. In column (4), we present the regression results for respondents whose
workplace is outdoors only, including fishermen, farmers, hunters, soldiers, police officers, and drivers. We focus
on the remaining respondents whose workplace is indoors only in column (3). All the regressions report 2SLS
estimates with controls. Weather controls include 5 ◦C temperature bins, second-order polynomials in average
snow thickness, vapor pressure, windspeed, sunshine duration, relative humidity, cumulative precipitation rain
duration, and precipitation solid duration for the last year. Individual controls include variables indicating the
individual’s marital status, retired or not, etc. Standard errors are listed in parentheses and clustered by both
county and year (two-way clustering). *** p < 0.01, ** p < 0.05, * p < 0.1.

In columns (3) and (4) of Table 5, we present results broken down by indoor versus
outdoor occupations. Outdoor-only occupations include fisher, farmer, hunter, soldier,
police officer, and driver, presented in column (4). Indoor occupations include the remain-
ing occupations, presented in column (3). These results are consistent with our previous
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story: indoor occupations are mainly affected by air pollution through decreases in wages,
whereas outdoor occupations are mainly affected by reductions in working hours. This ob-
servation lines up with our expectation: studies have repeatedly shown indoor occupations
are affected more by air pollution through impairment in cognitive functions [23], whereas
outdoor workers are more affected by physical activities that restrict their working time.

4.4. Robustness Checks

In this subsection, we document efforts to check the robustness of our results. Alterna-
tive model specifications are presented in Table 6, where column (1) presents our baseline
specification. We first test the robustness of our instrumental variable, thermal inversions.
In columns (2) and (3), we replace the number of thermal inversions aggregated by a 12 h
window and a 24 h window instead of the 6 h window used in our baseline model. The
results are similar to our baseline model that air pollution has a negative impact on both
individuals’ working time and hourly wage.

Table 6. Robustness checks.

(1)
Baseline

(2)
TI in 12 h

(3)
TI in 24 h

(4)
Lag 12 Months

PM2.5

(5)
Lead 12 Months

PM2.5

Annual working hours

PM2.5 (µg/m3)
−26.60 ***

(10.09)
−31.12 **

(12.53)
−26.22 **

(10.33)
4.354

(18.39)
−38.54
(40.09)

KP F-statistic 63.92 66.21 68.90 72.83 64.05
Observations 18,346 18,346 18,346 18,346 18,346

Working months

PM2.5 (µg/m3)
−0.082 **

(0.033)
−0.107 **

(0.042)
−0.074 **

(0.037)
0.036

(0.070)
−0.177
(0.169)

KP F-statistic 68.04 68.08 70.51 69.50 73.07
Observations 18,711 18,711 18,711 18,711 18,711
Hourly wage

PM2.5 (µg/m3)
−0.34 **

(0.17)
−0.36 *
(0.21)

−0.33 *
(0.17)

−0.24
(0.41)

0.16
(0.45)

KP F-statistic 20.16 27.98 32.18 23.73 28.71
Observations 9376 9376 9376 9376 9376

Notes: The dependent variables are annual working hours in the last year in Section 1, working months in the
last year in Section 2, and average hourly wage in the last year in Section 3. To avoid outlier bias, we exclude
individuals who earn the top 0.3% and the bottom 0.3% in Section 3 (hourly wage). Regression models are
estimated separately for each subsample. All the regressions report 2SLS estimates with controls. Weather
controls include 5 ◦C temperature bins, second-order polynomials in average snow thickness, vapor pressure,
windspeed, sunshine duration, relative humidity, cumulative precipitation rain duration, and precipitation solid
duration for the last year. Individual controls include variables indicating the individual’s marital status, retired
or not, etc. Standard errors are listed in parentheses and clustered by both county and year (two-way clustering).
Column (1) is the baseline model. Columns (2) and (3) replaces TI counts with 12 and 24 h rather than 6 h, which
is used in the baseline model, respectively. Column (4) uses a lag of 12 months of PM2.5 as the exposure window,
and column (5) uses a lead of 12 months of PM2.5 as the exposure window. *** p < 0.01, ** p < 0.05, * p < 0.1.

We also report temporal falsification tests in columns (4) and (5). In our main model,
the exposure window is aggregated at the year of the survey, that is, one year prior to the
reported wave year. In columns (4) and (5), we use pollution-exposure windows 12 months
before and after the survey year as alternative exposure windows. If results from the
alternative exposure windows are statistically significant, that could indicate that our
modeling approach is potentially mis-specified. Coefficient estimates from both the one-
year-lag and the one-year-lead model for all three outcomes are statistically insignificant,
which alleviates concerns for misspecification and lends support to the validity of our
empirical results. The insignificant coefficients in column (4) also suggest the impact of air
pollution on individuals’ working time and hourly wage tend to be short-lived. In other
words, exposure to air pollution in the prior year does not have significant impacts on
individuals’ working time or hourly wage in the current year.
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4.5. Mechanisms

In this subsection, we shed light on the potential mechanisms that cause air pollution
to affect labor productivity. Specifically, we posit that pollution negatively affects human
health, which then reduces workers’ capacity to perform both physical and cognitive tasks.
We proxy health status using the QWB scale, which consists of four components: MOB,
PAC, SAC, and CPX. We also examine whether exposure to air pollution has any impact
on the occurrence of high blood pressure, diabetes, and asthma. We match all the health
measurements to the corresponding survey year.

Table 7 reports our results. Columns (1) to (5) report the effect of PM2.5 concentration
on health indexes. We find a one µg/m3 increase in PM2.5 concentration will decrease
the overall QWB index by 0.019. Decomposing QWB into subcategories, a one µg/m3

increase in PM2.5 concentration decreases PAC by 0.003 and CPX by 0.002. We do not find
statistically significant impacts on MOB or SAC. Overall, our results provide suggestive ev-
idence that higher levels of air pollution lead to impairments in physical activity, increases
in disease symptoms, and worse overall health conditions. This is logically consistent
with our finding that air pollution reduces working duration and intensity, especially for
outdoor occupations and occupations that require physical functioning.

Table 7. Subjective well-being as mechanisms.

QWB Indices Disease Prevalence

(1)
MOB

(2)
PAC

(3)
SAC

(4)
CPX

(5)
QWB

(6)
Suffer High Blood

Pressure = 1

(7)
Suffer

Diabetes = 1

(8)
Suffer

Asthma = 1

PM2.5 (µg/m3)
−0.0003
(0.0007)

−0.0031 ***
(0.0012)

−0.0003
(0.0002)

−0.0024 **
(0.0011)

−0.0190 **
(0.009)

0.0077
(0.0091)

0.0032 **
(0.0015)

0.0010 **
(0.0005)

Individual FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes Yes Yes Yes Yes
Individual controls Yes Yes Yes Yes Yes Yes Yes Yes

Mean of Dep −0.055 −0.029 −0.009 −0.073 0.637 0.105 0.023 0.012
S.D. of Dep 0.038 0.033 0.027 0.132 0.180 0.306 0.149 0.111

KP F-statistic 16.57 16.55 67.06 67.61 22.33 291.82 195.16 128.67
Observations 6590 6585 21,211 51,123 6585 45,493 36,577 13,469

Notes: Dependent variables are five QWB indexes in columns (1)–(5). A dummy variable equals 1 if the individual has been diagnosed with
the corresponding diseases in columns (6)–(8) and equals 0 otherwise. Therefore, we adopt a probit model to estimate the effects of PM2.5
on the diseases. All the regressions report 2SLS estimates with controls. Weather controls include 5 ◦C temperature bins, second-order
polynomials in average snow thickness, vapor pressure, windspeed, sunshine duration, relative humidity, cumulative precipitation rain
duration, and precipitation solid duration for the last year. Individual controls include variables indicating the individual’s marital status,
retired or not, etc. Standard errors are listed in parentheses and clustered by both county and year (two-way clustering). *** p < 0.01,
** p < 0.05.

Columns (6) to (8) report the effect of PM2.5 concentrations on the occurrence of
physical illnesses, including high blood pressure, diabetes, and asthma. All three dependent
variables are equal to 1 if the individual has been diagnosed with the disease in the year of
the survey, and 0 otherwise. We find no statistical evidence to show PM2.5 concentrations
can affect the probability of high blood pressure. However, we find a one µg/m3 increase
in local PM2.5 concentration increases the probability of diabetes and asthma by 0.003 and
0.001, respectively. Both effects are significant at the 5% level. These findings are consistent
with previous studies in physiological and medical science that more severe air pollution
leads to more diabetes and asthma [5,6].

5. Discussion and Conclusions

Using the CHNS dataset that has tracked 22,000 individuals in China for over a decade,
we estimate the effect of PM2.5 concentration on labor productivity. By leveraging thermal
inversion as an instrumental variable, we address the main empirical challenges in the
estimation procedure, including reverse causality and potential omitted-variable bias. Our
results indicate a statistically significant negative relationship between PM2.5 exposure
and labor productivity. Higher air pollution levels lead to a significant decrease in both
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the physical supply of labor in working hours and the productivity in average wages.
We further benchmark our estimates with previous studies that estimate the effect of air
pollution on labor productivity. For example, Chang et al. use pear packers in the U.S. and
report a 10 µg/m−3 decrease in PM2.5 concentration increases monthly earnings by 15% of
a standard deviation [20]. In [23], a 10-unit increase in API decreases the number of calls
by 0.35%. Additionally, reference [22] find a 1% decrease in workers’ daily output after a
10 µg/m−3 increase in PM2.5 over a 25-day window. Our estimated effects are larger than
those estimates mentioned above but are within the same order of magnitude, our larger
estimates may result from the fact that while these studies measure the effect of short-run,
that is, daily to monthly, exposures, whereas we capture the medium-run impact of annual
average exposure here.

At the same time, we find significant heterogeneities among different population
groups with respect to pollution impact, especially between outdoor, physical-intensive
occupations versus indoor, cognitive-intensive occupations. We find non-college-educated
subjects in physical-activity-heavy occupations are mainly affected through the channel
of reduced working hours and not by reductions in average wages. This observation
is consistent with the findings in Chang et al., in which the reduction in productivity
for call-center workers is mainly attributable to the extensive margin on the increasing
amount of time spent on breaks rather than the intensive margin on the average duration
of calls [23]. On the other hand, highly educated subjects in cognitive-heavy occupations
are mainly affected by air pollution through wage decreases rather than a reduction in
working hours, which is consistent with the literature showing air pollution also impairs
cognitive functioning [13,17,24].

Our empirical approach can be readily applied to other regions around the world
given the availability of health and economic outcomes with proper geographical ref-
erences, especially in places where environmental monitoring stations are sparse and
pollution levels are hard to pin down. We leverage gridded datasets on air pollution
and weather conditions, the former remotely sensed, which provides relatively accurate
measures of environmental conditions while also offering safeguards against tampering
with environmental statistics, a phenomenon existing in both developed and developing
countries [27,39,68].

One limitation of this study is that because the CHNS is only available at the annual
level, we identify our effects using yearly variations in air pollution and labor productivity.
As such, we are not able to distinguish between the effect of acute exposure to air pollution
that other papers have documented [7,69]. Nevertheless, we believe documenting the effect
of sustained air-pollution exposure and its medium and long-run impacts is still meaningful,
especially for developing countries, such as China and India, where air-pollution levels far
exceed the WHO guidelines for a sustained period of time each year [69].

Particulate matter is already one of the greatest threats to human health. At the
same time, it puts a significant burden on individuals in terms of human capital, labor
productivity, and quality of life. Therefore, measures that aim to improve air quality,
such as transitioning to clean energy or restricting agricultural residual burning, have
the potential to provide significant health, economic, and social benefits to individuals,
firms, and society around the world. Apart from public actions, our study also provides a
rationale for individuals to enact defensive actions that guard against air-pollution exposure
through facemasks [70], air purifiers [71], or simply staying home [72]. However, these
defensive actions might not be possible and/or affordable to all groups facing air-pollution
exposure, and the burden falls disproportionately on low-skilled workers engaged in
outdoor, physical-heavy occupations and who lack the will or resources to engage in
defensive measures. With the growing trend of working from home for skilled workers,
we expect the gap in pollution exposure to widen further along existing socioeconomic
inequalities.
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Appendix A

Table A1. Components of QWB and the corresponding questions and weights in CHNS.

Index Definition Variables in CHNS Weights

MOB Mobility scales
MOB1 No limitations for health reasons −0.000
MOB2 Did not drive a car, did not ride in a car as usual, health related U157-U160, U176 −0.062
MOB3 In hospital, health related −0.090

PAC Physical Activity Scales
PAC1 No limitations for health reasons −0.000

PAC2 Had trouble or did not try to lift, stoop, bend over, or use stairs or
inclines, health related U161-U166 −0.060

PAC3 In bed, chairs, or couch for most or all of the day, health related −0.077
SAC Social Activity Scales

SAC1 No limitations for health reasons U48, U49 −0.000
SAC2 Limited in other role activity, health related U167, U169 −0.061
SAC3 Limited in major role activity, health related U171, U173-U175 −0.061

SAC4 Performed no major role activity, health related, but did perform
self-care activities U177 −0.061

SAC5 Performed no major role activity, health related, and did not
perform self-care activities U178 −0.106

CPX CPX Symptom/Problem Complexes
Various diseases

U179, U181-U192, U184a,
U186a-b, U12-U19, U22,
U24a-U24h, U24j, U24n

See following
Appendix A

Table A2
[58]

Notes: QWB = 1 + CPX + MOB + PAC + SAC. If the individual has multiple diseases and symptoms in the same index, we choose the one
with the lowest weight in calculation.

Table A2. Components of CPX index.

CPX No. CPX Description Weights

1 Death (not on respondent’s card) −0.727
2 Loss of consciousness such as seizure (fits), fainting, or coma (out cold or knocked out) −0.407
3 Burn over large areas of face, body, arms, or legs −0.387

4 Pain, bleeding, itching, or discharge (drainage) from sexual organs- does not include normal menstrual
(monthly) bleeding −0.349

5 Trouble learning, remembering, or thinking clearly −0.340

https://www.cpc.unc.edu/projects/china
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Table A2. Cont.

CPX No. CPX Description Weights

6 Any combination of one or more hands, feet, arms or legs either missing, deformed (crooked), paralyzed
(unable to move), or broken- includes wearing artificial limbs or braces −0.333

7 Pain. Stiffness, weakness, numbness, or other discomfort in chest, stomach (including hernia or rupture),
side, neck back, hips, or any joints or hands, feet, arms, or legs −0.299

8 Pain, burning, bleeding, itching, or other difficulty with rectum, bowel movements, or urination
(passing water) −0.292

9 Sick or upset stomach, vomiting or loose bowel movement, with or without fever, chills, or aching
all over −0.290

10 General tiredness, weakness, or weight loss −0.259
11 Cough, wheezing, or shortness of breath, with or without fever, chills, or aching all over −0.257
12 Spell of feeling upset, being depressed, or of crying −0.257
13 Headache, or dizziness, or ringing in ears, or spells of feeling hot, or nervous, or shaky −0.244
14 Burning or itching rash on large areas of face, body, arms, or legs −0.240
15 Trouble talking, such as lisp, stuttering, hoarseness, or being unable to speak −0.237
16 Pain or discomfort in one or both eyes (such as burning or itching) or any trouble seeing after correction −0.320

17 Overweight for age and height or skin defect of face, body, arms. Or legs, such as scars, pimples, warts,
bruises, or changes in color −0.188

18 Pain in ear, tooth, jaw, throat, lips, tongue; several missing or crooked permanent teeth- includes wearing
bridges or false teeth; stuffy, runny nose; or any trouble hearing- includes wearing a hearing aid −0.170

19 Taking medication or staying on a prescribed diet for health reasons −0.144
20 Wore eyeglasses or contact lenses −0.101
21 Breathing smog or unpleasant air −0.101
22 No symptoms or problem (not on respondent’s card) −0.000

Table A3. Second-stage estimation: Effect of PM2.5 concentrations on productivity using only the common set of observations
(n = 9175).

Annual Working Hours Working Months Average Hourly Wage

(1) OLS (2) 2SLS (3) OLS (4) 2SLS (5) OLS (6) 2SLS

PM2.5 (µg/m3)
0.711

(2.577)
−27.88 ***

(12.63)
0.005

(0.010)
−0.047 *
(0.025)

−0.009
(0.053)

−0.34 **
(0.17)

KP F-statistic 35.64 36.14 35.08
Mean of Dep 1678 1678 9.588 9.588 6.98 6.98
S.D. of Dep 904.8 904.8 3.134 3.134 13.26 13.26

Individual FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Weather controls Yes Yes Yes Yes Yes Yes
Individual controls Yes Yes Yes Yes Yes Yes

Observations 9376 9376 9376 9376 9376 9376

Notes: The dependent variables are annual working hours in the last year in columns (1) and (2), working months in the last year in
columns (3) and (4), and average hourly wage in the last year in columns (5) and (6). We exclude individuals who earn the top 0.3% and the
bottom 0.3% in columns (5) and (6) (hourly wage) to avoid outlier bias. Panel A reports 2SLS estimates, in which we use the number of
thermal inversions as an instrument for PM2.5. Panel B reports the OLS estimates which air pollution is not instrumented. Weather controls
include 5 ◦C temperature bins, second-order polynomials in average snow thickness, vapor pressure, wind speed, sunshine duration,
relative humidity, cumulative precipitation rain duration, and precipitation solid duration for the last year. Individual controls include
variables indicating the individual’s marital status, retired or not, etc. Standard errors are listed in parentheses and clustered by both
county and year (two-way clustering). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A4. Selected Control Variables’ Performance in Table 3.

Productivity Measures

(1) Annual Working Hours (2) Working Months (3) Average Hourly Wage

PM2.5(µg/m3)
−26.60 ***

(10.09)
−0.082 **

(0.033)
0.247 ***
(0.057)

Retirement
(=1 retired; =0 in-service)

−148.49 **
(63.99)

−1.311 ***
(0.245)

−0.933
(0.930)

Temperature Bins (Days)
(35 ◦C, 40◦] −18.22 *** −0.023 * −1.358

(6.52) (0.012) (0.950)
(30 ◦C, 35◦] −12.51 *** −0.021 *** −1.040 *

(2.80) (0.005) (0.602)
(−25 ◦C, −30◦] −27.87 *** −0.400 *** −0.992 *

(13.97) (0.080) (0.602)
(−30 ◦C, −35◦] −8.352 *** 0.186 −0.948

(3.421) (0.46) (0.605)
Individual FE Yes Yes Yes

Year FE Yes Yes Yes
Observations 18,346 18,711 9376

Notes: The dependent variable is annual local county PM2.5 concentrations in the last year. Thermal inversions are aggregated from every
6 h to 12 months for the last year. To avoid outlier bias, we exclude individuals who earn the top 0.3% and the bottom 0.3% in column (3)
(hourly wage). Weather controls include 5 ◦C temperature bins, second-order polynomials in average snow thickness, vapor pressure,
wind speed, sunshine duration, relative humidity, cumulative precipitation rain duration, and precipitation solid duration for the last year.
Individual controls include variables indicating the individual’s marital status, retired or not, etc. Standard errors are listed in parentheses
and clustered by both county and year (two-way clustering). *** p < 0.01, ** p < 0.05, * p < 0.1. The numbers of observations in columns (1)
and (3) are different because of missing dependent variables, especially hourly wage. The results match our expectations well and suggest
that retirement status and more extremely hot and cold days negatively impact both working time and income.

Table A5. Effect of Air Pollution on Productivity by Different Education Level.

Sub-Group Models by Highest Education Level Achieved

(1)
Primary School

(2)
Secondary School

(3)
High School

(4)
Technical or

Vocational School

(5)
College Degree or

Higher

Annual working hours

PM2.5 (µg/m3)
−11.03 *
(7.166)

−24.72 *
(14.62)

−47.25 **
(20.53)

−33.59 *
(20.06)

−43.26
(25.20)

Mean of Dep 1363.49 1725.81 1940.99 1996.62 1750.68
S.D. of Dep 1027.51 1042.35 874.01 662.29 810.96

KP F-statistic 16.39 28.35 25.39 36.30 62.92
Observations 3762 8553 5376 1957 1615

Working months

PM2.5 (µg/m3)
−0.034
(0.074)

−0.083 **
(0.041)

−0.102 **
(0.052)

−0.083 **
(0.041)

−0.033
(0.048)

Mean of Dep 8.685 9.599 10.613 11.37 10.53
S.D. of Dep 3.485 3.310 2.779 1.906 2.853

KP F-statistic 15.45 30.01 26.87 17.39 43.381
Observations 4409 8781 3680 1981 1623
Hourly wage

PM2.5 (µg/m3)
−0.017
(0.019)

−0.014
(0.012)

−0.010
(0.015)

−0.020 *
(0.011)

−1.03 ***
(0.42)

Mean of Dep 5.23 6.25 6.52 6.67 9.45
S.D. of Dep 10.63 14.43 13.06 6.86 15.43

KP F-statistic 15.92 28.76 29.70 12.41 24.60
Observations 1227 3135 2475 1769 2308

Notes: The dependent variables are annual working hours in the last year in Section 1, working months in the last year in Section 2, and
average hourly wage in the last year in Section 3. To avoid outlier bias, we exclude individuals who earn the top 0.3% and the bottom 0.3%
in Section 3 (hourly wage). Regression models are estimated separately for each subsample. All the regressions report 2SLS estimates with
controls. Weather controls include 5 ◦C temperature bins, second-order polynomials in average snow thickness, vapor pressure, wind
speed, sunshine duration, relative humidity, cumulative precipitation rain duration, and precipitation solid duration for the last year.
Individual controls include variables indicating the individual’s marital status, retired or not, etc. Standard errors are listed in parentheses
and clustered by both county and year (two-way clustering). *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A6. Estimates on Annual Salary.

Baseline Education Skills Workplace

(1)
OLS

(2)
2SLS

(3)
<College

(4)
≥College

(5)
High Skilled

(6)
Low Skilled

(9)
Indoor

(10)
Outdoor

PM2.5
(µg/m3)

−31.65
(60.16)

−485.54 **
(240.35)

−431.38 *
(220.84)

−1378.66 **
(661.160)

−192.04
(374.73)

−505.98 *
(261.91)

−363.58
(242.02)

−682.76
(447.07)

Mean of Dep 17,175.32 17,175.32 15,416.25 23,004.11 21,100.07 16,335.5 15,672.43 17,614.84
S.D. of Dep 18,795.81 18,795.81 17,083.60 22,644.49 20,375.97 18,332.35 18,043.02 18,988.77

KP F-statistic 41.40 36.89 24.40 26.72 35.45 38.86 30.26
Observations 9348 9348 7064 2284 1733 7615 6990 2358

Notes: The dependent variable is the last year’s annual salary, which equals the product of annual working hours times the hourly wage. To
avoid outlier bias, we exclude individuals who earn the top 0.3% and the bottom 0.3% in salary. Regression models are estimated separately
for each subsample. Columns (2)–(9) report 2SLS estimates with controls. Weather controls include 5 ◦C temperature bins, second-order
polynomials in average snow thickness, vapor pressure, wind speed, sunshine duration, relative humidity, cumulative precipitation rain
duration, and precipitation solid duration for the last year. Individual controls include variables indicating the individual’s marital status,
retired or not, etc. Standard errors are listed in parentheses and clustered by both county and year (two-way clustering). ** p < 0.05,
* p < 0.1.
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