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Pharmaceutical integrated stress response
enhancement protects oligodendrocytes and
provides a potential multiple sclerosis therapeutic
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Oligodendrocyte death contributes to the pathogenesis of the inflammatory demyelinating

disease multiple sclerosis (MS). Nevertheless, current MS therapies are mainly immuno-

modulatory and have demonstrated limited ability to inhibit MS progression. Protection of

oligodendrocytes is therefore a desirable strategy for alleviating disease. Here we demon-

strate that enhancement of the integrated stress response using the FDA-approved drug

guanabenz increases oligodendrocyte survival in culture and prevents hypomyelination in

cerebellar explants in the presence of interferon-g, a pro-inflammatory cytokine implicated in

MS pathogenesis. In vivo, guanabenz treatment protects against oligodendrocyte loss caused

by CNS-specific expression of interferon-g. In a mouse model of MS, experimental auto-

immune encephalomyelitis, guanabenz alleviates clinical symptoms, which correlates with

increased oligodendrocyte survival and diminished CNS CD4þ T cell accumulation. More-

over, guanabenz ameliorates relapse in relapsing-remitting experimental autoimmune

encephalomyelitis. Our results provide support for a MS therapy that enhances the integrated

stress response to protect oligodendrocytes against the inflammatory CNS environment.
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M
ultiple sclerosis (MS) is a chronic inflammatory disease
of the central nervous system (CNS) in which initial
relapsing-remitting neurological symptoms progress to

more severe functional loss in the majority of patients1. While the
aetiology of MS is yet unknown, its pathological hallmarks
include immune-mediated destruction of axon-supporting myelin
and oligodendrocytes, the cells that produce and maintain
myelin2. This loss of trophic support from oligodendrocytes
and myelin leaves axons functionally compromised and
unprotected, and recent studies have demonstrated that
progressive axonal loss significantly contributes to irreversible
neurological disability in MS patients3. Although current MS
therapies have alleviated the relapsing phases of disease with
varying degrees of success, their solely immunomodulatory focus
has demonstrated limited ability to inhibit the progression of MS
disability4. The focus of the field has therefore shifted to finding
reparative approaches that might be used in combination with
anti-inflammatory treatments to restore axonal support and
function5. Recent efforts to enhance oligodendrocyte
differentiation6 and remyelination7,8 capabilities, for example,
have demonstrated exciting potential in further alleviating
disease.

In addition to dampening inflammation and enhancing repair,
however, a largely overlooked protective approach—inhibiting
the initial loss of oligodendrocytes and myelin—may provide the
remaining complementary factor needed to inhibit MS progres-
sion. While it is well accepted that healthy oligodendrocytes are
required for axonal support, function and long-term survival9,10,
the exact timing and nature of oligodendrocyte loss during MS
disease progression remains poorly understood. Nevertheless,
studies in experimental autoimmune encephalomyelitis (EAE), a
mouse model of MS, suggest that the extent of oligodendrocyte
loss correlates with the degree of myelin and axonal loss11.
Meanwhile, two independent methods of inhibiting apoptosis in
oligodendrocytes in EAE both resulted in significantly reduced
demyelination, ameliorated disease severity12 and limited axonal
damage13. Together, these studies indicate that oligodendrocyte
protection would be clinically beneficial.

We have previously demonstrated that during inflammatory
attack, oligodendrocyte death and demyelination is significantly
exacerbated by genetic impairment of the integrated stress
response (ISR)14, a cytoprotective mechanism that maintains
cellular proteostasis. The ISR is triggered by stressors such as
hypoxia/ischaemia, oxygen–glucose deprivation, viral infection,
amino-acid starvation and endoplasmic reticulum (ER) stress15,
in which accumulation of mis- or unfolded proteins threatens to
overwhelm the cell’s secretory pathway16. This sensitivity makes
the ISR particularly relevant in MS, as these stressors have all
been implicated in MS lesion formation10.

The focal point of ISR induction is the phosphorylation of the
a subunit of eukaryotic translation initiation factor 2 (eIF2a).
During ER stress, for example, the kinase PERK phosphorylates
eIF2a, resulting in inhibition of global protein synthesis to reduce
the protein load on the ER and selective upregulation of the
expression of transcription factors, such as ATF4, to activate a
cytoprotective response. Once proteostasis is restored, protein
synthesis is allowed to resume via a negative feedback loop, in
which ATF4 initiates expression of CHOP, which in turn
promotes expression of GADD34. GADD34 binds to protein
phosphatase 1 (PP1), which dephosphorylates p-eIF2a to restore
protein synthesis to its pre-stress levels17. If cellular stress
remains unmitigated, however, the protective abilities of the ISR
are overwhelmed. The ISR then induces apoptosis through the
accumulation of CHOP, a pro-apoptotic protein18.

The ISR proteins CHOP, ATF4 and p-eIF2a have been found
to be highly upregulated within MS and EAE lesions19–22.

We hypothesized that ISR activation in these lesions was due to
the high susceptibility of actively myelinating oligodendrocytes
to ER stress23, as these cells are required to quickly produce
vast amounts of plasma membrane and myelin proteins24.
When faced with the additional stress of inflammatory attack,
actively myelinating oligodendrocytes often undergo apoptosis14.
Nevertheless, in genetically engineered mouse models,
upregulation of protective ISR activity via increased expression
of the eIF2a kinase PERK25 or inactivation of the eIF2a
phosphatase component GADD34 (ref. 26) was found to signi-
ficantly reduce the degree of oligodendrocyte loss and
demyelination in the presence of inflammation. These genetic
models provide proof of concept that enhancement of the ISR
might provide protection to oligodendrocytes in inflammatory
demyelinating disorders.

Guanabenz (2,6-dichlorobenzylidene aminoguanidine acetate)
is an a2-adrenergic receptor agonist27 that has Food and Drug
Administration (FDA) approval as an orally administered drug
for hypertension. Nevertheless, a recent study demonstrated that
guanabenz can also enhance protective ISR activity by inhibiting
the binding of GADD34 to PP1, thereby inhibiting the
dephosphorylation of p-eIF2a (ref. 28). Here we examine
whether the ability of guanabenz to enhance the ISR could be
used to pharmaceutically protect oligodendrocytes and myelin
from inflammatory loss. To model inflammation, we use
interferon-gamma (IFN-g), a pro-inflammatory cytokine that
has been strongly implicated in MS pathogenesis29,30. IFN-g,
normally undetectable in the CNS but measurable during the
symptomatic phase of MS and EAE, has been shown to enhance
inflammation in the CNS and exacerbate clinical symptoms in
MS patients and EAE mice31–33.

In this study, we demonstrate that guanabenz protects
oligodendrocytes both in vitro (in primary culture and cerebellar
explants) and in vivo from IFN-g-mediated death. Guanabenz
also protects oligodendrocytes and ameliorates clinical symptoms
in chronic EAE, with a concomitant decrease in the numbers of
inflammatory CD4þ T cells within the CNS. Finally, treatment
with guanabenz after development of clinical symptoms in
relapsing-remitting EAE dampens the severity of the subsequent
relapse. These data demonstrate the CNS-protective abilities
during inflammation of an FDA-approved drug that enhances the
ISR, a novel treatment strategy that may have potential as a
therapeutic approach to treating MS.

Results
Guanabenz protects oligodendrocytes against IFN-c. We have
previously reported that addition of IFN-g to differentiating oligo-
dendrocyte precursor cells (dOPCs) in vitro causes significant
apoptotic cell death that is associated with ER stress14. We therefore
sought to determine whether guanabenz could protect
oligodendrocytes from IFN-g-mediated death. We began by
treating dOPCs with IFN-g alone, guanabenz alone or IFN-g plus
guanabenz concomitantly for 48 h, at which point the ratio of live
and dead cells in each group was measured. Whereas guanabenz
treatment alone had no effect on cell survival, IFN-g treatment
resulted in a 22.5% decrease in dOPC survival compared with
control untreated cells (Fig. 1a). Treatment with IFN-gþ 2.5mM
guanabenz, however, significantly increased the number of
surviving cells, and treatment with IFN-gþ 5.0mM guanabenz
restored cell survival to control levels, demonstrating that
guanabenz protected cells from IFN-g-mediated death. TdT-
mediated dUTP nick end labeling (TUNEL) staining confirmed
that guanabenz protected the dOPCs from apoptotic death (Fig. 1b).

A recent study28 demonstrated that guanabenz protected HeLa
cells from ER stress by inhibiting the dephosphorylation of eIF2a.
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We therefore examined p-eIF2a levels in dOPCs treated
continuously with IFN-g or IFN-gþ 5.0 mM guanabenz over
time by immunoblot. Expression of p-eIF2a increased steadily in
both treatment groups as predicted, given that the ISR is activated
in oligodendrocytes in response to the presence of IFN-g (ref. 14).
At 4 and 12 h, both groups showed similar levels of p-eIF2a
expression (Fig. 1c,d). By 20 h, however, p-eIF2a expression had
significantly decreased in dOPCs treated only with IFN-g
but remained high in cells treated with IFN-gþ 5.0 mM
guanabenz (P¼ 0.043, unpaired t-test). This result suggests
that guanabenz protected oligodendrocytes from IFN-g-
mediated apoptosis by driving persistence of the ISR.
Interestingly, by 28 h after treatment (Fig. 1d), expression of
p-eIF2a decreased in both groups and remained steady until 48 h,
demonstrating that guanabenz’s enhancement of the ISR is
transient in vitro.

Guanabenz protects myelinating cerebellar slices from IFN-c.
Having found that guanabenz is able to protect dOPCs from IFN-
g-mediated death, we next investigated whether the surviving
dOPCs were able to successfully myelinate axons. We treated rat
cerebellar slice cultures sectioned at postnatal day 11 (P11) for 7
days with IFN-g alone or IFN-g and increasing doses of guana-
benz. In this experimental time frame, dOPCs are able to mature
and begin to myelinate axons, as demonstrated by the finding that
myelin basic protein (MBP) immunostaining in normal explants
at P20 show distinct and well-organized myelinated fibres
(Fig. 2a, arrowheads). When IFN-g was added to these slice
cultures, however, myelin organization was severely disrupted
(Fig. 2b). Co-culture with 2.5, 5.0 or 10.0mM guanabenz resulted
in restored myelination to IFN-g-treated explants (Fig. 2c–e).

Electron microscopy analysis to examine the extent of
myelination in the explants revealed that, compared with
sections treated only with IFN-g, sections treated concomitantly
with guanabenz had 57.5% more myelinated axons (P¼ 0.022,
unpaired t-test; Fig. 2f, arrowheads). Indeed, toluidine blue
staining revealed that the IFN-g treatment alone appeared to
destroy the general cytoarchitecture of the slice tissue (Fig. 2g),
whereas addition of 10.0 mM of guanabenz along with IFN-g
protected the tissue such that myelination and the cellular
architecture were preserved. Therefore, guanabenz treatment
appears not only to reduce IFN-g-mediated hypomyelination but
also to have neuroprotective properties as well.

Guanabenz protects oligodendrocytes from IFN-c in vivo. We
have previously described a transgenic mouse model system in
which the ectopic expression of IFN-g by astrocytes is regulated
by tetracycline14. In these mice, the transcriptional control
region of the glial fibrillary acidic protein (GFAP) gene drives
expression of the tTA protein, which is the transcriptional
activator of the tetracycline regulatory element (TRE) that
drives IFN-g expression. Transcriptional activation of the
TRE/IFN-g transgene by tTA is prevented by the presence of
doxycycline, a tetracycline derivative. This inducible system
allows for regulated expression of IFN-g specifically in the CNS
and independently from the adaptive immune response. Using
these transgenic mice, we have shown that CNS-specific
expression of IFN-g results in significant oligodendrocyte loss
and hypomyelination in the absence of an adaptive immune
response14. Moreover, studies of GFAP/tTA;TRE/IFN-g
transgenic mice revealed that IFN-g-mediated insults in the
CNS became more severe when ISR capabilities were
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Figure 1 | Guanabenz protects differentiated rat oligodendrocyte progenitor cells from IFN-c-mediated death and prolongs the integrated stress

response. (a) Quantification of dOPCs stained with PI/FDA to identify dead/live cells after 48 h of differentiation. Data represent three individual dOPC

isolations, each with three replicates per group. (b) IFN-g-mediated apoptotic death was confirmed via TUNEL staining of dOPCs 48 h after differentiation.

N¼ 3. (c) Western blot analysis of dOPCs treated continuously with IFN-g alone or IFN-gþ 5.0 mM guanabenz and probed with p-eIF2a, a marker of ISR

activity, and eIF2a. (d) Quantification of extended time points in a western blot. Blot represents one of four individual isolations; graph represents

the average of four isolations. Mixed results ANOVA (a), unpaired t-test (b,d), *Po0.05, **Po0.005, ***Po0.0005. Data are presented as mean±s.e.m.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7532 ARTICLE

NATURE COMMUNICATIONS | 6:6532 | DOI: 10.1038/ncomms7532 | www.nature.com/naturecommunications 3

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


diminished14, and less severe when the ISR was enhanced26. We
hence used these mice to investigate whether guanabenz could
protect oligodendrocytes from inflammation-induced cell death
and prevent myelin loss in vivo.

In wild type littermates, immunostaining at P18 for MBP
and aspartoacylase (ASPA), a mature oligodendrocyte mar-
ker34,35, revealed distinct myelin tracts and a large population
of mature oligodendrocytes in the corpus callosum (Fig. 3a),
whereas in vehicle-treated mice with CNS-specific expression of
IFN-g, a 60.6% (P¼ 0.011, unpaired t-test) loss of mature oligo-
dendrocytes and hypomyelination were observed (Fig. 3b). IFN-
g-expressing mice that were treated daily from P7 with
4 mg kg� 1 of guanabenz showed a 51.3% (P¼ 0.008, unpaired
t-test) increase in the number of mature oligodendrocytes
compared with vehicle-treated mice and a restoration of
myelination to levels observed in wild type littermates
(Fig. 3c,d). These findings demonstrate that guanabenz is able
to protect oligodendrocytes and myelin from the detrimental
effects of IFN-g in vivo.

Guanabenz ameliorates chronic EAE disease symptoms in
mice. EAE is a CD4þ T cell-mediated model of MS in which
adult mice are immunized with a component of myelin in
adjuvant (typically complete Freund’s adjuvant, CFA). The
resulting myelin peptide-activated CD4þ T cells infiltrate the
CNS, resulting in lesioned areas of inflammation, oligodendrocyte
apoptosis, demyelination and axonal degeneration predominantly
in the spinal cord. Inflammatory insults in mice with EAE
manifest as MS-like clinical symptoms such as ataxia and
paralysis36. As we clearly observed the ability of guanabenz to
protect developing oligodendrocytes and myelination from
IFN-g-induced loss in vitro and in vivo, we next sought to
explore whether guanabenz treatment could protect mature
oligodendrocytes and myelin to provide therapeutic benefit to
mice with chronic EAE.

We began by determining a dose of guanabenz that could
potentially enhance ISR activity in EAE mice. Data from our
dOPC cultures (Fig. 1) and cerebellar explants (Fig. 2) demon-
strated that 2.5–10.0 mM guanabenz was sufficient to protect
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Figure 2 | Guanabenz decreases IFN-c-induced hypomyelination in rat cerebellar slice cultures. (a–e) Anti-MBP staining of myelinated fibres (a,

arrowheads) in slice cultures that were (a) untreated, (b) treated with IFN-g or (c–e) concomitantly treated with IFN-g and 2.5, 5.0 or 10.0mM guanabenz.

Images representative of two or three slices per treatment; the experiment was performed twice. (f) Electron microscopy analysis of slice cultures. Note the

significant increase in the number of myelinated axons (arrowheads) when guanabenz and IFN-g were concomitantly added to slices. Myelinated axons per

field were determined by analysis of a minimum of 200 axons per condition. (g) Toluidine blue staining of slices left untreated, treated with IFN-g alone or

treated with IFN-g and guanabenz. Images represent a minimum of three sections per treatment. Unpaired t-test, *Po0.05. Data are presented as

mean±s.e.m. Scale bars, 100 mm (a–e), 2 mm (f) and 20mm (g). WM: white matter, GL: granule cell layer, PCL: Purkinje cell layer.
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oligodendrocytes and myelin from inflammatory loss. Pharma-
cokinetic analysis of serum and brain tissue from wild type EAE
mice treated with 4, 8 or 16 mg kg� 1 of guanabenz daily for 420
days revealed a striking concordance between these efficacious
in vitro concentrations and the EAE brain exposures
(Supplementary Table 1): brain tissue levels of drug were above
2 mM at 2 h in all dosage groups, and were above 2 mM at 4 h for
the 8 and 16 mg kg� 1 groups. Guanabenz levels were also
substantially lower in serum than in the brain, with the
brain:serum ratio of guanabenz in our EAE mice similar to those
reported in rats37 and rhesus monkeys38. While guanabenz was
eliminated much more rapidly in our mice than as reported in
humans, the serum exposure in mice 4 h post injection was
similar to that previously reported in human volunteers at doses
that have been approved by the FDA for therapeutic use39. These
findings indicated that 4–16 mg kg� 1 treatment with guanabenz
in mice would likely achieve CNS levels sufficient to modulate
the ISR.

Indeed, while vehicle-treated EAE mice typically develop
clinical symptoms about 10 days after immunization with disease
severity peaking roughly a week later (Fig. 4a), daily treatment of

EAE mice with 4, 8 or 16 mg kg� 1 of guanabenz beginning at
post-immunization day 7 (PID7) significantly delayed the onset
of clinical symptoms (defined as a clinical score of 1.0; Fig. 4a,b).
Notably, the average peak of clinical disease in EAE mice treated
with 8 mg kg� 1 guanabenz (2.8) was also significantly lower than
in vehicle-treated EAE mice (3.8, P¼ 0.032, unpaired t-test), such
that the average vehicle-treated EAE mouse developed hindlimb
paralysis and even forelimb paresis, whereas the average
guanabenz-treated EAE mouse experienced only hindlimb paresis
(Fig. 4c). In addition, the incidence of disease in all guanabenz-
treated EAE mice was lower than in vehicle-treated EAE mice
(Fig. 4d). These results demonstrate that guanabenz treatment
significantly delays disease onset at all doses tested, while
treatment with 8 mg/kg guanabenz also diminishes severity of
disease.

Guanabenz alters the molecular and cellular response to EAE.
Given the ability of guanabenz treatment to significantly ame-
liorate EAE, we next sought to determine the underlying
mechanism of this protection. Lumbar spinal cords were isolated
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from PID15 EAE mice (age corresponding to the average peak of
disease in vehicle-treated EAE mice) that were treated daily with
vehicle or 8 mg kg� 1 of guanabenz beginning PID7 for immu-
nohistochemical and biochemical analyses. Since EAE and MS are
characterized by focal inflammatory lesions of demyelination and
oligodendrocyte loss, we analysed the ability of guanabenz
treatment to decrease the number of spinal cord lesions as well as
the degree of oligodendrocyte loss within the lesions. Histological
analysis of lumbar spinal cord cross-sections revealed inflam-
matory foci in the vehicle-treated EAE sections as expected
(Fig. 5a, arrowhead), but surprisingly none in the guanabenz-
treated EAE tissue. Staining with luxol fast blue (LFB) also

revealed demyelination around these areas of cell infiltration
(Fig. 5b, dotted areas) in vehicle-treated EAE tissue only. Both
findings were further emphasized in higher magnification images
of toluidine blue-stained sections (Fig. 5c, arrows). To identify
and analyse these focal areas of infiltration, we used CD3 as a
general T cell marker and confirmed that mice immunized with
adjuvant only, which did not develop any clinical symptoms, also
did not have any detectable CD3þ cells in the spinal cord as
expected (Fig. 5d, Supplementary Fig. 1). In vehicle-treated EAE
mice, however, we identified large focal areas in the white matter
that contained on average 800 CD3þ cells per mm2. Designating
these highly concentrated areas of CD3þ cells as ‘lesion’ sites
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(Fig. 5e), we found that the vehicle-treated EAE mice had 65.7%
(P¼ 0.026, unpaired t-test) of the mature oligodendrocytes found
in regions of matched size and location in mice immunized with
adjuvant only (Fig. 5f). Anti-CD3 immunostaining in the gua-
nabenz-treated EAE sections, however, revealed no detectable
CD3þ cells and hence no lesion sites, and indeed counts of
mature oligodendrocytes in regions of matched size and location
to vehicle-treated EAE mice revealed cell numbers comparable to
those in mice treated with adjuvant only (Fig. 5d–f). Thus, at
PID15, the typical EAE characteristics of infiltrating T cells within
the spinal cord, oligodendrocyte loss and regions of demyelina-
tion are present in vehicle-treated but not guanabenz-treated
mice.

The ongoing presence of T cells in the spinal cord at this EAE
time point is heavily dependent on debris resulting from
oligodendrocyte and myelin loss40. As our earlier in vitro and
in vivo experiments had demonstrated that enhancement of the
ISR with guanabenz treatment can protect oligodendrocytes from
death, we next examined whether the ISR could be playing
a role in delaying and alleviating EAE by protecting mature
oligodendrocytes from inflammatory loss, thereby limiting
detectable T cell presence at PID15. We therefore stained
PID15 EAE lumbar spinal cord tissue sections with markers for
p-eIF2a and mature oligodendrocytes. These data showed that,
while roughly 50% of the mature oligodendrocytes in adjuvant-
only-treated mice expressed p-eIF2a, more than 80% of mature
oligodendrocytes expressed p-eIF2a in both the vehicle- and
guanabenz-treated EAE mice (Fig. 5g). As MS and EAE lesions19–
22 have previously been shown to have high ISR activity, the
finding that vehicle-treated EAE tissue had high expression of the
ISR pathway was expected. Since sections from guanabenz-treated
EAE mice appeared similarly lesion-free and intact as those
from adjuvant-only-treated mice, however, the finding that the
ISR was also highly upregulated in the guanabenz-treated
sections suggests that the ISR may have a role in enhancing
oligodendrocyte survival and subsequently delaying EAE onset
and alleviating disease severity.

In PID15 EAE lumbar spinal cord lysates, immunoblots
probing the protein CHOP revealed further evidence of ISR
activity (Fig. 5h). CHOP is a pro-apoptotic protein that is
downstream of p-eIF2a in the ISR pathway, and its high
expression is indicative of cell loss as a result of an overwhelmed
ISR. Interestingly, Tsaytler et al.28 found that as guanabenz
merely prolonged the phosphorylation of eIF2a, treatment with
guanabenz did not induce higher CHOP expression. We found
that CHOP was highly expressed in vehicle-treated EAE tissue,
but not in guanabenz-treated EAE tissue or samples from mice
immunized with adjuvant only (Fig. 5h). Taken together, these
findings of the key markers of ISR activity, p-eIF2a and CHOP,
indicate that guanabenz treatment enhanced the ISR in EAE
mice, potentially resulting in ISR-mediated protection of
oligodendrocytes from EAE inflammatory loss and subsequently
inhibiting continuation of the activated immune response within
the CNS.

Guanabenz alters the number of activated CD4þ cells in EAE.
While our earlier experiments clearly show that enhancement of
ISR activity can protect oligodendrocytes and myelin, upregula-
tion of this pathway has been found to lead to suppression of the
inflammatory response16,41,42. Studies have also shown that
agonism of the a2-adrenergic receptor, another known function
of guanabenz, may also modulate inflammation43–45. We
therefore tested whether guanabenz treatment had any
immunomodulatory effects in PID15 EAE mice. Compared
with vehicle-treated EAE mice, EAE mice treated daily from

PID7 to PID15 with 8 mg kg� 1 guanabenz showed no difference
in the numbers of CD4þ T cells, CD8þ T cells, B cells,
macrophages or dendritic cells in the lymph node as determined
by flow cytometric analyses (Fig. 6a). In addition, guanabenz
treatment had no effect on lymph node T cell proliferation or
Th1 (IFN-g) or Th17 (interleukin (IL)-17 and granulocyte–
macrophage colony-stimulating factor (GM-CSF)) cytokine
production in response to anti-CD3 (1 mg ml� 1), OVA323–339

or myelin oligodendrocyte glycoprotein (MOG) 35–55
(20 mg ml� 1; Supplementary Fig. 2a–d). By contrast,
guanabenz-treated EAE mice showed a significant increase in
the number of splenic CD4þ T cells and B cells (Fig. 6b). When
equal numbers of total splenocytes were reactivated ex vivo,
however, again no significant differences in recall responses were
found (Supplementary Fig. 2e–h). Together, the above findings
suggest that guanabenz treatment during EAE has no effect on
peripheral T cell proliferation or cytokine production, but may
cause retention of CD4þ T cells within the spleen.

In the CNS, in line with our histological findings (Fig. 5),
significantly fewer CD4þ T cells and microglia were found in the
guanabenz-treated EAE mice (Fig. 6c). While ISR-mediated
protection of oligodendrocytes may limit subsequent T cell
responses, it is also possible that guanabenz treatment directly
affects the ability of CD4þ T cells to traffic into the CNS and/or
become fully activated. We began our examination of these
possibilities by evaluating cytokine expression at the initiation
(PID9) and peak (PID14–15) of clinical disease in the lumbar
spinal cord tissue. Interestingly, at both PID9 and PID15, protein
levels of GM-CSF in the vehicle- and guanabenz-treated EAE
mice were significantly higher than those in mice treated with
adjuvant only (Fig. 6d,e). Similarly, vehicle- and guanabenz-
treated EAE mice yielded higher protein levels of IFN-g than
adjuvant mice at both time points, which was reflected in higher
IFN-g mRNA levels (Supplementary Fig. 3). While this also held
true for IL-17 protein and mRNA levels at PID9, both protein and
mRNA levels of IL-17 were similar in all samples by PID15
(Fig. 6d,e, Supplementary Fig. 3). These findings indicate that
guanabenz treatment is not inhibiting the presence of the key
encephalitogenic factors needed for EAE development within
the CNS.

We explored the effect of guanabenz on T cell trafficking into
the CNS further using the MOG35–55 adoptive transfer model of
EAE in C57BL/6 mice. MOG35–55 blast cells were transferred into
naı̈ve recipient mice that then received daily treatment of either
vehicle or guananbenz (8 mg kg� 1). The mice were monitored for
disease over a 16-day-time course, and the data show that clinical
disease severity peaked at a clinical score of 2 in the vehicle-
treated mice and was strikingly reduced in the guanabenz-treated
mice (Fig. 6f).

The use of the adoptive transfer model guaranteed that
guanabenz treatment could not affect initial activation or
expansion of T cells while allowing modulation of the in vivo
reactivation and subsequent proliferation of the myelin peptide-
specific CD4þ T cells required for transfer EAE46. To determine
how guanabenz treatment might alter CD4þ T cell activation
in vivo, spleen and CNS samples were collected 3, 6 and 10 days
post-cell transfer (PCT). Vehicle- and guanabenz-treated
recipient mice both had significantly higher numbers of live
CD4þ T cells within the CNS on PCT3 and PCT6 compared
with non-recipient mice injected with pertussis only, indicating
that the drug does not prevent initial T cell infiltration into the
CNS. On PCT10, however, vehicle-treated recipients displayed a
significant increase in the number of live CD4þ T cells
compared with earlier time points, while guanabenz-treated
recipient mice only displayed a minimal increase (Fig. 6g). These
data correlate with our findings in the actively-induced chronic
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EAE model, in which guanabenz-treated mice had significantly
lower CD4þ T cell numbers compared with vehicle-treated mice
(Fig. 6c). Vehicle-treated mice on PCT10 also displayed
significantly greater numbers of proliferating (Ki67þ ),
activated (CD44hi) Th1 (IFN-gþ ) and Th17 (IL-17þ ) CD4þ
T cells within the CNS as compared with guanabenz-treated mice
(Fig. 6j–m and Supplementary Figs 5–8). Meanwhile, in the
spleen, vehicle-treated mice showed an increase in numbers
of Th1 and Th17 cells from PCT3 to PCT10 (Supplementary
Figs 4–8). Conversely, the guanabenz-treated PCT10 mice had

significantly higher numbers of dead CD4þ T cells in the CNS as
compared with vehicle-treated PCT10 mice (Fig. 6h,i) and
significantly decreased numbers of live CD4þ T cells (Fig. 6g),
resulting in significantly lower numbers of Ki67þ , CD44hi,
IFN-gþ and IL-17þ CD4þ T cells (Fig. 6j–m). Guanabenz
treatment also resulted in an increase in the number of dead
CD4þ T cells within the spleen on PCT3 compared with vehicle
treatment (Supplementary Figs. 4-8).

We also used flow cytometry47 to characterize oligodendrocyte
lineage cells in the adoptive transfer recipients. Consistent with
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our histological findings (Fig. 5f), there was not an observed loss
of mature (GALCþ , MOGþ ) oligodendrocytes in the
guanabenz-treated mice over the 10-day-time course, while this
was readily observed in the vehicle-treated recipients (Fig. 6n,
Supplementary Figs 9 and 10). The loss of oligodendrocytes in the
vehicle-treated recipients correlated with an increase in
oligodendrocyte progenitor cells (A2B5þ , PDGFRaþ ), which
was not observed in the guanabenz-treated recipients (Fig. 6o).

Collectively, these data demonstrate that guanabenz treatment
results in both a decrease in the number of activated CD4þ
T cells and an increase in the number of dead CD4þ T cells in
the CNS while protecting mature oligodendrocytes. Whether the
decreased T cell activation occurs directly by a T cell- or CNS
antigen-presenting cell (APC)-intrinsic mechanism and/or indir-
ectly by limiting the amount of myelin antigen available
secondary to guanabenz-induced oligodendrocyte protection
requires additional investigation.

Guanabenz alleviates relapse in relapsing-remitting EAE. The
ability of guanabenz to protect oligodendrocytes and myelin both
in vitro and in vivo, in addition to delaying and alleviating disease
in chronic EAE, suggests that it has potential as a therapeutic
agent for MS. In patients with relapsing-remitting MS, the
predominant human disease presentation, treatment is initiated
only when clinical symptoms are already present. To investigate
whether guanabenz has therapeutic potential for this clinical
setting, we used the SJL/J mouse relapsing-remitting EAE
(R-EAE) model48,49. Similar to human patients with MS, these
mice develop symptoms, undergo remission and experience
subsequent clinical relapses. We thus treated SJL/J mice with
R-EAE with 8 mg kg� 1 of guanabenz daily beginning at the
onset of remission. Encouragingly, guanabenz-treated R-EAE
mice displayed a 47.9% reduction in clinical severity at peak of
relapse (clinical score of 0.9) compared with vehicle-treated
R-EAE mice (1.8, P¼ 0.038, unpaired t-test, Fig. 7), such that

guanabenz-treated R-EAE mice experienced tail limpness, the
initial sign of the clinical onset of EAE, whereas vehicle-treated
R-EAE mice showed hindlimb ataxia. These results indicate that
treatment with guanabenz can be effective following the onset of
disease.

Discussion
We demonstrated that guanabenz, an FDA-approved oral drug
that enhances the ISR, effectively protected oligodendrocytes
from inflammatory cytokine-mediated death in primary culture,
in cerebellar explants and in vivo. Furthermore, treatment with
guanabenz dampened and delayed clinical disease in chronic EAE
mice and ameliorated relapse severity in relapsing-remitting EAE
mice. Together, these studies attest to the potential of ISR
enhancement in protecting oligodendrocytes and myelin against
inflammation-mediated loss, and provide support for guanabenz
as a pharmacological candidate for achieving this effect.

Enhancement of ISR activity, in addition to protecting
oligodendrocytes and myelin, has been found to be closely linked
to a diminished inflammatory response16,41,42. We demonstrated
that guanabenz has oligodendrocyte-protective capabilities that
are independent of its potential immunomodulatory effects: drug
treatment in vitro and in vivo (using primary oligodendrocytes,
cerebellar slices and GFAP/tTA; TRE/IFN-g transgenic mice)
protected oligodendrocytes against the effects of IFN-g despite
the lack of adaptive immune cells in these models. To diminish
the effects that guanabenz might have on the generation and
function of the inflammatory response that characterizes EAE, we
initiated treatment of chronic EAE mice at 7 days post
immunization, at which point the first round of MOG35–55-
specific CD4þ T cells present within the draining lymph nodes
have been activated36. This treatment scheme resulted in
significant delay of clinical disease onset and alleviation of
disease symptoms, with no significant effect on proliferation or
cytokine production of splenic and lymph node T cells, indicating
that peripheral immune cells maintained function. In addition,
adoptive transfer EAE experiments revealed that guanabenz did
not affect the initial infiltration of activated T cells into the CNS.
Nevertheless, compared with vehicle-treated chronic EAE, the
significant decrease in T cells in the guanabenz-treated chronic
EAE mouse CNS 15 days after immunization signified that drug
treatment did indeed alter the inflammatory response.

During inflammation, the infiltration and sustained presence of
activated T cells in the CNS requires a cascade of specific events
that are influenced by the interaction of the immune cells with the
CNS environment46. For example, CD4þ T cells need to interact
with cognate peptide being presented by APCs to be retained
within the target tissue and must also receive sufficient
restimulation within target tissue to avoid undergoing
apoptosis40. We have demonstrated here that guanabenz-
mediated enhancement of the ISR is sufficient to protect
oligodendrocytes from inflammation-induced loss, a state that
would result in a reduction of the apoptotic cell and myelin debris
required for maintaining an inflammatory response, which could
explain the decreased number of CD4þ T cells present within
the CNS in the guanabenz-treated mice. In support of this
possibility, the genetic protection of oligodendrocytes from
apoptosis has been shown to result in a dramatic inhibition of
clinical symptoms and, importantly, the inflammatory response
in EAE13. Although our data indicate that guanabenz does not
prevent the initial infiltration of CD4þ T cells into the CNS 3
and 6 days after encephalitogenic T cell transfer, a significantly
lower number of CD4þ Th1 and Th17 effector T cells are
present within the CNS of guanabenz-treated recipient mice 10
days post transfer. In addition, other aspects of T cell function
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might be altered by the presence of the drug. The ISR is known to
affect T cell cytokine production50, such that sustained activation
of the ISR in the presence of guanabenz could help explain the
noted alteration to T cell activity in the treated animals.
Moreover, independent from its ISR effects, guanabenz is also
an a2-adrenergic receptor agonist, and other drugs with similar
activity have been demonstrated to modulate the inflammatory
response51,52. The full effects of guanabenz on the clinical and
histopathologic response of EAE are likely a combination of its
oligodendrocyte-protective effects in combination with modest
immunomodulatory activities.

Our results demonstrate the considerable protective effects of
guanabenz treatment on oligodendrocytes and myelin in the
presence of inflammation. In addition, developing cerebellar slice
cultures treated with IFN-g displayed a dramatic disruption in
cytoarchitecture that was ameliorated by guanabenz treatment,
suggesting that the enhancement of the ISR might also provide
neuroprotection in the face of inflammation. This possibility is
deserving of further study.

Sustained translational repression, due to prolonged eIF2a
phosphorylation, could prove detrimental to myelinating cells.
Nevertheless, guanabenz prolongs stress-induced eIF2a phos-
phorylation by disrupting GADD34–PP1R15A interaction, while
sparing non-stress-related CReP/PP1R15B p-eIF2a phosphatase
activity28. This characteristic of guanabenz avoids the
problems associated with salubrinal, another ISR-enhancing
drug26,53, which inhibits the activity of both p-eIF2a
phosphatase complexes. Moreover, our pharmacokinetic data
indicated that guanabenz is cleared from the brain within 12 h of
administering a 16-mg kg� 1 dose, suggesting that the inhibition
of p-eIF2a dephosphorylation is transient, even in animals
treated with the highest doses used here. Furthermore, GADD34
mutant animals, which completely lack the GADD34–PP1R15A
activity, myelinate normally even in the presence of persistent
inflammation26, indicating that transient pharmacological
inhibition of GADD34 activity would likely be well tolerated by
mature oligodendrocytes and beneficial to remyelinating
oligodendrocytes in an inflammatory environment.

Various cytotoxic events activate the ISR leading to eIF2a
phosphorylation, whereas unstressed cells do not display elevated
levels of p-eIF2a. Therefore, the inhibition of GADD34-mediated
eIF2a dephosphorylation should have minimal impact, if any,
on healthy cells. In support of this premise, unstressed
GADD34 � /� mutant cells display normal levels of p-eIF2a
in vitro54 and in vivo (Supplementary Fig. 11); similarly, unstressed
guanabenz-treated cells display normal translational activity
in vitro28 and have normal p-eIF2a levels in vivo (Supplementary
Fig. 11). Therefore, a therapeutic approach that targets the
inhibition of GADD34-mediated eIF2a dephosphorylation should
display selectivity for only those cells experiencing a cytotoxic event,
diminishing the possibility of side effects.

Although this study does not directly address the impact of an
enhanced ISR response on remyelination, our data demonstrate
the protective effect of guanabenz on myelinating oligodendro-
cytes, in vitro and in vivo, in the presence of inflammation. We
are currently addressing the effect of guanabenz on models more
suitable for a direct assessment of remyelination. Nevertheless,
even if the enhancement of the ISR only provides protection to
mature oligodendrocytes against inflammation, thereby dimin-
ishing demyelination, it would likely still have significant
therapeutic value.

In conclusion, our studies have demonstrated that pharma-
ceutical enhancement of the ISR is effective in protecting
oligodendrocytes and myelin from inflammatory-mediated
destruction. Treatment with guanabenz, an FDA-approved, orally
administered agent, significantly dampens and delays disease

symptoms in mouse models of MS. Moreover, the quantities
used in these studies provide serum drug levels that have been
safely achieved in human subjects using FDA-approved
dosages39. These results provide support for guanabenz as the
first oligodendrocyte-protective agent for the alleviation of
inflammatory-mediated demyelination in diseases such as MS.

Methods
Guanabenz. Guanabenz was purchased from MP Biomedicals (no. 193657),
solubilized to 5 mg ml� 1 in dH2O, and aliquoted and stored at � 20 �C. Imme-
diately before use, aliquots were thawed and diluted to desired concentrations in
media for in vitro treatments and in sterile 0.9% NaCl for in vivo treatments.

Isolation and treatment of oligodendrocyte precursor cells. OPCs were isolated
and purified to 495% homogeneity from cortices of 6- to 7-day-old Sprague–
Dawley rats by immunopanning as previously described55. Briefly, cortices were
extracted, diced and digested with papain at 37 �C. Cells were then triturated and
resuspended in panning buffer containing insulin, and then sequentially
immunopanned at room temperature on three plates containing Ran-2, GalC and
O4 antibodies from hybridomal supernatant. The remaining O4þGalC� OPCs
were removed from the plates with trypsin, resuspended in growth media and
seeded at 37 �C on poly-D-Lysine (pDL)-coated flasks to facilitate proliferation.
Once sufficient numbers were reached, OPCs were split, plated in differentiation
media and allowed to differentiate overnight. Plates were randomly designated for
treatment groups and times; treatments were then added to fresh differentiation
media and were refreshed as specified per experiment.

In vitro analysis of cell survival. Following 48 h of treatment where treatment was
refreshed at 24 h, the medium was removed and differentiating rat OPCs were
incubated in PI/FDA (propidium iodide/fluorescein diacetate) for 3 min, rinsed
with 1� PBS and imaged for dead/live cell quantification. TUNEL staining (no.
G3250, Promega) was conducted as per the manufacturer’s instructions on cells
treated as above.

Western blot. After 48 h of treatment where treatment was only added at the
initiation of the experiment, dOPCs were rinsed twice with sterile 1� PBS, lysed
with ice-cold RIPA buffer containing protease inhibitors (cOmplete mini inhibitor
cocktail, Roche) and phosphatase inhibitors (no. P2850 and no. P5726, Sigma), and
then scraped and removed to microcentrifuge tubes for incubation on ice for
10 min. Mouse tissue was isolated into microcentrifuge tubes, immediately frozen
on dry ice, and then stored at � 80 �C until homogenization. The protein con-
centration of each extract was determined using a BCA protein assay kit (Thermo
Scientific Pierce) as per the manufacturer’s instructions. Extracts were denatured in
Laemmli buffer with �-mercaptoethanol, separated by SDS–PAGE and transferred
to nitrocellulose. Blots were blocked in 5% non-fat milk in TBST and then incu-
bated in primary antibody in blocking solution. Signal was detected via chemilu-
minescence (SuperSignal West Dura Extended Duration Substrate, Thermo
Scientific Pierce) following horseradish peroxidase-conjugated secondary antibody
incubation in blocking buffer. Images have been cropped for presentation. Full-size
images are presented in Supplementary Fig. 12. Antibodies to the following were
used: 1:500 CHOP (no. MA1-250, Thermo Fisher Pierce), 1:5,000 GAPDH (no.
2118, Cell Signaling), 1:500 p-eIF2a (no. ab32157, Abcam) and 1:1,000 eIF2a (no.
9722 S, Cell Signaling).

Rat cerebellar sections. Cerebellar explants were prepared from 11-day-old
Sprague–Dawley rat pups. Whole brains were extracted and embedded in 1.2%
agarose in 1� PBS before sagittal cerebellar sections were cut at a thickness of
300 mm on a Leica Vibratome. Two to three sections were collected per well,
allowed to recover for 2 days, and then grown in HI GMþHong’s N2þPDGF-AA
containing 100 U ml� 1 IFN-g (Calbiochem) and 2.5, 5.0 or 10 uM guanabenz (MP
Biomedicals) as indicated for 7 days. Half the volume of media, including treat-
ments, were refreshed daily. Slices were stained free-floating for MBP (Covance,
SMI99) and then mounted on a slide and coverslipped for immunofluorescence
analysis. For electron microscopy and toluidine blue staining, sections were fixed in
2.5% gluteraldehyde, post-fixed in 1% osmium tetroxide, dehydrated and embed-
ded in epoxy resin for examination with a Joel 100CX microscope at 80 kV.

GFAP/tTA; TRE/IFN-c mice. As previously described14, line 110 GFAP/tTA mice
and line 184 TRE/IFN-g mice, both backcrossed more than 10 times on the C57BL/
6 background, were mated to generate double transgenic animals of which both
sexes were used. Transcriptional activation of the TRE/IFN-g transgene by tTA was
prevented by placing plugged females in cages in which 0.05 mg ml� 1 doxycycline
was added to the drinking water. Pregnant females were removed to normal water
at E14.5. Treatment with 4 mg kg� 1 of guanabenz of every second litter born was
initiated on postnatal day 7 in the resulting pups and continued daily until they
were being killed at P18; remaining litters were treated similarly with vehicle (0.9%
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NaCl). All procedures involving animals were performed according to the
guidelines of the Institutional Animal Care and Use Committee (IACUC) of the
University of Chicago.

GADD34 mutant mice. GADD34 mutant mice56 that were backcrossed more
than 10 times on the C57BL/6 background were a gift from Dr David Ron. Mice of
both sexes were used.

Immunofluorescence. Mice were deeply anaesthetized with 2.5% avertin and then
transcardially perfused with 0.9% NaCl followed by cold 4% paraformaldehyde.
The brain and spinal cord were extracted, post fixed in 4% paraformaldehyde
overnight and incubated in 30% sucrose until saturation. Tissue was embedded in
optimal temperature cutting compound (OCT) and sectioned at 10 mm. Slides were
stored at � 80 �C until staining. Before staining, sections were air-dried at room
temperature (RT), incubated at � 20 �C in acetone and washed twice in 1� PBS
for 5 min each. Sections were then blocked with 5% FBS and 0.1% Triton-X in 1�
PBS for an hour at RT before incubation in primary antibody in blocking solution
for 2 h at RT or overnight at 4 �C. Tissue was then incubated in secondary antibody
mounting and coverslipping with ProLong Gold antifade reagent with 40 ,6-
diamidino-2-phenylindole (Invitrogen, Carlsbad, CA). Images were visualized with
an Olympus IX81 inverted microscope and images taken with a Hamamatsu Orca
Flash 4.0 camera. Antibodies to the following were used: 1:1,000 MBP (no. ab7349,
Abcam), 1:500 CD3 (no. ab5690, Abcam), 1:100 TPPP (no. PA5-19243, Thermo
Fisher/Pierce) and 1:1,000 ASPA (kindly provided by M.A. Namboodiri, Uni-
formed Services University of the Health Sciences, Bethesda, Maryland).

Histological stains. Fixed frozen sections were prepared as above and stained with
either Mayer’s haematoxylin and eosin or LFB using the standard protocols.
Toluidine blue sections were prepared as for electron microscopy as described
above and stained using standard protocols.

Chronic EAE immunization. Preparations of 200-mg MOG35–55 peptide emulsified
in CFA (no. 263910, BD Biosciences, San Jose, CA) supplemented with 200 mg of
Mycobacterium tuberculosis (strain H37Ra, BD Biosciences) were injected sub-
cutaneously into the lower flanks of 8-week-old female C57BL/6J mice (Jackson
Laboratory, Bar Harbor, MN). Two intraperitoneal (i.p.) injections of 400-ng
pertussis toxin each (no. 181, List Biological Laboratories, Denver, CO) were
administered 0 and 48 h later. Mice were given i.p. injections of guanabenz or
vehicle (sterile 0.9% NaCl) daily beginning PID7. Treatment groups were rando-
mized by assignment before injections on the basis of cage number. Mice were
monitored for clinical symptoms beginning PID7 and scored daily (0¼ healthy,
1¼ flaccid tail, 2¼ ataxia and/or paresis of hindlimbs, 3¼ paralysis of hindlimbs
and/or paresis of forelimbs, 4¼ tetraparalysis, 5¼moribund or death). To mini-
mize daily scoring bias, mice were blindly assessed for clinical score before con-
firmation of treatment dosage and injection. Treatments were administered at the
same time every day, ±1–2 h. Data from all mice were included in the study, as per
previously established criteria.

Adoptive transfer EAE immunization. Donor wild-type C57BL/6J females were
immunized with MOG35–55 and CFA as detailed above to induce an immune
response. On PID8, their draining lymph nodes were pulled and isolated cells
reactivated in the presence of MOG35–55 (20 mg/ml) and IL-12 (10 ng/ml). After
72 h in culture, total cell number and total number of blasts were counted, with
blasts typically representing 30% of total cell numbers. The whole cell population
was then resuspended in 1xPBS and injected intraperitoneally into 8–10 week old
naı̈ve recipient wild-type C57BL/6J females, such that each recipient mouse
received 3� 106 blast cells. Recipient mice were given two IP injections of 200 ng
pertussis toxin each 0 and 48 h later and randomly assigned to treatment groups
Before injection.

Relapsing-remitting EAE immunization. Preparations of 50mg proteolipid pro-
tein 139–151 peptide emulsified in CFA supplemented with 200mg of Myco-
bacterium tuberculosis (as described above) were injected subcutaneously into the
lower flanks of 8-week-old female SJL mice (Harlan Laboratories, Indianapolis, IN).
Mice were monitored for clinical symptoms beginning PID7 and scored daily as
described above. Animals that did not achieve an acute phase of disease (5 out of
50) were removed from the study, as per previously established criteria. Every first
remaining mouse was treated intraperitoneally with vehicle (sterile 0.9% NaCl) and
every second with 8 mg kg� 1 of guanabenz daily at the beginning of remission,
defined as the second sequential day of reduced clinical score after the peak score of
the acute phase. All mice that did not undergo a relapse phase (9 out of 22 vehicle-
treated and 9 out of 23 guanabenz-treated) were removed from the study, as per
previously established criteria.

Flow cytometry analysis. Splenic, inguinal lymph nodes and CNS leukocytes
isolated from the brain and spinal cords of individual mice perfused with PBS were
made into a single-cell suspension as previously described57. Flow cytometric

analysis and additional analysis was performed by a blinded investigator on cells
from individual animals. Cells were stained with two separate panels. For the
analysis of immune cells present within the CNS during actively induced EAE, the
first analysis panel for T cell populations contained anti-CD45-APC-Cy7 (clone 30-
F11), anti-CD3-PerCP (clone 145-2C11), anti-CD4-Pacific Blue (clone RM4-5),
anti-CD8alpha-FITC (clone 53-6.7), anti-CD25-APC (clone PC61) and anti-CD44-
PE (phycoerythrin; clone IM7). The second analysis panel for antigen-presenting
cell populations contained anti-CD45-APC-Cy7 (clone 30-F11), anti-CD3-PerCP
(clone 145-2C11), anti-CD11b-Pacific Blue (clone M1/70), anti-CD11c-PE (clone
HL3) and anti-CD19-PE-Cy7 (clone ID3). For the analysis of CD4þ T cell
populations in the MOG35–55 adoptive transfer EAE the first anti-CD45-PE-Cy7
(clone 30-F11), anti-CD3-FITC (clone 145-2C11), anti-CD4-APC/Cy7 (clone
RM4-5), anti-CD25-PE (clone PC61), anti-CD44-PE/Cy7 (clone IM7) and
AnnexinV-APC. For the second analysis panel total cells were activated in the
presence of phorbol myristate acetate (50 ng ml� 1) and ionomycin (500 ng ml� 1)
for 2 h followed by the addition of brefeldin A (10mg ml� 1) for an additional 2 h.
The cells were then stained with anti-CD45-PE-Cy7 (clone 30-F11), anti-CD3-
FITC (clone 145-2C11), anti-CD4-APC/Cy7 (clone RM4-5), anti-CD25-PE (clone
PC61), anti-Ki67-Pacific Blue (clone SolA15), anti-IFN-g-PerCP/Cy5.5 (clone
XMG1.2) and anti-IL-17-APC (clone eBio17B7; eBioscience). Viable cells (1� 106

cells per tube) were analysed per individual sample using a BD Canto II cytometer
(Becton Dickinson), and the data were analysed using BD FACSDiva version 6.1
software (BD Bioscience).

Ex vivo recall and cytokine protein analysis. For ex vivo recall cultures, two sets
of cultures were set up, with cells isolated as described above from the inguinal
lymph nodes and spleens cultured in triplicate wells per individual mouse (n¼ 7–
10 mice per treatment group) at 5� 105 cells per well in the presence of anti-CD3
(1 mg ml� 1), OVA323–339 or MOG35–55 (20mg ml� 1) in the HL-1 medium. For the
cellular proliferation cultures, at 24 h post-culture initiation, the wells were pulsed
with 1mCi of 3H-TdR and the cultures were harvested at 72 h and 3H-TdR
incorporation detected using a Topcount Microplate Scintillation Counter. Results
are expressed as the mean counts per minute of triplicate cultures. For cytokine
analysis replicate wells were harvested on dþ 3 of culture or lumbar spinal cord
lysates were used and the level of cytokine secreted determined via multiplex
Luminex LiquiChip (Millipore).

Real-time PCR. Total RNA was isolated from snap-frozen lumbar spinal cord
using the Aurum Total RNA Mini Kit (Bio-Rad Laboratories). RNA concentration
was measured by Nanodrop spectrophotometer and RNA quality was measured
using the Agilent 6,000 Nano kit on an Agilent 2,100 bioanalyzer (Agilent Tech-
nologies). RNA was reverse-transcribed using the Bio-Rad iScript cDNA Synthesis
Kit according to the manufacturer’s instructions, and quantitative real-time PCR
was run on a Bio-Rad CFX96 Real-Time PCR detection system as previously
described58 using the SYBR Green technology. Results were analysed using the Bio-
Rad CFX Manager software and presented as the fold induction relative to the
reference gene RPL13A using the DC(t) method. Primers used (Integrated DNA
Technologies Inc) are as follows: mouse IFN-g sense primer (50-GATATCTGG
AGGAACTGGCAAAA-30); mouse IFN-g antisense primer (50-CTTCAAAGAG
TCTGAGGTAGAAAGAGATAAT-30); mouse IL-17 sense primer (50-ATGCTGT
TGCTGCTGCTGAG-30); and mouse IL-17 antisense primer (50-TTTGGACAC
GCTGAGCTTTGAG-30).

Statistical analysis. Data are presented as mean±s.e.m. unless otherwise noted.
Multiple comparisons were statistically evaluated by the mixed results analysis of
variance (ANOVA) test or two-way ANOVA test; single comparisons was per-
formed via two-sided unpaired t-test. A P value o0.05 was considered significant.
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