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This study delves into analyzing drought patterns in Baluchistan by applying copula-based bi-
variate probabilistic models complemented by Severity Duration Frequency (SDF) curves. The 
calculation of the Standardized Precipitation Index (SPI) hinges on monthly aggregate precip-
itation data from ten distinct sites compiled over six-month periods. After evaluating various 
parametric distributions, the Log-Normal distribution emerges as suitable for modeling drought 
severity and duration.
A range of bivariate copulas is employed to simulate the characteristics of drought severity 
and duration, which are then compared against observed data. Remarkably, the Gumbel copula 
classified as an extreme value copula—outperforms its counterparts according to diverse statisti-
cal benchmarks. By utilizing the dependence function, we derive the conditional distribution of 
drought variables: severity and duration. These conditional distributions subsequently inform the 
calculation of return periods, forming the basis for constructing SDF diagrams at fixed recurrence 
levels across the study region. The study’s finding indicates that a severe drought could occur 
over the region with higher return periods for a specific duration.
The implications of this research are significant, showcasing the potential of copula-based joint 
modeling techniques to generate frequency curves for drought severity and duration. This devel-
opment holds promise for effective water resource management and the formulation of strategies 
to mitigate the impact of drought in vulnerable regions.

1. Introduction

Droughts stand out as the most formidable yet least comprehended natural hazards encompassing the entire climate spectrum. 
Their impact becomes particularly critical in sectors where water-dependent activities render vulnerability to drought situations 
Ahmed et al. [1]. This concern is especially salient in the developing world, where agricultural systems are not only a vital source of 
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sustenance but also play a pivotal role in shaping socio-economic landscapes. In such contexts, the oscillations of rainfall patterns, 
fluctuations in water availability, and variations in climate dynamics can hold far-reaching consequences.

In the mosaic of global agriculture, Pakistan stands as an agrarian giant, with its rural population intricately woven into the fabric 
of its fertile land. The province of Baluchistan, representing an integral part of this tapestry, presents a unique case study. Its agricul-
tural sustenance hinges entirely on the delicate balance of precipitation, as its farmlands solely rely on rainwater to nurture crops. 
However, the canvas of rainfall patterns has undergone noticeable alterations in recent decades, marked by deviations from historical 
norms. The repercussions of these deviations resonate deeply, triggering an unyielding cycle of water scarcity that permeates through 
economic, social, and environmental spheres. In a stark illustration of this, the Pakistan Meteorological Department’s data for 2020 
painted a sobering picture of rainfall deficits of 73.2% in Baluchistan, 72.2% in Sindh, and 12.9% in Khyber Pakhtunkhwa.

Within the intricate web of drought’s impacts, perhaps the most insidious aspect is its longevity. The specter of a drought’s 
aftermath lingers, often far beyond the point when meteorological conditions rebound. The scars etched by droughts on communities 
and economies are enduring, leaving a trail of disrupted livelihoods, agricultural losses, and socio-economic upheavals in their wake. 
Notably, the annals of Baluchistan’s history have been punctuated by instances of devastating droughts that unfolded during pivotal 
junctures. The years 1967 to 1969, 1971, and the prolonged stretch from 1998 to 2002 bear testament to the recurring vulnerability 
of this region to the iron grip of drought.

Beyond the immediate and visible effects, the implications of droughts extend into the intangible realms of societal fabric and 
ecological balance. Addressing the multifaceted challenge of drought mitigation mandates an approach that goes beyond the confines 
of reactive measures. Instead, a nuanced understanding of the intricate interplay between climate shifts, water availability, and 
societal vulnerabilities is imperative. This interweaving of complexities demands a comprehensive investigation, one that navigates 
the interconnected threads of meteorology, hydrology, agriculture, and social dynamics. Moreover, in an era characterized by rapidly 
shifting global climate patterns, the proactive management of drought’s impacts assumes paramount importance. The implications of 
water scarcity ripple across sectors, transcending geographical boundaries and socioeconomic strata. This urgency lends a distinctive 
significance to research endeavors that endeavor to unravel the intricacies of drought’s behavior, predictability, and the mechanisms 
through which it manifests.

Numerous studies favoring drought quantification have been done nationally and in different parts of the world. For instance, 
Durrani et al. [2] and Naz et al. [3] pointed out significantly increasing trends in the frequency of heatwaves in Baluchistan, which 
was a sign of an upcoming drought. In addition, few other studies have been conducted to model drought behavior in this region. 
These studies are restricted to assessing the influence of droughts and adaptation schemes for livestock Shafiq and Kakar [4], soil 
degradation and rangeland efficiency Islam et al. [5], forthcoming drought alleviation policies Ahmed et al. [1], and farmers’ coping 
and adaptation measures Ashraf and Routray[6], seasonal drought characteristics using SPI Ahmed et al. [1], drought monitor using 
SPI and standardized precipitation evapotranspiration index Qaisrani et al. [7], quantify drought risk to livelihood and mitigation 
Ashraf et al. [8].

Cancelliere and Salas [9] characterized droughts by duration, severity, and spatial extent. Guttman [10] calculated the Palmer 
Drought Severity Index (PDSI) of 30 years of historical data to provide drought severity measures and proposed retroactive dry and 
wet conditions using water balance techniques. McKee et al. [11] developed the SPI, especially for drought monitoring. Yamoah et al. 
[12] evaluated the SPI values to model droughts for agricultural purposes. Karavitis et al. [13] calculated the SPI to understand better 
drought duration, amplitude, and spatial extent in semi-arid portions of Greece. Xia et al. [14] estimated the SPIs over the past 60 
years of data to analyze drought patterns in China. On the other hand, Joe [15] discussed various multivariate models for capturing 
the dependence using copula theory. Shiau [16] proposed a bivariate copulas model to model drought variables jointly. Later on, 
Nelsen [17] explores different copulas families with multivariate functions that integrate one-dimensional marginal distribution 
functions with uniform one-dimensional margins. Shiau and Modarres [18] developed the copula-based probabilistic approach for 
deriving drought SDF curves and analyzing the joint occurrences of droughts. Janga Reddy and Ganguli [19] presented copulas-based 
modeling of SDF concerning drought episodes in western Rajasthan, India.

Mirabbasi et al. [20] applied two-dimensional copulas to analyze meteorological drought characteristics (duration and severity) 
at the Sharafkhaneh gauge station in northwest Iran. The Galambos copula best fits the observed drought data, offering valuable 
insights for water resource planning and management. In another study, Nazeri Tahroudi et al. [21] proposed a copula-based new 
method to analyze meteorological and hydrological drought dynamics in the Zarinehroud basin. The Frank copula showed the best 
performance, allowing for the estimation of future drought durations and joint probabilities of drought characteristics for water 
resource management. Yusof et al. [22] characterized the drought variable’s severity and duration using bivariate copula functions 
and calculated joint and conditional return periods for drought occurrences. Rajsekhar et al. [23] derived the drought Severity-
Duration Frequency curves at fixed recurrence periods of 5, 10, 25, 50, and 100 years of droughts duration of 3, 6, 9, 12, 18, 24, and 
36 months respectively, for the Texas region. Azam et al. [24] applied stochastic simulation through copula functions and measured 
the risk analysis of droughts using SPIs for different areas of South Korea. Bazrafshan et al. [25] explored the works on the drought 
events in arid and semi-arid regions of Iran and estimated the copula-based conditional return periods. Zhang et al. [26] practiced a 
copula-based stochastic multiobjective approach to optimize the irrigation strategy of crops in irrigation districts affected by seasonal 
agricultural drought in Southwest China. By combining meteorological factors through copula models, Tian et al. [27] constructed a 
multivariate standardized drought index for drought identification and evaluation over the Xijiang River Basin in South China.

Avsaroglu and Gumus [28] employs Copula functions to assess hydrological drought by considering the joint multivariate dis-
tribution for drought characteristics around Tigris River basin, Turkey, and they identified Galambos copula as the best fit. Results 
indicate a 5-10% difference between univariate and bivariate return periods, highlighting higher drought risk in the central and 
2

western parts of the basin. Deger et al. [29] assesses drought duration and severity at Euphrates Basin using Streamflow Drought 
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Index (SDI) at 3- and 6-month scales, finding strong correlations and selecting Lognormal, Weibull, and Gamma distributions. Gum-
bel copula proves superior for modeling joint return periods, highlighting varying drought risk across the basin for different return 
periods. In another research in Turkey Gumus et al. [30] assesses hydrological drought using the SDI method across three historical 
periods, revealing a significant increase in drought severity in the third period. Galambos copula is found to best represent drought 
parameters, enabling comparisons between univariate and bivariate return periods.

In the context of these considerations, our research strides forward with a pivotal objective to predict the uncertainty surrounding 
impending drought events across the expansive canvas of Baluchistan. This pursuit unfurls through the lens of a comprehensive 
analytical framework, one that harnesses diverse probabilistic models and the dynamic universe of copula families. In embarking 
on this scientific voyage, we discern the intricate dependencies that weave through drought variables, underscoring their collective 
behavior and offering insights into their predictive potential. This research foray adopts a meticulous approach, encapsulating the 
computation of the SPI, the characterization of drought variables, the integration of copula models, the derivation of joint and 
conditional distributions, and the eventual construction of SDF curves.

The proposed study distinguishes itself through several novel aspects: firstly, it utilizes a six-month timescale for SPI calculation on 
a moderate timescale, offering a distinctive perspective on drought assessment in the region. Secondly, it uses joint and conditional 
probability distributions, providing a more comprehensive understanding of the region’s drought risk profile. Lastly, the study 
pioneers applying a conditional copula distribution mechanism for precise forecasting of future drought events, setting it apart from 
previous research conducted in this region and offering valuable insights for proactive drought management and mitigation.

Structured to provide a coherent narrative, the subsequent sections of this paper assume distinct roles. Section 2 unfurls the 
methodology, meticulously unveiling the mechanics of SPI computation, the architecture of copula classes, the intricacies of max-
imum likelihood estimation (MLE) procedures, simulation strategies, and the mathematical expression of joint and conditional 
distributions. Transitioning into Section 3, we delve into the heart of the matter—the presentation of results and a comprehen-
sive discussion that embraces both the quantitative and qualitative facets of our findings. Finally, Section 4 concludes this scholarly 
journey by weaving together the strands of exploration, discussion, and analysis, culminating in reflections on the implications of 
our work and avenues for future inquiry.

2. Methodology

2.1. Study area

The study area encompasses the sprawling region of Baluchistan, spanning from latitude 22◦N to 32◦N and longitude 66◦E to 
70◦E. This province, constituting the largest landmass in Pakistan, extends across a vast geographical expanse of 347,190 𝑘𝑚2. 
Characterized by a tapestry of landscapes, including mountains, flatlands, and deserts, Baluchistan boasts diverse climates that 
underscore its geographical diversity. The plains are subject to scorching heat during summers and mild winters, while the upper 
plateau experiences the juxtaposition of hot summers and cold winters. The lower plateau, in contrast, endures extreme warmth 
and aridity during the summer months, and it grapples with the challenge of severe cold during winter. The desert belt maintains a 
climate marked by its characteristic heat and arid conditions. Annually, the province receives an average precipitation ranging from 
200 mm to 350 mm, with temperatures soaring up to 50 ◦C during the summer months in the plains. The region’s heightened rainfall 
can be attributed to the influx of monsoon winds originating from both the Arabian Sea and the Bay of Bengal. As these monsoons 
traverse the region, their impact dwindles gradually from east to west due to diminishing air moisture, thereby rendering Baluchistan 
more susceptible to lower levels of rainfall—a vulnerability that sets the stage for heightened attention toward drought analysis.

The empirical exploration of the study is anchored in an extensive dataset spanning four decades, encompassing daily precipitation 
records from January 1981 to December 2020. To procure this dataset, meticulous efforts were dedicated to collecting records from 
ten strategically located meteorological stations across the Baluchistan region. This invaluable dataset was sourced from the reputable 
National Aeronautics and Space Administration (NASA) Power data access platform. By providing the requisite latitude and longitude 
coordinates for each precipitation station, the study seamlessly extracted the crucial monthly precipitation data, a cornerstone for 
the subsequent analytical undertakings. A comprehensive overview of the statistical characteristics of these meticulously selected 
meteorological stations is furnished in Table 1, and their strategic geographical positions are visually represented in Fig. 1. In 
addition, we tested the homogeneity, randomness, independence, and stationary assumption of the data by employing the procedure 
discussed in Naghettini [31, chp. 7] Ahmad et al. [32], Ahmad et al. [33] and Ahmad et al. [34]. To this end, the data of the 
considering stations meet the fundamental assumptions.

2.2. Standardized precipitation index

A plethora of drought indices exists in the scholarly realm, each designed to quantify and monitor droughts across varying 
contexts, see, e.g., Zargar et al. [35] and Eslamian et al. [36]. Among these indices, the SPI stands out for its simplicity, flexibility, 
spatial invariance, and probabilistic nature. The SPI, a powerful analytical instrument for precipitation data, holds the capability to 
assess diverse forms of drought phenomena—meteorological, agricultural, and hydrological. Unlike other indices that may necessitate 
multiple parameters, the SPI’s elegance lies in its singular parameter setup, enabling seamless implementation and straightforward 
interpretation.

In its essence, the SPI serves as a mechanism to bestow algebraic values upon precipitation data, facilitating cross-comparisons 
3

among regions characterized by starkly distinct climatic conditions. By quantifying the cumulative rainfall within specific intervals 
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Fig. 1. Geographical spots of considered stations for the study.

Table 1

Summary statistics of the rainfall stations.

Station Mean SD Skewness Kurtosis

Bar khan 17.34 33.93 7.30 80.25
Quetta 17.12 28.8 3.03 12.15
Dalbandin 5.81 11.51 3.38 13.57
Zhoob 18.83 31.08 6.43 66.29
Jiwani 7.27 17.43 5.85 48.45
Khuzdar 14.8 26.79 4.14 24.54
Nok Kundi 5.18 17.57 14.15 255.45
Panjgur 6.65 14.67 4.89 32.62
Pasni 5.99 14.75 4.79 26.94
Sibbi 15.89 25.06 3.89 23.93

(e.g., 3, 6, 9, 12, 24, and 48 months) and relating it to the average precipitation during analogous periods, the SPI yields insight into 
deviations from the norm. Conceptually, the SPI quantifies the standard deviation above or below the average record—a measure 
that unveils the magnitude of precipitation anomalies. Following the established approach outlined by Wu et al. [37], the estimation 
of the SPI for the Baluchistan region leverages a comprehensive dataset spanning 40 years of recorded precipitation data. Long-term 
precipitation records are subjected to probability distribution fitting. This process aligns the mean standardized precipitation for 
the region within any given period to a zero value, while the standard deviation is calibrated to one. In a broader context, the 
computation of the SPI for a given year 𝑖, months 𝑗 and time scale 𝑘 is undertaken by following the framework established by Wu et 
al. [38]. That is,

1. Initially, the cumulative precipitation series is calculated 𝑋𝑘
𝑖𝑗
, 𝑖 = 1, … , 𝑛 corresponds to months, and each span is the sum of 

precipitation of 𝑘 − 1 past sequential months.
2. On a monthly precipitation data set with 𝑘 = 6 months, the cumulative probability distribution model (essentially the Gamma 

distribution) is fitted in the current scenario. The probability density function of the Gamma distribution is

𝛽𝛼
4

𝑓 (𝑥,𝛼, 𝛽) =
Γ(𝛼)

𝑥𝛼−1𝑒−𝛽𝑥, (1)
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Fig. 2. Droughts characteristics depiction using SPIs.

where Γ(𝛼) is the Gamma function and 𝛽 and 𝛼 are the scale and shape parameters respectively. The parameters of the model 
given (1) are estimated through maximum likelihood approach. The Cumulative Distribution Function (CDF) 𝐹 (𝑥) is obtained 
using estimated parameters of observed monthly precipitation series at a specified time scale.

3. The precipitation data may have zero values; the Gamma distribution is not fitted for zero values. The mixture distribution 
function is thus applied for the zero values of precipitation distribution. The CDF of the mixture distribution is defined as

𝐺(𝑥) = 𝑞 + (1 − 𝑞)𝐹 (𝑥) (2)

𝐹 (𝑥) is the CDF of Gamma distribution and 𝑞 represents the probability of zero precipitation based on historical data.
4. Using equiprobability transformation to convert the CDF given in (2) to standard normal distribution.

𝑆𝑃𝐼 = 𝜙−1{𝐺(𝑥)} (3)

The observations produced by (3) are positive and negative, called SPI. We identify the severity and nature of the drought events 
through SPI runs and signs. For instance, the nature of droughts is classified as (-0.5 to -0.7) unusually drought, (-0.8 to -1.2) 
moderate drought, (-1.3 to -1.5) severe drought, (-1.6 to -1.9) extreme drought, and -2.0 or less exceptional drought Svoboda et 
al. [39]. In the present study, the chosen threshold value is -0.8, which labels that all values under the threshold are considered 
droughts. The severity is determined by using the SPI values that remain under the threshold, while the duration is decided by the 
number of months that SPI values remain below the threshold. The severity of the drought events 𝑖 (𝑆𝑖, 𝑖 = 1, 2, 3...) occurrences is 
defined in (4) for each value of SPI the 𝑖𝑡ℎ period as

𝑆𝑖 = −
𝐷∑
𝑖=1

𝑆𝑃𝐼𝑖 (4)

where 𝐷 indicates the length of drought occurrences. Fig. 2 shows the characteristics of the three consecutive drought events based 
on SPI for a particular time scale. The spikes below the threshold indicate drought severity and duration. For example, the height and 
width of spikes corresponding to a drought event 1 show the severity and duration of droughts over a certain time scale, respectively.

2.3. Bivariate copula functions

A 2-dimensional copula is a joint CDF on [0,1]2 with standard uniform CDFs, that is
5

𝐶(𝑢, 𝑣) ∶= 𝑃 (𝑈 ≤ 𝑢,𝑉 ≤ 𝑣)
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Table 2

Families of Copula functions considered for this study.

Copula 𝐶(𝑢, 𝑣) Parameter space 𝐴(𝑤) 𝜙(𝑡)

Clayton
[
𝑢−𝜃 + 𝑣−𝜃 − 1

]−1∕𝜃
𝜃 ∈ [−1,∞)∖{0} NA 1

𝜃
(𝑡−𝜃 − 1)

Frank − 1
𝜃
log

[
1 + (𝑒−𝜃𝑢−1)(𝑒−𝜃𝑣−1)

(𝑒−𝜃−1)

]
𝜃 ∈ (−∞,∞)∖{0} NA −ln 𝑒−𝜃𝑡−1

𝑒−𝜃−1)

Gumbel-Hougard exp
[
−(�̄�𝜃 + �̄�𝜃 )1∕𝜃

]
𝜃 ∈ [1,∞)

[
𝑤𝜃 + (1 −𝑤)𝜃

]1∕𝜃 (− ln 𝑡)𝜃

Galambos 𝑢𝑣 exp
[
−(�̄�𝜃 + �̄�𝜃 )−1∕𝜃

]
𝜃 ∈ [0,∞) 1 −

[
𝑤−𝜃 + (1 −𝑤)−𝜃

]−1∕𝜃
NA

Plackett 1
2(𝜃−1)

(𝑠− 𝑞) 𝜃 ∈ [0,∞)∖{1} NA NA

Student’s t ∫ 𝑡−1
𝜃
(𝑢)

−∞ ∫ 𝑡−1
𝜃
(𝑣)

−∞
1

2𝜋
√
(1−𝑟2 )

[
1 + 𝑥2−2𝑟𝑥𝑦+𝑦2

𝜈(1−𝑟2 )

]−(𝜈+2)∕2
𝑑𝑥𝑑𝑦 𝜈 > 2, 𝑟 ∈ (0,1) NA NA

where 𝑡𝜈 (𝑥) = ∫ 𝑥

−∞
Γ((𝜈+1)∕2)√
𝜋𝜈Γ(𝜈∕2)

(1 + 𝑦2∕𝜈)−(𝜈+1)∕2𝑑𝑦, 𝜈 ≠ 0

Where �̄� = − log𝑢 and �̄� = − log𝑣.

The key advantage of the copula in studying bivariate or multivariate distribution functions is summarized by Sklar’s theorem Sklar 
[40], which we precisely recalled. Let 𝐹𝑋,𝑌 (𝑥, 𝑦) be the joint CDF of 𝑋, 𝑌 with their marginal CDFs such as 𝐹𝑋 (𝑥) = 𝑃 (𝑋 ≤ 𝑥) and 
𝐹𝑌 (𝑦) = 𝑃 (𝑌 ≤ 𝑦), respectively. Then, there exists a 2-dimensional copula 𝐶 ∶ [0,1]2 → [0,1] , ∀𝑥, 𝑦. That is

𝐹𝑋,𝑌 (𝑥, 𝑦) = 𝐶[𝐹𝑋 (𝑥), 𝐹𝑌 (𝑦)] = 𝐶(𝑢, 𝑣) (5)

If 𝐹𝑋 (𝑥) and 𝐹𝑌 (𝑦) are continuous, 𝐶 is unique; otherwise, the copula 𝐶 is uniquely determined on 𝑅𝑎𝑛(𝐹 ) ×𝑅𝑎𝑛(𝐺). Furthermore, 
the scale of copula is under the bounded increasing transformation of random variables 𝑋 and 𝑌 , as 𝑢 and 𝑣, two uniformly 
distributed random variables on [0,1] are expressed as 𝑢 = 𝐹𝑋 (𝑥) and 𝑣 = 𝐹𝑌 (𝑦). The bivariate copula distribution function 𝐶(.) has 
the following collective features with marginal CDFs of uniform random variables 𝑢 and 𝑣

• 𝐶(𝑢, 0) = 0 = 𝐶(0, 𝑣) ∀𝑢, 𝑣 ∈ [0,1]2
• 𝐶(𝑢, 1) = 𝑢; and 𝐶(1, 𝑣) = 𝑣∀𝑢, 𝑣 ∈ [0,1]2
• If 𝐶(𝑢, 𝑣) is a joint copula distribution function then, 𝐶(𝑢2, 𝑣2) − 𝐶(𝑢2, 𝑣1) − 𝐶(𝑢1, 𝑣2) + 𝐶(𝑢1, 𝑣1) > 0 for 0 ≤ 𝑢1 ≤ 𝑢2 ≤
1 and 0 ≤ 𝑣1 ≤ 𝑣2 ≤ 1.

In a continuous framework, the bivariate copula is differentiable

𝐶(𝑢, 𝑣) = 𝜕2𝐶(𝑢, 𝑣))∕𝜕𝑢𝜕𝑣

where 𝑐(.) is the resulting bivariate copula density. In this paper, we practice different classes of copulas, such as the Archimedean 
copulas, extreme value copulas, Plackett copulas, and Elliptical copula (Student’s- t copula). The description of classes of copulas is 
given in subsequent sections.

2.4. Archimedean copulas

The derivation of bivariate distributions through Archimedean copulas is more relaxed and straightforward. Archimedean copula 
has many proficient families for bestowing different patterns of dependence, and various estimations techniques have been estab-
lished to estimate its parameters. This paper mainly practices two Archimedean copula functions: Clayton and Frank. Their copula 
functions, along with dependence parameter space and generator function, are given in Table 2

2.5. Extreme value copulas

In extreme value copula, the observations of the extreme events are classified according to the extreme value theory, which defines 
the tail behavior of the distribution. The extreme value copula function for drought modeling is defined as: let (𝑋1, 𝑌1), … , (𝑋𝑛, 𝑌𝑛)
be independent pair of random variables with identical marginal distributions and joint copula function 𝐶(.). Let 𝐶𝑛(.) be a copula 
function for maximum values, for instance, 𝑋𝑛 = 𝑚𝑎𝑥(𝑋𝑖) and 𝑌𝑛 = 𝑚𝑎𝑥(𝑌𝑖), 𝑖 = 1, … , 𝑛. The copula function for maxima is defined 
as 𝐶(𝑛)(𝑢, 𝑣) = 𝐶 (𝑛)(𝑢1∕𝑛, 𝑣1∕𝑛), ∀𝑢, 𝑣 ∈ [0, 1]. The limit sequence {𝐶(𝑛)} certainly tends to the notion of extreme value copula. That is

𝐶(𝑢, 𝑣) = lim
𝑛→∞

𝐶 (𝑛)(𝑢1∕𝑛, 𝑣1∕𝑛),∀𝑢, 𝑣 ∈ [0,1]

Furthermore, we considered Gumbel and Galambos’s extreme value copulas for this study. Their relevant expressions for CDF and 
dependence functions are pined in Table 2.

In addition, we also consider Plackett’s copula and elliptical class of copula in Table 2. The most frequently used elliptical distri-
butions are the multivariate normal and Student-t distributions. The paper examines the bivariate Student’s t copula function. The 
student’s t copula has two dependence parameters. The elliptical class of copulas can capture both positive and negative dependency 
6

structures. Therefore, both tail dependence lower and upper have the same magnitude.
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2.6. Estimation

Maximum likelihood estimation procedure is employed to obtain the copula parameters. Furthermore, the MLE method is merely 
based on the copula density function. The parameter estimate �̂�𝑛 is obtained by solving the maximum likelihood function numerically 
by using sample information, i.e., 𝑈 =𝑈𝑖𝑗 of size 𝑛, where 𝑖 = 1, 2, … and 𝑗 ∈ {1, 2}. So, the log-likelihood function is written in (6)
as

𝑙𝑈 (𝜃) =
𝑛∑

𝑖=1
log𝐶(𝑈𝑖,1,𝑈𝑖,2;𝜃) =

𝑛∑
𝑖=1

log

[
𝐶

(
𝑛∑

𝑖=1

𝑅𝑖

𝑛+ 1
,

𝑛∑
𝑖=1

𝑆𝑖

𝑛+ 1

)]
(6)

where 𝑅𝑖 and 𝑆𝑖 are the observed data ranks, 𝜃 ∈ Θ is the copula dependence parameter, and it lies in ℝ𝑝 with (𝑝 ≥ 1). The ML 
estimator is given by

�̂�𝑛 = argmax
𝜃∈Θ

(𝑙𝑈 (𝜃)) (7)

We solve (7) numerically for all classes of copulas. Based on AIC and BIC criteria, we identify appropriate copula among many for 
drought modeling.

2.7. Tail dependence coefficient (TDC)

The most commonly used tail dependence was introduced by Sibuya [41] and later in Joe [15, p. 33] and various other studies. 
Let (𝑋, 𝑌 ) be a random pair with joint CDF 𝐹 (.) and marginals 𝐹𝑋 (𝑥) and 𝐹𝑌 (𝑦). If the given limit exists, the upper tail dependence 
measure is defined as

𝜆𝑈 = lim
𝑡→1−

[
𝐹𝑋 (𝑥) > 𝑡|𝐹𝑌 (𝑦) > 𝑡

]
Then 𝑋 and 𝑌 are said to be upper tail dependent if 𝜆𝑈 > 0, otherwise independent. Likewise, the lower tail dependence coefficient 
is defined as

𝜆𝐿 = lim
𝑡→0+

[
𝐹𝑋 (𝑥) ≤ 𝑡|𝐹𝑌 (𝑦) ≤ 𝑡

]
Here, we calculate lower and upper TDC through the joint copula function. For instance, if 𝐶 is the copula of (𝑋, 𝑌 ) defined in (5), 
then the lower and upper TDC are given in (8), respectively. That is

𝜆𝐿 = lim
𝑡→0+

𝐶(𝑡, 𝑡)
𝑡

and 𝜆𝑈 = lim
𝑡→1−

1 − 2𝑡+𝐶(𝑡, 𝑡)
1 − 𝑡

(8)

2.8. Joint and conditional probabilities

2.8.1. Joint probability distribution of drought variables
The copula-based joint distribution of drought duration and severity can be used for significant evidence regarding drought 

supervision Shiau [16]. For instance, the probability of both events over the high thresholds is considered a critical condition for 
an exact water supply system. It can be used as a trigger for a possible drought policy. However, the joint probability can be easily 
developed in the form of copulas

𝑃 (𝐷 ≥ 𝑑,𝑆 ≥ 𝑠) = 1 − 𝐹𝐷(𝑑) − 𝐹𝑆 (𝑠) + 𝐹𝐷,𝑆 (𝑑, 𝑠)

= 1 − 𝐹𝐷(𝑑) − 𝐹𝑆 (𝑠) +𝐶
[
𝐹𝐷(𝑑), 𝐹𝑆 (𝑠)

]
(9)

where 𝐹𝑆 (𝑠) and 𝐹𝐷(𝑑) are the CDF of drought severity and duration distributions, while 𝐶
[
𝐹𝐷(𝑑), 𝐹𝑆 (𝑠)

]
is copula-based joint 

CDF of drought severity and duration distribution. The joint distribution of drought variables can also be obtained by providing the 
severity and duration values. For example, if the drought severity is recorded at 13 for the 12 months duration, then the resultant 
quantities are 𝐹𝐷(𝑑) = 0.976, 𝐹𝑆 (𝑠) = 0.953, and 𝐶

[
𝐹𝐷(𝑑), 𝐹𝑆 (𝑠)

]
= 0.954, respectively. Using (9), we obtained 𝑃 (𝐷 ≥ 𝑑, 𝑆 ≥ 𝑠) is 

equal to 0.023.
Further, conditional distribution is needed to explain the probability of specific drought occurrences. For conditional distribution 

development, we use copula-based bivariate distribution. For example, one can want to assess the drought severity probability given 
drought duration over a threshold (𝑑′). According to Shiau [16], the conditional distribution is defined as

𝑃 (𝑆 ≤ 𝑠|𝐷 ≥ 𝑑′) = 𝑃 (𝑆 ≤ 𝑠,𝐷 ≥ 𝑑′)
𝑃 (𝐷 ≥ 𝑑′)

=
𝐹𝑆 (𝑠) − 𝐹𝐷,𝑆 (𝑑′, 𝑠)

1 − 𝐹𝐷(𝑑′)
=

𝐹𝑆 (𝑠) −𝐶[𝐹𝐷(𝑑′), 𝐹𝑆 (𝑠)]
1 − 𝐹𝐷(𝑑′)

(10)

Similarly, the conditional probability distribution of drought duration given severity is given as

′ 𝑃 (𝐷 ≤ 𝑑,𝑆 ≥ 𝑠′) 𝐹𝐷(𝑑) − 𝐹𝐷,𝑆 (𝑑, 𝑠′) 𝐹𝐷(𝑑) −𝐶[𝐹𝐷(𝑑), 𝐹𝑆 (𝑠′)]
7

𝑃 (𝐷 ≤ 𝑑|𝑆 ≥ 𝑠 ) =
𝑃 (𝑆 ≥ 𝑠′)

=
1 − 𝐹𝑆 (𝑠′)

=
1 − 𝐹𝑆 (𝑠′)

(11)
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Table 3

Summary statistics of precipitation and droughts variables.

Variable Characteristics Statistics Value

Precipitation Average annual precipitation 1378.47
Standard deviation 1001.78
Coefficient of variation 72.67

Droughts
Number of droughts 237
Interval arrival time (years) 1.74

Severity Average 4.26
Standard deviation 5.21
Minimum value 0.80
Maximum value 37.58
Skewness 3.01

Duration Average 3.37
Standard deviation 3.40
Minimum value 1.00
Maximum value 25.00
Skewness 2.49

To gain wide-range information about droughts in a drought-prone area, conditional probabilities at different levels of thresholds 
could be helpful for planners and management. The section 3 briefly describes joint and conditional distributions of drought severity 
and duration.

2.8.2. Derivation of severity-duration frequency relationship
The copula-based SDF curve can be used as a gadget to explore the associated drought characteristics. For instance, the severity 

and duration of every drought episode are branded as bivariate random variables. Therefore, the conditional recurrence interval 
connected with drought severity, drought duration, and frequency is given by

𝑇𝑆|𝐷(𝑠|𝑑) = 1
𝛾
[
1 − 𝐹𝑆|𝐷(𝑠|𝑑)] (12)

where (𝐹𝑆|𝐷(𝑠|𝑑) is the conditional CDF of (𝑆|𝐷 = 𝑑) and 𝛾 is showing the frequency of incoming drought events. To represent 
theoretical SDF relationship, the 𝑇𝑆|𝐷(𝑠|𝑑) is given (12) is written as

𝑇𝑆|𝐷(𝑠|𝑑) = 1

𝛾

[
1 −𝐶𝐹𝑆 |𝐹𝐷

(𝐹𝑆 (𝑠)|𝐹𝐷(𝑑))
] (13)

𝐹𝐷(𝑑) and 𝐹𝑆 (𝑠) are the CDF of marginal distributions combined through the copula function. For more details, readers can see, for 
instance, Shiau and Modarres [18]. The drought events occurrence can be defined by practicing (13) to any site having hydrological 
variables except that 𝐹𝐷(𝑑), 𝐹𝑆 (𝑠), 𝐶 and 𝛾 need to be estimated from the observed data.

3. Results and discussion

3.1. Summary statistics of data and SPI

In this study, the SPI is computed using monthly total precipitation data of 40 years for 6-month accumulation period. This 
indicates the medium-term trend that reflects more acute conditions of droughts. The summary statistics of observed data and 
drought severity and duration for the study region are reported in Table 3. The average precipitation recorded in the Baluchistan 
region is approximately 1378.47 mm, with a large standard deviation of 1001.78 mm. The standard deviation might be more 
prominent due to the wide range in yearly precipitation (i.e., 464.81 mm to 6101.06 mm). Table 3 also shows that the 237 droughts 
occurrences have been identified with a mean inter-arrival period of 1.74 years. The drought severity and duration distribution are 
positively skewed and have a high standard deviation 5.21 and 3.40, respectively.

Moreover, this fact shows that the drought features fluctuate over the region. In addition, the SPI proposed by McKee et al. [42]
is used in this study to define droughts. For instance, the six-month SPI is calculated to observe precipitation data and is called SPI-6. 
The SPI-6 series for 1992 to 2020 precipitation data of 10 meteorological stations of the Baluchistan region is shown in Fig. 3. The 
drought is reported once the value of SPI-6 falls under zero in Fig. 3.

It can be noticed that severe droughts occurred from (1991 to 1992) and (2003 to 2004) when SPI-6 approached -4.0 and -3.0, 
respectively. Furthermore, the consecutive negative SPI-6 period is called drought duration, while the cumulative values of SPI-6 
within the drought duration are called drought severity Moreover, Fig. 4 shows a scatter diagram with drought severity at the x-axis 
and duration on the y-axis. Pearson’s correlation coefficient and Kendall’s tau measures were estimated to determine the relationship 
between drought severity and duration. The estimated values of both measures (i.e., 0.97 and 0.85) show that drought variables are 
8

highly positively correlated. Also, the values of the measures are significant at 1% level.
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Fig. 3. The six-month SPI series for the period (1981-2020) of Baluchistan region.

Fig. 4. Scatter diagram of drought severity and duration.

3.2. Fitting marginal distributions

The analysis via copula function requires the marginal CDF for each dependent random variate. The CDFs of Gamma, Lognormal, 
exponential, and Pearson type III or Weibull were tested to represent drought characteristics. The MLE paradigm was adopted for 
parameter estimation. The CDF, probability, and QQ plots of considered distributions corresponding to drought variables are depicted 
in Fig. 5. Fig. 5 shows that the assumed distributions were best fitted to drought variables. Thus, the appropriate one was decided by 
using AIC and BIC criteria. The numerical results of AIC and BIC are reported in Table 4. The Lognormal distribution with the lowest 
AIC and BIC (written in bold) is decided to be the best fit for drought severity and drought duration variables.

3.3. Analysis via copula functions

The bivariate copula functions described in Table 2 were used to model the joint behavior of the best-fitted distribution. The 
parameters of copulas were estimated using the maximum likelihood estimation technique. The ML estimator has been defined in 
expression (7). Each copula function’s parameters were obtained to rank the uniform variates that describe the scale-free dependence 
property among the droughts variables. The estimated copulas parameters and log-likelihood, AIC, and BIC values are listed in 
9

Table 5. Comparing all copula families on the basis of AIC and BIC in Table 5, we found Gumbel extreme value copula is more 
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Fig. 5. (𝐚) Describes density, CDFs, QQ, and PP plots of all four distributions corresponding to drought severity; (𝐛) explains density, CDFs, QQ, and PP plots of all 
four distributions corresponds to drought duration.

appropriate for modeling drought characteristics. Simulation-based visual and tail dependence tests are performed in subsequent for 
further investigations.

To perform a visual test, 1000 uniform random pairs (𝑢𝑖, 𝑣𝑖) were generated from each copula family. The simulated pairs were 
10

converted into original units using respective marginal distributions to compare (𝑢𝑖, 𝑣𝑖) with its sample estimates (𝑥𝑖, 𝑦𝑖). Scatter 
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Table 4

AIC and BIC of distributions fitted to drought variables.

Variable Distribution AIC BIC

Severity Gamma 1162.98 1169.91
Log-normal 𝟏𝟏𝟎𝟔.𝟒𝟏 𝟏𝟏𝟏𝟑.𝟑𝟒
Weibull 1165.23 1172.16
Exponential 1163.23 1166.70

Duration Gamma 1033.20 1040.14
Log-normal 𝟗𝟖𝟔.𝟕𝟑 𝟗𝟗𝟑.𝟔𝟕
Weibull 1044.37 1051.31
Exponential 1051.46 1054.93

Table 5

Dependent parameters of fitted copulas along with Log-likelihood, AIC, and BIC values.

Copula family Member Copula parameters Log-likelihood AIC BIC

Archimedean Clayton 𝜃 = 2.82 117.85 -233.20 -230.33
Frank 𝜃 = 19.42 257.58 -513.15 -509.68

Extreme value Gumbel 𝜃 = 5.03 𝟐𝟔𝟔.𝟕𝟔 −𝟓𝟑𝟏.𝟏𝟓 −𝟓𝟐𝟖.𝟎𝟒
Galambos 𝜃 = 4.33 265.90 -529.78 -526.32

Plackett Plackett 𝜃 = 93.47 250.70 -499.39 -495.92
Elliptical Student’s t 𝜃 = 4.33, 𝑟= 0.94 236.22 -468.44 -461.50

Fig. 6. Scatter plots of the copula-based simulated and observed data (𝐚) Gumbel copula, (𝐛) Frank copula, (𝐜) Clayton copula, (𝐝) Student’s t copula, (𝐞) Galambos 
copula, and (𝐟 ) Plackett copula.

plots of each family of copulas based on simulated and observed are portrayed in Fig. 6(a-f). It can be realized that the experimental 
sample dependence structure adequately overlaps extreme value copulas, namely Gumbel and Galambos.

Using the parametric technique, the upper TDC described in section 2.7 is computed for each family of copulas. The expressions 
and numerical results of parametric TDC involving dependence parameters of copulas are reported in Table 6. Loosely speaking, 
the numerical results of upper TDC are calculated by providing respective copula dependence parameter values. Based on Table 6, 
we found that the extreme value Gumbel copula is again more appropriate to capture the dependence at the upper tail. In order to 
11

analyze dependence measures further and predict regional drought events, we will use the Gumbel copula function.
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Table 6

Expression and numerical results of upper tail dependence coeffi-
cients.

Copula family Member 𝜆𝑈 expression 𝜆𝑈

Archimedean Clayton 0 0
Frank 0 0

Extreme value Gumbel 2 − 21∕𝜃 0.86
Galambos 2 − 21∕𝜃 0.82

Plackett Plackett 0 0

Elliptical Student’s t 2𝑡𝜃+1
[√

(𝜃+1)(1−𝜃)
1+𝜃

]
0.76

Fig. 7. Contour for the joint probability distribution of drought severity and duration.

3.4. Estimation of joint and conditional distributions

As acknowledged previously, the Gumbel-Hougaard was the best-fitted copula to drought characteristics. So, Gumbel-Hougaard 
copula-based joint probabilities are calculated for drought variables using the expressions explained in sections 2.8.1 and 2.8.2. 
Meanwhile, the drought duration and severity are plotted in the same probability, and joint probabilities are established as contour 
lines. Based on the Gumbel copula, Fig. 7 illustrates the contours of the joint probability for drought duration and severity.

Also, the conditional probabilities of drought severity and duration are obtained using expressions (10) and (11). Calculated 
probabilities are used to assess drought severity distributions when drought duration exceeds a certain threshold and drought duration 
distributions when drought severity exceeds a specific threshold. The conditional drought severity distribution given that the drought 
duration exceeds several threshold levels (i.e., 25th, 50th, 75th, and 95th percentiles), as well as the conditional drought duration 
distributions, given that the drought severity exceeding the same threshold levels are plotted in Fig. 8 (a, b). Both figures suggest that 
the conditional drought severity distribution and the conditional drought duration distribution decline with drought duration and 
severity, respectively. For instance, by looking at Fig. 8 (a), the probabilities for drought severities less than 5 and 10, given a drought 
duration that surpasses 2 months (50th percentile), are equal to 0.590 and 0.890, respectively. Conversely, according to Fig. 8 (b), 
the probabilities for drought durations less than 5 and 10 months, given a drought severity exceeding 2.290 (50th percentile), are 
equal to 0.650 and 0.971, respectively. According to findings, droughts are more likely to occur if drought duration is less than ten 
months and drought severity is greater than 2.290.

Frequency curves of drought characteristics play an essential role in designing and managing water resource structures. We 
constructed Gumbel-Hougaard copula SDF curves at 2, 5, 10, 20, 25, 50, and 100-year recurrence levels. The SDF curves are plotted 
in Fig. 9. It can be noticed from Fig. 9 that a severe drought could occur over the region with higher return periods for a specific 
duration. For instance, historical drought episodes with a severity of 37.58 were observed in March 1999 and April 2001, with more 
than 50 years of return periods. The drought was continuously monitored in February 2004 and October 2004, with a severity of 
14.83 with a return period of 2.5 years. Using this knowledge, drought mitigation plans such as dam reservoirs or percolation tank 
conservation structures can help drought-prone areas obtain more water. Furthermore, the SDF curves are considered a device for 
understanding future temporal traits of drought occurrences. Also, these curves assisted policymakers and engineers in decision-
making, risk assessment, and proper water resource planning and management.

In comparison to other studies, we found two more relevant studies that were conducted in this region for the evaluation of 
12

drought characteristics using different indices. Ullah and Akbar [43] developed the regional framework by constructing the contours 
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Fig. 8. (a) Conditional probability distribution of drought severity given that drought duration (b) conditional probability distribution of drought duration given that 
drought severity.

Fig. 9. Drought Severity-Duration-Frequency curves at 2, 5, 10, 20, 25, 50, and 100 years recurrence levels.

of drought severity and duration curves at different fixed reassurance levels. Their results show that the last three regions have more 
droughts than the other homogeneous regions. In another study, Ullah et al. [44] derive the drought severity and duration curves 
from different drought indices. They conclude that Baluchistan has a mixed climate with respect to scales and climatic conditions. 
They argue that severity duration curves rise with the increment of return levels. In the literature, there is no evidence of such 
type of study that considered meteorological stations of whole region for predicting drought characteristics for the entire region by 
corporating the collected information from different stations of the region. Our study deviates from a previous study in the following 
ways: we considered a moderate timescale for calculating SPIs, which accumulate precipitation data at six months. We also derived 
the joint and conditional probability distributions, which better indicate the chances of droughts in the perspective region. Third, we 
predict future drought events based on the conditional copula distribution mechanism, which will precisely forecast drought events

3.5. Limitations of the study

The study relies on several simplifying assumptions, such as the choice of copula, parametric distributions, and other model 
13

specifications. These assumptions may not fully capture the complexity of the real data processes governing droughts. Different 
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choices of copulas and distributions could yield different results. In addition, the study focuses on the Baluchistan region in Pakistan, 
and the findings may not be directly applicable to other regions with different climatic and environmental conditions. Drought 
characteristics and their dependencies may vary across regions, so generalizing the results to other areas should be done cautiously.

Despite these limitations, the study provides valuable insights into drought characteristics and their dependencies in the Baluchis-
tan region, offering a foundation for drought risk assessment and water resource management. Future research could address these 
limitations by incorporating more diverse data sources, considering non-stationarity, exploring alternative modeling approaches, and 
validating the models more rigorously.

4. Conclusions and recommendations

In this comprehensive study, we have meticulously employed a robust bivariate copula-based methodology to unravel the intri-
cate fabric of drought characteristics and predict future risks across the Baluchistan region. Droughts, being inherently uncertain, 
manifest in varying degrees of severity and duration, presenting a complex challenge that demands a proper solution through classy 
probabilistic models. To articulate droughts, we leveraged the SPI and examined the monthly average precipitation data for the 
Baluchistan region, spanning a 6-month accumulation period. Our exploration of probabilistic modeling revealed four distinct para-
metric probability distributions—Gamma, Weibull, Lognormal, and exponential. Each model was evaluated for its suitability in 
encapsulating the essence of drought events. Among these, the Lognormal distribution emerged as the prime contender for fostering 
joint dependence modeling of droughts via copulas, ultimately offering a robust foundation for the subsequent analyses.

We relied on a copula framework to model dependence in drought characteristics. Through careful assessment, the Extreme Value 
Gumbel-Hougaard copula stood out as the most adept choice for effectively capturing the joint behavior of drought characteristics. 
This rigorous selection paved the way for the derivation of both joint and conditional probability distributions, which in turn 
provided the groundwork for constructing SDF curves. These curves, associated with various recurrence intervals, offer invaluable 
insights into constructing vital water harvesting and conservation infrastructure in the region. This study marks a fundamental gait 
toward comprehending the dynamics of drought characteristics and engineering strategic pathways for managing their impact. The 
comprehensions harvested and the methodologies employed lay the foundation for a more resilient Baluchistan—a region fortified 
against the changeable grip of droughts and empowered to forge a sustainable water future. The findings of this study carry critical 
implications for the water management landscape of Baluchistan. With water scarcity forthcoming, sensible action is needed to 
prevent permanent shortages of essential necessities. A robust water management system tailored to the unique challenges of the 
Baluchistan region is crucial. The outline for this scheme can draw upon the insights gathered from this research, ensuring that water 
resources are harnessed and conserved effectively to alleviate the impact of droughts on everyday life.

We recommend considering spatial extents within copula settings to further refine this study’s methodology and insights. Precipi-
tation variability across space and time necessitates an enhanced framework to capture the effects accurately. This spatial refinement 
would serve as a cornerstone for advancing the accuracy and applicability of our findings. By doing so, we can provide even more 
precise and detailed insights into drought characteristics and their management in Baluchistan.
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