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ABSTRACT 

This study investigated the effect of systemic administration of isosorbide-dinitrate (ISDN) on 
oxidative stress and brain monoamines in a toxic model of brain demyelination evoked by intra-
cerebral injection (i.c.i) of ethidium bromide (10 µl of 0.1 %). Rats received saline (control) or 
ISDN at 5 or 10 mg/kg for 10 days prior to injection of ethidium bromide. Rats were euthanized 
one day later, and then the levels of reduced glutathione (GSH), lipid peroxidation (malondialde-
hyde; MDA), nitric oxide (nitrite/nitrate), acetylcholinesterase (AChE) activity, paraoxonase ac-
tivity as well as monoamine levels (serotonin, dopamine and noradrenaline) were assessed in the 
brain cortex in different treatment groups. The i.c.i of ethidium bromide resulted in increased ox-
idative stress in the cortex one day after its injection; (i) MDA increased by 36.9 %; (ii) GSH de-
creased by 20.8 %, while (iii) nitric oxide increased by 60.3 %; (iv) AChE and paraoxonase activ-
ities in cortex decreased by 35.9 % and 29.4 %, respectively; (v) serotonin was significantly in-
creased. In ethidium bromide-treated rats, pretreatment with ISDN at 10 mg/kg decreased cortical 
MDA by 23.9 %. Reduced glutathione was increased by 25.1 % ISDN at 10 mg/kg, while nitric 
oxide showed a 32.8 and 41.7 % decrease after 5 and 10 mg/kg of ISDN, respectively. Acetyl-
cholinesterase activity increased by 24.3 % by 10 mg/kg of ISDN. Paraoxonase activity showed 
further decrease by 72.2 and 83.8 % after treatment with 5 and 10 mg/kg of ISDN, respectively. 
The administration of ISDN decreased the level of serotonin and noradrenaline compared with 
the ethidium bromide only treated group. Overall, the present findings suggest neuroprotective 
effect of ISDN against oxidative stress in this model of chemical demyelination. 
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INTRODUCTION 
Demyelinating diseases of the central 

nervous system are a heterogeneous group of 
chronic inflammatory disorders, the hallmark 
of which is loss of myelin sheath and nerve 
conduction deficits leading to motor and/or 
sensory dysfunction and are the leading cause 

of nontraumatic neurological disability in 
young adults (Hu and Lucchinetti, 2009). The 
spectrum of demyelinating disorders includes 
'autoimmune' inflammatory demyelinating 
diseases, the inflammatory demyelinating 
diseases of infectious aetiology, and the de-
myelinating or dysmyelinating diseases of 
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genetic/hereditary background. In addition, 
primary demyelination is present in other 
conditions, such as brain ischaemia and in-
toxication (Lassmann, 2001). Multiple scle-
rosis is by far the most common inflammato-
ry demyelinating disease leading to focal 
plaques of primary demyelination with a var-
iable degree of axonal and neuronal degener-
ation (Love, 2006; Lassmann et al., 2007). 

Oxidative stress has been implicated in 
both normal aging and in various neuro-
degenerative disorders. In the brain, the high 
content of polyunsaturated fatty acids, the 
high utilization of oxygen account for the 
susceptibility to free radical damage. The 
mechanisms of tissue injury in demyelinating 
diseases of the central nervous system are 
poorly understood but increasing evidence 
support a role for oxidative stress due to an 
imbalance between free radicals generation 
and endogenous antioxidant mechanisms. 
Reactive oxygen species, nitric oxide, and 
proinflammatory cytokines released by mon-
ocyte-derived macrophages contribute to neu-
roinflammation, demyelination and axonal 
damage and disease progression in multiple 
sclerosis (Mirshafiey and Mohsenzadegan, 
2009; Smith, 2011; de Vries et al., 2011). 
Multiple sclerosis patients showed increased 
generation of superoxide free radicals in 
blood (Glabinski et al., 1993), elevated levels 
of thiobarbituric acid reactive substances and 
reduced protein sulfhydryl groups in cerebro-
spinal fluid and serum (Mitosek-Szewczyk et 
al., 2010), suggesting increased free radical 
production and lipid peroxidation. Oxidized 
lipids and DNA were highly enriched in ac-
tive multiple sclerosis plaques (Haider et al., 
2011). Evidence also implicates increased 
nitric oxide generated by the inducible form 
of nitric oxide synthase (iNOS) in the in-
flammation and demyelination in multiple 
sclerosis. Increased iNOS activity has been 
demonstrated in monocytes/macrophages 
and/or astrocytes in demyelinating lesions of 
postmortem tissues in multiple sclerosis (Ba-
gasra et al., 1995; Oleszak et al., 1998; Liu et 

al., 2001). Nitric oxide is increased in serum 
of patients with multiple sclerosis (Ibragic et 
al., 2012). Nitric oxide is likely to be in-
volved in axonal and neuronal injury in de-
myelinating conditions (Kapoor et al., 2000; 
Garthwaite et al., 2002).  

Changes in neurotransmitter concentra-
tions in multiple sclerosis and the experi-
mental autoimmune encephalomyelitis (EAE) 
model of multiple sclerosis are recognized to 
underlie many neurological symptoms asso-
ciated with the disease, and there is accumu-
lating evidence demonstrating that immune 
function is directly regulated by the activity  
of certain neurotransmitters (Bhat et al., 
2010; Lee et al., 2011;  Vollmar et al., 2009). 
It has been recently observed that a mouse 
model of EAE is associated with chronic def-
icits in spinal cord concentrations of nora-
drenaline (NE), 5-hydroxytryptamine (5-HT/ 
serotonin) and γ-aminobutyric acid (GABA) 
(Musgrave et al., 2011). Furthermore, recent 
studies have shown that therapeutic agents 
that increase GABAergic and monoaminergic 
signaling can lessen the severity of EAE 
(Bhat et al., 2010; Simonini et al., 2010; Ta-
ler et al., 2010). Nitric oxide may play a role 
in physiological neuronal functions such as 
long-term potentiation as a retrograde mes-
senger (Shuman and Madison, 1994; Medina 
and Izquierdo, 1995) and in the regulation of 
gene expression (Yun et al., 1997). Further-
more, it can act as a potent vasodilator and an 
inhibitor of platelet aggregation (Iadecola, 
1997; Szabo, 1996) and, as has been reported, 
in the S-nitrosylation of proteins (Arnelle and 
Stamler,1995; Rauhala et al., 1998). Earlier 
studies have shown that nitric oxide exerts a 
regulatory influence on behavioral and physi-
ological parameters in normal and stressed 
rats (Gulati and Chakraborti, 2007; Masood 
et al, 2003). The results of Hummel et al. 
(2006) described an antioxidant effect for ni-
tric oxide. 

Isosorbide dinitrate (ISDN) (an orally ac-
tive form of nitrates) is a drug widely used 
for the management of coronary ischaemia by 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gulati%20K%22%5BAuthor%5D
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virtue of its vasodilatory properties. ISDN is 
capable of releasing nitric oxide in a concen-
tration- and pH-dependent manner (Jiang et 
al., 2001). Thus, the present study was de-
signed to investigate the effect of the nitric 
oxide donor ISDN on oxidative stress and 
brain monoamines in a model of toxic de-
myelination evoked by intracerebral injection 
of ethidium bromide in the rat. Ethidium 
bromide is a DNA chelating agent that is 
commonly used to evoke transient central 
nervous system demyelination in experi-
mental animals, which can be used to study 
the pathogenetic mechanisms and the possi-
ble therapeutic interventions (Yajima and Su-
zuki, 1979; Jeffery and Blakemore, 1997; 
Mazzanti et al., 2006). 

 
MATERIALS AND METHODS 

Animals 
Twenty five adult male Sprague Dawley 

rats weighing (130 ± 10 g) (age: 10–11 
weeks) were used in this study. The animals 
were obtained from the Animal House Colo-
ny of the National Research Centre (Cairo, 
Egypt). They were housed in stainless steel 
wire meshed suspended rodent cages under 
environmentally controlled conditions. The 
ambient temperature was 25 ± 2 °C and the 
light/dark cycle was 12/12 hours. The ani-
mals had free access to water and standard 
rodent chow diet (NRC rodent chow). All 
animals received human care in compliance 
with guidelines of the Ethical Committee of 
National Research Centre, Egypt Centre and 
followed the recommendations of the Nation-
al Institutes of Health Guide for Care and Use 
of Laboratory Animals (Publication No. 85-
23, revised 1985). Equal groups of 5 rats each 
were used in all experiments.  

 
Drugs and chemicals 

Ethidium bromide (Sigma, St Louis, MO, 
USA) and isosorbide dinitrate (Amrya 
Pharm. Ind., Cairo, Egypt) was used and dis-
solved in isotonic (0.9 % NaCl) saline solu-
tion immediately before use. The doses of 

isosorbide dinitrate in the study were based 
upon the human dose after conversion to that 
of rat according to Paget and Barnes (1964) 
conversion tables.  

 
Surgical procedures 

Rats were anaesthetized with sodium pen-
tobarbital (40 mg/kg, i.p.) and after shaving 
the hair from the fronto-occipital area anti-
sepsis was performed with 2 % iodine solu-
tion. A hole of 0.5 Cm was made using or-
thodontic roof motor and number 2 drill to 
the right of the bregma until the dura matter 
was exposed. With the use of a Hamilton sy-
ringe fitted with a 30-gauge needle the solu-
tion of ethidium bromide (10 µl of 0.1 %) 
was injected in the cisterna pontis (basal), an 
enlargement of the subarachnoid space on the 
ventral surface of the pons. A group of rats 
(n=5) was undergone to the same surgical 
procedure but injected with saline (0.9 %) 
and served as negative control. The dura mat-
ter left open and the skin together with re-
mainder of the subcutaneous tissue was su-
tured with a nylon thread 4.0. 

 
Experimental design 

Rats randomly assigned into 4 groups 
(n=5 each) received saline (control) or ISDN 
at 5 or 10 mg/kg orally for 10 days weeks 
prior to injection of ethidium bromide. Next 
day after ethidium bromide injection, the an-
imals were euthanized by decapitation in 
deep ether anesthesia. Brains were then re-
moved, washed with ice-cold saline solution 
(0.9 % NaCl), and sectioned into cortex, 
weighed and stored at -80 °C for further de-
termination of biochemical parameters. The 
brain was homogenized with 0.1 M phos-
phate buffer saline at pH 7.4, to give a final 
concentration of 10 % w/v for the biochemi-
cal assays. For the determination of monoam-
ine neurotransmitters, frozen samples were 
homogenized in cold 0.1 N-perchloric acid.  
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Biochemical studies 
Determination of brain lipid peroxidation 

Lipid peroxidation was assayed by meas-
uring the level of malondialdehyde (MDA) in 
the brain tissues. Malondialdehyde was de-
termined by measuring thiobarbituric reactive 
species using the method of Ruiz-Larrea et al. 
(1994) in which the thiobarbituric acid reac-
tive substances react with thiobarbituric acid 
to produce a red colored complex having 
peak absorbance at 532 nm. 

 
Determination of brain reduced glutathione 
content 

Reduced glutathione (GSH) was deter-
mined in brain tissue by Ellman's method 
(1959). The procedure is based on the reduc-
tion of Ellman´s reagent by –SH groups of 
GSH to form 2-nitro-s-mercaptobenzoic acid, 
the nitromercaptobenzoic acid anion has an 
intense yellow color which can be determined 
spectrophotometrically. A mixture was di-
rectly prepared in a cuvette: 2.25 ml of 0.1 M 
K-phosphate buffer, pH 8.0; 0.2 ml of the 
sample; 25 μl of Ellman's reagent (10 mM 
5,5′-dithio-bis-2-nitrobenzoic acid in metha-
nol). After 1 min the assay absorbance was 
measured at 412 nm and the GSH concentra-
tion was calculated by comparison with a 
standard curve. 

 
Determination of brain acetylcholinesterase 
activity 

The procedure used for the determination 
of acetylcholinesterase activity in the cortex 
was a modification of the method of Ellman 
et al. (1961) as described by Gorun et al. 
(1978). The principle of the method is the 
measurement of the thiocholine produced as 
acetylthiocholine is hydrolyzed. The colour 
was read immediately at 412 nm. 

 
Determination of brain nitric oxide  

Nitric oxide measured as nitrite was de-
termined by using Griess reagent, according 
to the method of Moshage et al. (1995). 
Where nitrite, stable end product of nitric ox-

ide radical, is mostly used as indicator for the 
production of nitric oxide.  

 
Determination of brain paraoxonase activity 

Arylesterase activity of paraoxonase was 
measured spectrophotometrically in superna-
tants using phenylacetate as a substrate (Hi-
gashino et al. 1972; Watson et al., 1995). 

 
Determination of brain monoamines 

Determination of brain serotonin, nor-
adrenaline and dopamine was carried out us-
ing high performance liquid chromatography 
(HPLC) system, Agilent technologies 1100 
series, equipped with a quaternary pump 
(Quat pump, G131A model). Separation was 
achieved on ODS reversed phase column 
(C18, 25 x 0.46 cm i.d. 5 µm). The mobile 
phase consisted of potassium phosphate buff-
er/methanol 97/3 (v/v) and was delivered at a 
flow rate of 1 ml/min. UV detection was per-
formed at 270 nm and the injection volume 
was 20 µl. The concentration of both cate-
cholamines and serotonin were determined by 
external standard method using peak areas. 
Serial dilutions of standards were injected 
and their peak areas were determined. A line-
ar standard curve was constructed by plotting 
peak areas versus the corresponding concen-
trations. The concentration in samples was 
obtained from the curve.  

 
Statistical analysis 

Data are expressed as mean ± SE. Data 
were analyzed by one-way analysis of vari-
ance, followed by Duncan's multiple range 
test for post hoc comparison of group means. 
Effects with a probability of p < 0.05 were 
considered to be significant. 

 
RESULTS 

Oxidative stress  
In saline treated rats, i.c. ethidium bro-

mide injection resulted in a significant in-
crease in the level of MDA by 36.9 % (48.6 ± 
4.1 vs 35.5 ± 3.0 nmol/g, p < 0.05) (Figure 1). 
Reduced glutathione decreased by 20.8 % 
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(5.10 ± 0.28 vs 6.44 ± 0.33 µmol/g, p < 0.05) 
(Figure 2), while nitric oxide increased by 
60.3 % (15.45 ± 0.83 vs. 9.64 ± 0.51 µmol/g, 
p < 0.05) after ethidium bromide injection 
compared with the saline control group (Fig-
ure 3). 

 
Figure 1: Effect of isosorbide dinitrate (ISDN) 
treatment on the concentration of malondialde-
hyde (MDA) in the cortex of rats subjected to in-
tracerebral injection of ethidium bromide. Data 
are means ± SEM. *: p < 0.05 vs the saline con-
trol group. +: p < 0.05 vs the ethidium bromide 
control group. 
 

Pretreatment with ISDN at 5 mg/kg for 10 
days prior to ethidium bromide injection had 
no significant effect on cortical MDA (43.0 ± 
3.6 vs 48.6 ± 4.1 nmol/g, p > 0.05). However, 
ISDN administered at 10 mg/kg resulted in a 
significant decrease in MDA in cortex by 
23.9 % compared with the ethidium bromide 
control group (37.0 ± 2.6 vs 48.6 ± 4.1 
nmol/g, p < 0.05) (Figure 1). Reduced gluta-
thione was not significantly altered by ISDN 
treatment at 5 mg/kg, but increased by 
25.1 % after treatment with the higher dose of 
ISDN (6.38 ± 0.41 vs 5.1 ± 0.28 µmol/g) 
(Figure 2). Meanwhile, nitric oxide decreased 
by 32.8 and 41.7 % following ISDN admin-
istration at 5 and 10 mg/kg, respectively, 
compared with the ethidium bromide control 
group (10.38 ± 0.64 and 9.0 ± 0.71 vs 15.45 ± 
0.83 µmol/g, p < 0.05 (Figure 3). 

 
Figure 2: Effect of isosorbide dinitrate (ISDN) 
treatment on reduced glutathione (GSH) in the rat 
cortex after intracerebral administration of the 
demyelinating agent ethidium bromide. Data are 
means ± SEM. *: p < 0.05 vs the saline control 
group and between different groups as indicated. 
+: p < 0.05 vs the ethidium bromide control group. 

 
Figure 3: Effect of isosorbide dinitrate (ISDN) 
treatment on nitric oxide concentration in the rat 
cortex after intracerebral administration of the 
demyelinating agent ethidium bromide. Data are 
means ± SEM. *: p < 0.05 vs the saline control 
group. +: p < 0.05 vs the ethidium bromide control 
group. 
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Acetylcholinesterase activity  
In saline treated rats, AChE activity de-

creased by 35.9 % after i.c. ethidium bromide 
injection (3.82 ± 0.21 vs 5.96 ± 0.38 µmol 
SH/g/min). AChE activity was unaltered in 
rats treated with ISDN at 5 mg/kg. The higher 
dose of ISDN, however, increased AChE ac-
tivity by 24.3 % compared with the ethidium 
bromide control group (4.75 ± 0.28 vs 3.82 ± 
0.21 µmol SH/g/min, p < 0.05 (Figure 4).  

 
Figure 4: Effect of isosorbide dinitrate (ISDN) 
treatment on nitric oxide concentration in the rat 
cortex after intracerebral injection of the demye-
linating agent ethidium bromide. Data are means 
± SEM. *: p < 0.05 vs the saline control group. +: 
p < 0.05 vs the ethidium bromide control group. 
 
Paraoxonase activity 

In saline treated rats, paraoxonase activity 
decreased by 29.4 % after i.c. ethidium bro-
mide injection (29.1 ± 1.8 vs 41.22 ± 2.3 
kU/l). Paraoxonase activity showed a further 
decrease by 72.2 and 83.8 % after treatment 

with ISDN at 5 or 10 mg/kg, respectively (8.1 
± 0.62 and 4.7 ± 0.38 vs 29.1 ± 1.8 kU/l, 
p < 0.05 (Figure 5).  

 
Figure 5: Effect of isosorbide dinitrate (ISDN) 
treatment on paraoxonase activity in the rat cor-
tex after intracerebral injection of the demyelinat-
ing agent ethidium bromide. Data are means ± 
SEM. *: p < 0.05 vs the saline control group. +: 
p < 0.05 vs the ethidium bromide control group. 
 
Brain monoamines 

The levels of dopamine and noradrenaline 
were not significantly altered by ethidium 
bromide injection, whereas serotonin was in-
creased compared with the saline control 
group. ISDN given at 5 or 10 mg/kg resulted 
in 41.6, 70.6 % decrease in serotonin and 
28.6, 31.9 % decrease in noradrenaline, re-
spectively when compared with the ethidium 
bromide control group (Table 1).  
 
 
 

 
 
Table 1: Effect of ISDN on serotonin, dopamine and noradrenaline in mice cortex after ethidium bromide 
injection 

 Serotonin 
(µg/g tissue) 

Dopamine 
(µg/g tissue) 

Noradrenaline 
(µg/g tissue) 

Saline 2.96 ± 0.18 3.20 ± 0.21 2.22 ± 0.12 
Ethidium  5.10 ± 0.32* 3.39 ± 0.12 2.13 ± 0.18 
ISDN 5 mg/kg 2.98 ± 0.12+ 3.21 ± 0.18 1.52 ± 0.07*+ 
ISDN 10 mg/kg 1.50 ± 0.08*+ 3.26 ± 0.11 1.45 ± 0.11*+ 
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Results are mean ± S.E. Six mice were 
used per each group. Data were analyzed by 
one way ANOVA and means of different 
groups were compared by Duncan’s multiple 
range test. P < 0.05 was considered statisti-
cally significant. *: p < 0.05 vs saline control 
group. +: p < 0.05 vs the ethidium control 
group. 

 
DISCUSSION 

The present study provides evidence that 
the administration of the vasodilator and ni-
tric oxide releasing agent ISDN in a model of 
toxic demyelination resulted in amelioration 
of oxidative stress markers. The intracerebral 
or intraspinal administration of the DNA che-
lating agent ethidium bromide has been wide-
ly utilized to evoke toxic demyelination in 
rodents, which can be used to study the path-
ogenetic mechanisms involved in the destruc-
tion of myelin as well as to evaluate possible 
therapeutic interventions (Yajima and Suzuki, 
1979; Honmou et al., 1996; Jeffery and 
Blakemore, 1997; Graça et al., 2001; Maz-
zanti et al., 2006). In the present study, the 
local injection of ethidium bromide into the 
rat brain resulted in elevated MDA, an index 
of lipid peroxidation (Gutteridge, 1995), 
which indicates increased free radical produc-
tion in cerebral cortex. There was also a sig-
nificant decrease in the level of GSH, the ma-
jor thiol present in brain tissue, and the most 
important redox buffer in cells, which has an 
important role in the protection against oxida-
tive injury due to reactive oxygen species 
(Wang and Ballatori, 1998). This suggests 
consumption of GSH by the increased free 
radical production following ethidium bro-
mide injection. Nitric oxide was markedly 
increased after ethidium bromide. These find-
ings suggest increased oxidative stress by 
ethidium bromide in the cerebral cortex and 
are in line with other studies indicating in-
creased oxidative stress in different brain are-
as by the toxin (Abdel-Salam el al., 2011). 
The increase in oxidative stress following 
ethidium bromide injection was decreased by 

prior treatment with the nitric oxide donor 
ISDN, which decreased MDA and increased 
GSH in the cortex. These findings have im-
portant clinical implications in view of the 
evidence that oxidative stress is involved in 
demyelination disorders. Multiple sclerosis 
patients were found to have elevated lipid 
peroxidation and decreased levels endoge-
nous antioxidants, suggesting consumption of 
the scavenger molecules by free radical ex-
cess (Karg et al., 1999; Mitosek-Szewczyk et 
al., 2010). In addition, GSH levels measured 
in the brain with magnetic resonance spec-
troscopy were lower in patients with multiple 
sclerosis compared with control (Srinivsan et 
al., 2010; Choi et al., 2011). Oxidized lipids 
and DNA were highly enriched in active mul-
tiple sclerosis plaques and oxidative injury of 
oligodendrocytes and neurons were associat-
ed with demyelination and axonal or neuronal 
injury (Haider et al., 2011). Studies have also 
indicated increased oxidative and nitrosative 
stress in experimental models eg., the ethidi-
um bromide-induced damage (Abdel-Salam 
et al., 2011) and in autoimmune encephalo-
myelitis (Ljubisavljevic et al., 2011; Vana et 
al., 2011).  

Nitric oxide is an important molecule in-
volved in synaptic transmission and regula-
tion of vascular tone. Nitric oxide is produced 
within the central nervous system from L-
arginine by a constitutive (neuronal) form of 
nitric oxide synthase (nNOS), an endothelial 
form in vascular endothelium (eNOS) or an 
inducible form (iNOS) localized to glia, and 
requires activation by endotoxin and cyto-
kines (Moncada and Bolaños, 2006). The 
production of nitric oxide is increased in 
brain and serum of multiple sclerosis patients 
(De Groot et al., 1997; Liu et al., 2001; Koch 
et al., 2008). Nitric oxide is a free radical and 
can react with many other free radicals e.g., 
superoxide radical generating peroxynitrite 
radical, capable of causing oxidative changes 
to macromolecules e.g., proteins, lipids and 
DNA (Moncada and Bolaños, 2006).  
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Elevated nitric oxide concentrations 
which occur in neuroinflammatory states can 
thus result in neurodegeneration. Increased 
levels of nitric oxide causes axonal degenera-
tion (Kapoor et al., 2000; Garthwaite et al., 
2002) and activation of nNOS in oligoden-
drocytes leads to oligodendrocyte injury re-
sulting in demyelination (Yao et al., 2010). 
Evidence also implicates iNOS in the in-
flammation and demyelination of optic neuri-
tis, where localized loss of myelin proteins, 
myelin breakdown, and the presence of iNOS 
and nitrotyrosine were associated with in-
flammatory infiltrates on the edges of the 
nerve and reactive astrocytes (Tsoi et al., 
2006). In experimental allergic encephalomy-
elitis (EAE), nitrotyrosine, an indicator of 
peroxynitrite formation is increased in the 
spinal cord white matter, which correlated 
with loss of mature oligodendrocytes (Li et 
al., 2011).  

Given that nitric oxide is likely to be in-
volved in axonal and neuronal injury in de-
myelinating conditions (Kapoor et al., 2000; 
Garthwaite et al., 2002), in the present study, 
the nitric oxide donor ISDN was used to 
evaluate a possible modulating effect. ISDN 
is capable of releasing nitric oxide in a con-
centration- and pH-dependent manner. ISDN 
increased nNOS and eNOS activities in the 
presence oxyhemoglobin under hypoxia due 
to the increase in molecular oxygen concen-
tration (Jiang et al., 2001). Interestingly, pre-
treatment with ISDN decreased MDA, whilst 
elevating the level of reduced glutathione in 
cerebral cortex. Moreover, ISDN resulted in 
marked decrease in the level of nitric oxide in 
cortex. These results suggest that nitric oxide 
donors are likely to exert beneficial effects on 
the demyelination process. The results are 
also unexpected in view of the evidence that 
implicates nitric oxide in demyelinating dis-
eases of the central nervous system. Studies 
thus have shown that the production of nitric 
oxide is increased in brain and serum of mul-
tiple sclerosis patients (De Groot et al., 1997; 
Liu et al., 2001; Koch et al., 2008). Increased 

levels of nitric oxide causes axonal degenera-
tion (Kapoor et al., 2000; Garthwaite et al., 
2002) and activation of nNOS in oligoden-
drocytes which leads to oligodendrocyte inju-
ry resulting in demyelination (Yao et al., 
2010). Evidence also implicates iNOS in the 
inflammation and demyelination of optic neu-
ritis, where localized loss of myelin proteins, 
myelin breakdown, and the presence of iNOS 
and nitrotyrosine were associated with in-
flammatory infiltrates on the edges of the 
nerve and reactive astrocytes (Tsoi et al. 
2006). In experimental allergic encephalomy-
elitis, nitrotyrosine, an indicator of peroxyni-
trite formation is increased in the spinal cord 
white matter, which correlated with loss of 
mature oligodendrocytes (Li et al., 2011). Ni-
tric oxide is a free radical and can react with 
many other free radicals e.g., superoxide rad-
ical generating peroxynitrite radical, capable 
of causing oxidative changes to macromole-
cules e.g., proteins, lipids and DNA. In-
creased nitric oxide production by microglia 
which occurs in neuroinflammatory states can 
thus result in neurodegeneration. While nitric 
oxide normally functions as a physiological 
neuronal mediator, excess production of ni-
tric oxide mediates cellular toxicity by dam-
aging critical metabolic enzymes and by re-
acting with superoxide to form an even more 
potent oxidant, peroxynitrite (Bredt, 1999). 
On the other hand, the effect of nitric oxide 
donors in neurodegenerative and demyelinat-
ing conditions is not clear. Nitric oxide do-
nors exerted cytotoxic effects on dopaminer-
gic neurons (Nunes et al., 2008; Di Matteo et 
al., 2009; Kurauchi et al., 2009) via mecha-
nisms that include mitochondrial dysfunction 
(Nunes et al., 2008). Nitric oxide donors 
cause reversible conduction block in both 
normal and demyelinated axons of the central 
and peripheral nervous systems. Notably, 
conduction in demyelinated and early remye-
linated axons is particularly sensitive to block 
by nitric oxide (Redford et al., 1997). In cul-
tured hippocampal neurons, ISDN as well as 
another newly developed nitric oxide-
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releasing agent rapidly and significantly re-
duced axonal transport in anterograde and 
retrograde directions (Kiriyama et al., 2002). 
Nitric oxide donors exert metabolic effects 
e.g., nitroglycerin, ISDN, molsidomine, and 
sodium nitroprusside induced stimulation of 
glycolysis and shortened adenosine triphos-
phate (ATP)-turnover time in rat erythrocytes 
(Maletic et al., 2000). In rat reticulocytes, 
ISDN, stimulated glycolysis and decreased 
ATP production via oxidative phosphoryla-
tion (Maletic et al., 1999). The NO donor 
"spermine NONOate" decreased stimulated 
release of ATP from rabbit erythrocytes 
(Olearczyk et al., 2004). In hippocampal syn-
aptosomes of rats, sodium nitroprusside (but 
not other nitric oxide donors such as S-
nitroso-N-acetyl-penicillamine and ISDN) 
inhibited adenosine triphosphate diphospho-
hydrolase and 5'-nucleotidase involved in an 
enzymatic chain for the hydrolysis of ATP to 
adenosine in the synaptic cleft (Kirchner et 
al., 2001). Thus, whilst nitric oxide plays a 
physiological role in neuronal cell signaling, 
its over-production may cause neuronal ener-
gy compromise leading to neurodegeneration. 
Other researchers provided data suggesting 
that the administration of the exogenous ni-
tric oxide donor molsidomine, a drug used for 
the treatment of coronary artery disease, lim-
its the development of autoimmune encepha-
lomyelitis and other T helper 1 (Th1) cell-
mediated inflammatory diseases (Kwak et al., 
2003). Studies also suggested that enhanced 
nitric oxide production by the nitric oxide 
donor SIN-1 (3-morpholinosydnonimine hy-
drochloride) during the priming phase of au-
toimmune encephalomyelitis promotes apop-
tosis, down-regulates disease-promoting im-
mune reactivities, and ameliorates clinical 
EAE, without depending on NOS (Xu et al., 
2001). Moreover, the increase in iNOS, 
nNOS and nitrotyrosine induced in the cere-
bral cortex of rats subjected to ischemia was 
prevented by the nitric oxide donor LA 419 
(Serrano et al., 2007). It has been suggested 
that nitric oxide may be a double-edged 

sword, mediating tissue damage on the one 
hand and on the other hand modulating com-
plex immunological functions which may be 
protective (Giovannoni et al., 1998). 

Isosorbide dinitrate has been reported to 
preserve cell viability in the hippocampus 
after focal ischemia (Ramos-Zúñiga et al., 
1998). In addition, intravenous administration 
of nitric oxide donors reduces the infarct size 
after transient focal cerebral ischemia in rats 
(Salom et al., 2000). Although there are sev-
eral potential mechanisms for nitric oxide 
neuroprotective effects during brain ischemia 
(Verrecchia et al., 1995), a rationale for the 
use of nitric oxide promoting strategies lies 
on the ability of nitric oxide to increase brain 
perfusion in areas of compromised perfusion 
around the ischemic core. NO has many addi-
tional roles outside the cardiovascular sys-
tem. It appears to promote or prevents cellu-
lar inflammation and death. Evidence shows 
that nitric oxide can be anti-inflammatory 
through several activities; inhibition of matu-
ration of cytokines, such as IL-18 and IL 1β 
(Kim et al., 1997); blocking the effect of 
INF-γ (Murphy, 2000) and preventing the 
expression of cellular expression molecules 
via effects on NF-κB (Laroux et al, 2001; 
Brüne et al., 1998). Alternatively, nitric oxide 
can enhance neuronal survival by attenuation 
of Ca++ influx via antagonism of the NMDA 
glutamate receptors. The reasons for the dual 
effects of nitric oxide are unclear, although it 
may be that where there are high local con-
centrations of nitric oxide or where it is de-
rived from a particular source (such as iNOS 
or nNOS) the toxic effects predominate 
(Willmot and Bath, 2003).  

An important new observation in the pre-
sent study was the decrease in paraoxonase 
activity in cortex by ethidium bromide. 
Paraoxonase is a calcium-dependent serum 
esterase that is synthesized by the liver and is 
released into the circulation, where it associ-
ates mainly with high density lipoproteins 
and protects LDL and cellular membranes 
against lipid peroxidation (La Du, 1992; Pri-
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mo-Parmo et al., 1996). The paraoxonase 
gene family in humans includes three mem-
bers: PON1, PON2 and PON3. PON1 pos-
sesses organophosphatase, arylesterase and 
lactonase activity and it hydrolyzes many dif-
ferent substrates (Rajkovic et al., 2011). Se-
rum PON1 and PON3 are inactivated under 
oxidative stress (Marsillach et al., 2004). The 
enzyme PON1 is largely thought to have a 
role in protection against oxidative stress 
(Watson et al., 1995; Mackness et al., 2006; 
Amengual-Cladera et al., 2011). It has been 
proposed that this enzyme might have a func-
tion related to the inactivation of oxidative 
stress by-products (either at a cellular level or 
blood-vessel wall) and other environmental 
chemicals (Rodrigo et al., 2001). Lead ex-
posed workers (Permpongpaiboon et al., 
2011) and patients with coronary heart dis-
ease (Kotur-Stevuljevic et al., 2008) showed 
increased lipid peroxidation and decreased 
PON1 activity. In multiple sclerosis patients, 
PON1 activity does not change in the course 
of stable and progressive type of multiple 
sclerosis. However, PON1 activity in relapse 
was significantly lower in comparison to the 
other multiple sclerosis groups (Jamroz-
Wisniewska et al., 2009). In the present 
study, paraoxonase activity was markedly 
decreased in the cortex of ethidium bromide 
treated rats and showed a further decrease 
following ISDN treatment. This occurred de-
spite a decrease of in lipid peroxidation 
(MDA) and increased GSH by the nitric ox-
ide donor. One intriguing possibility is that 
PON1 represents an early defense mechanism 
against oxidative stress, resulting in an initial 
sparing of GSH. With higher levels of oxida-
tive stress, depletion of the antioxidant gluta-
thione will ensue. Studies have also shown 
that incubation of myelin suspensions with 
the peroxynitrite donor 3-morpholinosyd-
nonimine (SIN-1) (but not nitric oxide or su-
peroxide alone) resulted in the formation of 
the lipid peroxidation product, MDA, indicat-
ing that peroxynitrite formation is required 
for myelin-lipid peroxidation. Nitric oxide 

actually inhibited lipid peroxidation in mye-
lin, as demonstrated using simple nitric oxide 
donors (van der Veen and Roberts, 1999). 

In the present study, ethidium bromide in-
jection resulted in increased serotonin con-
centration in cortex. The increase in serotonin 
was partially restored by ISDN treatment 
which also decreased noradrenaline, com-
pared with the ethidium bromide only treated 
group. Patients with multiple sclerosis were 
found to have increased cerebrospinal fluid 
noradrenaline and excitatory amino acid (glu-
tamate and aspartate) levels (Barkhatova et 
al., 1998). It has been shown that a mouse 
model of EAE is associated with chronic def-
icits in spinal cord concentrations of nor-
adrenaline, serotonin and γ-aminobutyric acid 
(GABA) (Musgrave et al., 2011) and that 
therapeutic agents that increase GABAergic 
and monoaminergic signaling can lessen the 
severity of EAE (Wang et al., 2008; Simonini 
et al., 2010). The findings of the current study 
also indicated that AChE activity decreased 
in the cortex early after ethidium bromide 
injection, suggesting alterations in choliner-
gic neurotransmission induced by the toxic 
agent (Taler et al., 2010). Moreover, AChE 
activity is increased by the higher dose of 
ISDN. Thus the administration of ISDN ap-
pears to correct the neurochemical alterations 
induced by the toxic agent in the cortex. 
Changes in neurotransmitter levels and AChE 
activity has been demonstrated in patients 
with multiple sclerosis and in experimental 
models of demyelination. AChE decreased in 
the cerebrospinal fluid of subjects with mul-
tiple sclerosis (and in Huntington's chorea 
patients). This suggested that cerebrospinal 
fluid AChE activity may globally reflect 
brain AChE, but pathology-induced changes 
may not be directly reflected (Ruberg et al., 
1987). Alterations in butyrylcholinesterase 
activity, another enzyme capable of hydrolys-
ing acetylcholine, were observed in multiple 
sclerosis white matter lesions diminished en-
zyme activity associated with myelin and an 
increased activity in cells with microglial 
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morphology (Darvesh et al., 2010). In ethidi-
um bromide-treated rats, AChE activity was 
found to vary in all the brain structures in ac-
cordance with the day studied (Mazzanti et 
al., 2006; Abdel-Salam et al., 2011).  

In summary, the present study indicated 
that the administration of the nitric oxide do-
nor ISDN in a model of toxic demyelination 
in rats resulted in decreased lipid peroxida-
tion, increased reduced glutathione. ISDN 
also lessened the elevation in nitric oxide and 
partially prevented the alterations in AChE 
activity induced by the toxic agent in the cor-
tex. These findings suggest that nitric oxide 
donors might demonstrable therapeutic bene-
fits in demyelinating conditions. 
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