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Abstract

A leading intellectual challenge in evolutionary genetics is to identify the specific phenotypes that drive adaptation.
Enzymes offer a particularly promising opportunity to pursue this question, because many enzymes’ contributions to
organismal fitness depend on a comparatively small number of experimentally accessible properties. Moreover, on first
principles the demands of enzyme thermostability stand in opposition to the demands of catalytic activity. This obser-
vation, coupled with the fact that enzymes are only marginally thermostable, motivates the widely held hypothesis that
mutations conferring functional improvement require compensatory mutations to restore thermostability. Here, we
explicitly test this hypothesis for the first time, using four missense mutations in TEM-1 b-lactamase that jointly increase
cefotaxime Minimum Inhibitory Concentration (MIC) �1500-fold. First, we report enzymatic efficiency (kcat/KM) and
thermostability (Tm, and thence DG of folding) for all combinations of these mutations. Next, we fit a quantitative model
that predicts MIC as a function of kcat/KM and DG. While kcat/KM explains �54% of the variance in cefotaxime MIC
(�92% after log transformation), DG does not improve explanatory power of the model. We also find that cefotaxime
MIC rises more slowly in kcat/KM than predicted. Several explanations for these discrepancies are suggested. Finally, we
demonstrate substantial sign epistasis in MIC and kcat/KM, and antagonistic pleiotropy between phenotypes, in spite of
near numerical additivity in the system. Thus constraints on selectively accessible trajectories, as well as limitations in our
ability to explain such constraints in terms of underlying mechanisms are observed in a comparatively “well-behaved”
system.

Key words: enzyme evolution, b-lactamase, functional synthesis, drug-resistance evolution, sign epistasis, antagonistic
pleiotropy.

Introduction
To first approximation, proteins evolve by the sequential sub-
stitution of individual missense mutations (Maynard Smith
1970), motivating interest in the underlying biochemical and
biophysical determinants of such events (Dean and Thornton
2007; Harms and Thornton 2013). For example the mecha-
nistic basis of adaptation has been explored in enzymes
[Lunzer et al. (2005) in isopropyl malate dehydrogenase;
Cou~nago et al. (2006, 2008), Tomatis et al. (2008), and Pe~na
et al. (2010) in adenylate kinase; Walkiewicz et al. (2012) in a
tetracycline-degrading enzyme; Meini et al. (2015) in metallo-
b-lactamase; Bershtein et al. (2015) and Rodrigues et al. (2016)
in dihydrofolate reductase], cellular receptors [Bridgham et al.
(2009) in corticoid receptors; Rosenblum et al. (2010) in Mc1r;
Baldwin et al. (2014) in sweet taste receptors], hemoglobin
(Tufts et al. 2015), two-component signaling pathways (Capra
et al. 2012), and fluorescent proteins (Field and Matz 2010).

Enzymes in particular are faced with an intrinsic tension
between thermostability and catalytic activity. As reviewed
by Beadle and Shoichet (2002), thermostability requires a
tightly packed core of hydrophobic residues surrounded by
a shell of exposed hydrophilic residues, together with

interior hydrogen bonding and pairing of opposite charges.
On the other hand, catalytic activity depends on exposed
hydrophobic residues, sequestration of charge groups from
solvent water, clustering of like charges, and unfilled hy-
drogen bond partners. Consistent with this view, it is now
well established that the removal of catalytic residues usu-
ally stabilizes an enzyme (Zhi et al. 1991; Meiering et al.
1992; Shoichet et al. 1995), while mutations endowing an
enzyme with novel function are generally destabilizing
(Tokuriki et al. 2008). Mutations such as these, which
simultaneously affect two or more phenotypes (e.g., activ-
ity and thermostability) are said to act pleiotropically.
Moreover, most enzymes are only marginally thermostable
(DePristo et al. 2005; Zeldovich et al. 2007; Tokuriki and
Tawfik 2009). Together, these observations motivate the
widespread hypothesis that enzyme adaptation should re-
quire both functionally beneficial but thermodynamically
destabilizing mutations, and compensatory stabilizing mu-
tations (Orencia et al. 2001; Wang et al. 2002; DePristo et al.
2005; Tokuriki and Tawfik 2009).

Here, we explicitly test this hypothesis for the first
time, using cefotaxime resistance evolution in TEM-1
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b-lactamase. b-lactamases are enzymes that hydrolyze
otherwise toxic b-lactam antibiotics such as penicillin
and its cognates (Walsh 2003). b-lactamases in E. coli
and other gram-negative bacteria have long served as a
model system for the quantitative, mechanistic dissection
of mutational effects on fitness (Zimmermann and
Rosselet 1977; Nikaido and Normark 1987; Raquet et al.
1994; Blazquez et al. 1995; Raquet et al. 1995; Wang et al.
2002; Bloom et al. 2005; Bershtein et al. 2006; Singh and
Dominy 2012; Jacquier et al. 2013; Firnberg et al. 2014;
Dellus-Gur et al. 2015; Stiffler et al. 2015). The utility of
b-lactamases in this work follows from their comparatively
simple biological function (Frère et al. 1999). b-lactam
antibiotics diffuse from the environment into the cell’s
periplasm, where they bind to and inactivate penicillin-
binding proteins (PBPs), enzymes critical for bacterial cell
wall maintenance. b-lactamase enzymes in turn are solely
responsible for the hydrolysis of b-lactams, thereby allow-
ing cells to survive in an otherwise lethal environment.

Specifically, by assuming that periplasmic b-lactam con-
centration is at equilibrium between diffusion and hydrolysis,
Nikaido and Normark (1987) modeled the minimum inhib-
itory concentration (MIC) of antibiotic that blocks cell
growth as

MIC ¼ S½ �lethal þ
S½ �lethal � kcat � E½ �active

P � A � KM þ S½ �lethal

� � ;
where [S]lethal is the periplasmic b-lactam concentration that
lethally inhibits the cell’s PBPs in the absence of any b-lacta-
mase, kcat and KM are the b-lactamase’s turnover rate and
Michaelis constant, respectively, [E]active is the periplasmic
concentration of catalytically active enzyme, and P and A
are the cell’s periplasmic permeability coefficient and surface
area, respectively. Next, if [S]lethal�MIC (i.e., that the enzyme
confers substantial protection from the b-lactam)

MIC � Z � kcat � E½ �active

KM þ S½ �lethal

; (1a)

where Z¼ S½ �lethal

P�A is independent of b-lactamase allele. Further
assuming KM� [S]lethal (i.e., that the b-lactamase is not sat-
urated by substrate), we find

MIC � Z � kcat � E½ �active

KM
: (1b)

Additionally, the principled consideration of two-state folding
of the b-lactamase (Bloom et al. 2004; Tokuriki and Tawfik
2009; Wylie and Shakhnovich 2011; Jacquier et al. 2013)
suggests

½E�active ¼
E½ �total

1þ e
DG=R�T

; (2)

where [E]total is the total cellular enzyme concentration,
DG is the Gibbs free energy of native-form folding, R is the
gas constant and T is the temperature in degrees Kelvin.
Finally, substituting Equation (2) into Equations (1b)
yields

MIC � Z0 � kcat

KM
� 1

1þ e
DG=R�T

; (3)

where Z’¼ [E]total�Z is again independent of b-lactamase
allele.

In order to quantitatively test the mechanistic underpin-
nings of MIC suggested by Equation (3), we here report
kcat/KM and DG values for all 16 combinations of four mis-
sense mutations previously shown to increase the MIC of
TEM-1 by more than three log-orders against the b-lactam
cefotaxime (Hall 2002; Weinreich et al. 2006; Knies et al. in
prep.). A second, more abstract motivation for this work
stems from our earlier finding that while the phenotypic
landscape of TEM-1 for cefotaxime MIC is single-peaked,
most mutational trajectories to the highest resistance allele
are selectively inaccessible (Weinreich et al. 2006). This is nec-
essarily the consequence of the fact that at least some of these
mutations are only conditionally beneficial (called sign epis-
tasis, Weinreich et al. 2005). The hypothesis that catalytically
beneficial mutations commonly require compensatory, stabi-
lizing mutations immediately suggests a mechanism for wide-
spread sign epistasis (Camps et al. 2007; Weinreich 2010;
Weinreich and Knies 2013), and so we were keen to test its
relevance in this system.

Results
In order to understand the mechanistic basis of increased
cefotaxime resistance achieved during the evolution of
TEM-1 b-lactamase (Stemmer 1994; Hall 2002), and more
abstractly the source and generality of sign epistasis previ-
ously described in this system (Weinreich et al. 2006), we have
now characterized the catalytic activity and thermostability of
all 42¼16 combinations of the four missense mutations in-
volved. [The fifth mutation examined in Weinreich et al.
(2006) lies 52 nucleotides upstream of the start codon and
thus is unlikely to affect activity or thermostability.] Table 1
presents in vitro catalytic efficiencies for all 16 enzyme variants
(kcat/KM, and where possible, independent measures of kcat

and KM, all at 25 �C) against cefotaxime. Table 1 also presents
melting temperature, van’t Hoff enthalpy (Tm and DH, re-
spectively) and thence thermodynamic stabilities (DG com-
puted at 25 �C; see “Methods”), for each enzyme variant. MIC
values (also measured at 25� C) for the 16 g4205 alleles
(see “Methods”) from Knies et al. (in prep) are presented in
table 2. Minimum and maximum values for all seven pheno-
types are highlighted in underlined in tables 1 and 2.

Statistical Significance of Mutational Effects on
Phenotype
The 16 TEM-1 enzyme variants examined define 4�16/2¼ 32

pairs of mutationally adjacent alleles and
16

2

 !
¼ 120 pairs

without regard to mutational adjacency. No variance esti-
mates for our independent kcat and KM measurements
were possible for the – – – –, – –þ– orþ– – – variants
(table 1;þ and – represent the presence or absence of each
mutation in N-to-C order). This leaves only 22 mutationally

Cefotaxime Resistance Evolution in TEM-1 b-Lactamase . doi:10.1093/molbev/msx053 MBE

1041

Deleted Text: e.g. 
Deleted Text: ,
Deleted Text:  
Deleted Text:  
Deleted Text: s
Deleted Text: m
Deleted Text: e
Deleted Text: p
Deleted Text: . 


T
ab

le
1.

B
io

ch
em

ic
al

an
d

B
io

p
h

ys
ic

al
Ph

en
o

ty
p

es
fo

r
T

EM
-1

b-
La

ct
am

as
e

A
lle

le
s

(M
in

im
u

m
an

d
M

ax
im

u
m

V
al

u
es

Sh
o

w
n

in
U

n
d

er
lin

ed
).

M
u

ta
ti

o
n

a
,b

K
in

et
ic

s
ag

ai
n

st
C

ef
o

ta
xi

m
e

B
io

p
h

ys
ic

al
p

h
en

o
ty

p
es

g

A
42

G
E1

04
K

M
18

2T
G

23
8S

k c
a

t/
K

M
c

(M
	

1
s	

1
@

25
� C

)
N

o
n

lin
ea

r
es

ti
m

at
es

d
T

m
(�

C
)

D
H

(k
ca

l/
m

o
l�

C
)

D
G

(k
ca

l/
m

o
l

@
25
�

C
)

n
e

k c
a

t
(s
	

1
)

K
M

(M
	

1
)

–
–

–
–

(1
.5

6
0.

17
0)



10
2

1
1.

7
3

10
2

1
6

n
.d

.f
7.

5



10
	

4
6

n
.d

.f
56

.4
2

6
0.

20
–

78
.6

5.
1

–
7.

5
6

0.
48

3
–

–
–

þ
(2

.2
6

0.
22

1)



10
4

9
(1

.4
3

6
0.

00
49

8)



10
1

(7
.6

1.
51

)



10
	

4
53

.0
6

0.
26

–
62

.6
5.

2
–

5.
3

6
0.

42
–

–
þ

–
(1

.2
6

0.
27

0)
3

10
2

0
n

.d
.f

n
.d

.f
62

.4
6

0.
08

(–
1.

0
6

0.
01

1)



10
2

–
11

.6
0.

11
–

–
þ

þ
(3

.6
6

0.
51

7)



10
4

7
(1

.7
6

0.
35

7)



10
1

(4
.6

0.
98

8)



10
	

4
59

.7
6

0.
08

(–
7.

6
1.

0)



10
2

–
7.

6
1.

1
–

þ
–

–
(6

.6
1.

05
)



10
2

3
3.

9
6

0.
18

(5
.6

2.
9)

3
10

2
3

56
.3

6
0.

24
–

75
.6

6.
6

–
7.

1
6

0.
62

–
þ

–
þ

(2
.0

6
0.

13
3)



10
4

9
9.

21
6

7.
43



10
	

3
(4

.6
6

0.
37

6)



10
	

4
53

.1
6

0.
33

–
51

.6
3.

7
–

4.
4

6
0.

29
–

þ
þ

–
(5

.4
6

0.
42

0)



10
2

7
2.

04
6

5.
08



10
	

2
(3

.5
6

0.
88

2)



10
	

3
61

.7
6

0.
54

(–
8.

6
1.

7)



10
1

–
9.

6
2.

0
–

þ
þ

þ
(5

.5
6

0.
14

6)
3

10
5

10
(8

.1
9

6
0.

00
14

9)
3

10
1

(1
.5

1
6

0.
05

08
)



10
	

4
59

.2
6

0.
16

–
89

.6
7.

9
–

9.
3

6
0.

81
þ

–
–

–
(2

.0
6

0.
49

8)



10
2

1
2.

5



10
	

1
6

n
.d

.f
1.

1



10
	

3
6

n
.d

.f
57

.2
6

0.
11

(–
1.

1
6

0.
68

)



10
2

–
11

.6
0.

68
þ

–
–

þ
(2

.3
6

0.
20

4)



10
5

10
(2

.1
3

6
0.

00
12

5)



10
1

(1
.1

6
0.

21
3)



10
	

4
55

.0
6

0.
40

–
51

.6
2.

2
–

4.
7

6
0.

24
þ

–
þ

–
(4

.5
6

0.
30

1)



10
2

4
1.

2
6

2.
6



10
	

2
(2

.5
6

0.
57

)



10
	

3
64

.3
6

0.
38

(–
1.

7
6

0.
34

)
3

10
2

–
21

.6
4.

1
þ

–
þ

þ
(2

.9
6

0.
23

1)



10
4

8
9.

42
6

7.
25



10
	

3
(3

.1
6

0.
29

6)



10
	

4
61

.4
6

0.
14

(–
1.

1
6

0.
89

)



10
2

–
12

.6
0.

92
þ

þ
–

–
(2

.2
6

0.
31

3)



10
3

10
7.

6
6

1.
86



10
	

1
(3

.1
6

0.
58

1)



10
	

3
57

.6
6

0.
22

–
80

.6
5.

3
–

7.
8

6
0.

48
þ

þ
–

þ
(2

.2
6

0.
22

2)



10
5

7
(2

.6
1

6
0.

00
42

9)



10
1

(1
.1

6
0.

24
1)



10
	

4
53

.8
6

0.
09

–
61

.6
3.

1
–

5.
3

6
0.

27
þ

þ
þ

–
(1

.2
3

6
0.

05
96

)



10
3

3
6.

5
6

1.
2



10
	

1
(5

.6
1.

9)



10
	

3
63

.2
6

0.
27

(–
1.

0
6

0.
87

)



10
2

–
11

.8
6

0.
92

þ
þ

þ
þ

(2
.9

6
0.

56
5)



10
5

9
(2

.0
8

6
0.

00
08

77
)



10
1

(8
.6

1.
16

)
3

10
2

5
60

.7
6

0.
24

–
89

.6
6.

1
–

9.
5

6
0.

71

a N
u

m
b

er
in

g
as

in
A

m
b

le
r

et
al

.(
19

91
).

O
n

e-
le

tt
er

am
in

o
ac

id
ab

b
re

vi
at

io
n

s
u

se
d

h
er

e:
A
¼

al
an

in
e;

G
¼

gl
yc

in
e;

E
¼

gl
u

ta
m

ic
ac

id
;K
¼

ly
si

n
e;

M
¼

m
et

h
io

n
in

e;
T
¼

th
re

o
n

in
e

an
d

S
¼

se
ri

n
e.

b
C

lin
ic

al
d

es
ig

n
at

io
n

s
sh

o
w

n
in

ta
b

le
2.

c M
ea

n
6

s.
e.

m
.a

cr
o

ss
n
¼

10
re

p
lic

at
es

.F
o

r
ea

ch
re

p
lic

at
e,

th
e

b
es

t
fi

tt
in

g
m

o
d

el
(l

in
ea

r
o

r
n

o
n

lin
ea

r)
w

as
ch

o
se

n
b

y
A

IC
c

sc
o

re
,a

n
d

fo
r

ea
ch

al
le

le
m

ea
n

an
d

st
an

d
ar

d
er

ro
r

o
f

k c
at

/K
M

ac
ro

ss
b

es
t-

m
o

d
el

-fi
t

es
ti

m
at

es
ar

e
re

p
o

rt
ed

.
d
M

ea
n

6
s.

e.
m

.a
cr

o
ss

th
o

se
re

p
lic

at
es

in
w

h
ic

h
n

o
n

-l
in

ea
r

m
o

d
el

h
ad

b
et

te
r

A
IC

c
sc

o
re

.
e N

u
m

b
er

o
f

re
p

lic
at

es
in

w
h

ic
h

n
o

n
-l

in
ea

r
m

o
d

el
h

ad
b

et
te

r
A

IC
c

sc
o

re
.

f T
o

o
fe

w
re

p
lic

at
es

to
al

lo
w

es
ti

m
at

io
n

o
f

th
is

q
u

an
ti

ty
.

g M
ea

n
6

s.
e.

m
.a

cr
o

ss
n
¼

9
re

p
lic

at
es

fo
r

T
EM

-1
an

d
n
¼

3
fo

r
al

lo
th

er
al

le
le

s.

Knies et al. . doi:10.1093/molbev/msx053 MBE

1042



adjacent and 78 total pairwise comparisons for which signif-
icant differences in those phenotypes can be assessed. The
numbers of these pairwise differences that are statistically
significant after Bonferroni correction (Holm 1979) for each
phenotype examined are presented in table 3.

All differences in cefotaxime MIC assessed at 25 �C be-
tween mutationally adjacent b-lactamase alleles are statisti-
cally significant at P< 0.05 after sequential Bonferroni
correction (Knies et al., in prep.).

Modeling MIC as a Function of Biophysics and
Biochemistry
We first regressed observed MIC values at 25 �C (table 2)
against those predicted by Equation 3 using data from table 1.
This linear regression exhibited an R2 of 0.54. However the
regression of MIC against kcat/KM alone has exactly the
same explanatory power (fig. 1). This can be understood by

observing first that DG has a sharply sigmoidal influence on
[E]active in Equation (2). For example, at 25 �C, �99% of all
molecules with a thermostability of 	2.7 kcal/mol are pre-
dicted to be in their native, folded form. And empirically, DG
for all 16 TEM-1 variants (table 1) are significantly more neg-
ative than	2.7 kcal/mol by a one-tailed t-test (P< 0.05 after
Bonferroni correction). In other words, at physiological tem-
peratures, our in vitro thermodynamic stability measures im-
ply that all TEM-1 variants are essentially 100% folded.

Note that b-lactamase kinetic results (table 1) were nor-
malized by mg of total soluble protein (see “Methods”).
However, this finding—that all 16 TEM-1 variants are essen-
tially fully folded at 25 �C—implies that these data can also be
regarded as having been normalized by mg of active protein, as
assumed by Equation (1).

Additivity and Interaction in Mutational Effects
Traditionally, genetics has examined individual mutational
effects on phenotype together with epistatic interactions be-
tween pairs of mutations. However in principle any subset of
k mutations can exhibit epistasis (Weinreich et al. 2013). The
Walsh transformation (see “Methods”) decomposes a data

Table 2. Minimum Inhibitory Concentration (MIC) for TEM-1 b-
Lactamase Allelesa Against Cefotaxime (Minimum and Maximum
Values Shown in Underlined).

Mutationb

A42G E104K M182T G238S Clinical
Designationc

MICd (mg/mL)

– – – – TEM-1 5.7
– – – þ TEM-19 2.6 
 102

– – þ – TEM-135 8.0
– – þ þ TEM-20 2.6 
 102

– þ – – TEM-17 11.
– þ – þ TEM-15 2.0 
 103

– þ þ – TEM-106 11.
– þ þ þ TEM-52 4.1 
 103

þ – – – None 5.7
þ – – þ None 7.2 
 102

þ – þ – None 4.0
þ – þ þ None 7.2 
 102

þ þ – – None 32.
þ þ – þ None 2.9 
 102

þ þ þ – None 23.
þ þ þ þ None 8.2 3 103

aData from Knies et al. (in prep).
bNumbering as in Ambler et al. (1991). One-letter amino acid abbreviations used
here: A¼ alanine; G¼ glycine; E¼ glutamic acid; K¼ lysine; M¼methionine;
T¼ threonine and S¼ serine.
cFrom Jacoby and Bush (2005).
dThree replicate measures gave identical results.

Table 3. Fraction of Statistically Significant Mutational Effects on Phenotypea.

Phenotype Mutationally Adjacent All Comparisons

P < 0.05 P < 0.01 P < 0.001 P < 0.05 P < 0.01 P < 0.001

kcat/KM
b 23/32 19/32 15/32 104/120 83/120 71/120

kcat
c 20/22 20/22 20/22 70/78 67/78 67/78

KM
c 6/22 6/22 3/22 13/78 8/78 3/78

Tm
b 16/32 10/32 8/32 80/120 62/120 50/120

DGb 5/32 5/32 0/32 26/120 14/120 3/120

aAfter sequential Bonferroni correction (Holm 1979).
bFour mutations define 4 
 24/2¼ 32 mutationally adjacent pairs of TEM-1 variants and

24

2

 !
¼ 120 pairs of variants without regard to mutational adjacency.

cNo independent variance estimates were possible for three TEM-1 variants (table 1), reducing the number of mutationally adjacent comparisons to 22 and to 78 without
regard to mutational adjacency.

0

6

2

8

4

M
IC

 (x
10

-3
 μg

/m
L)

10

0 3 6

R2 = 0.54

kcat/KM (x10-5 M-1 s-1)
21 54 7 8 9 10

102

R2=0.92
104 106

100

102

104

kcat/KM (M-1 s-1)

M
IC

 (μ
g/

m
L)

FIG. 1. Correlation between MIC and kcat/KM. Error bars in kcat/KM

represent standard error across n¼ 10 replicates. No variance was
observed across n¼ 3 MIC assays. MIC results are from g4205 al-
leles (see “Methods”; qualitatively similar results observed for MIC
data from 4205a alleles). Best-fit linear regression MIC¼
.0105
 (kcat/KM)þ 288.42. Inset: same data on log-log plot. Best-
fit power-law regression: MIC¼ 0.0553
 (kcat/KM)0.8713.
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set containing phenotypes for all 2L combinations of L mu-
tations into the orthogonal contributions to phenotype due
to each subset of mutations of size 1 to L. These contributions
are called Walsh coefficients, and the order 1� k� L of each
Walsh coefficient is the size of the corresponding subset of
mutations. Thus first-order coefficients (k¼ 1) capture the
average effect of each mutation in isolation and are analogous
to selection coefficients, second-order coefficients (k¼ 2)
capture the average interaction between each pair of muta-
tions and are analogous to traditional pairwise effects, and so
on (Weinreich et al. 2013).

Because thermostability does not influence MIC, we only
report the mean squared Walsh coefficient as a function of
interaction order k for kcat/KM and MIC (fig. 2, left). We note
first that for the raw kcat/KM and MIC data, mean interaction
terms (those of order k> 1) are comparable to mean effects
of individual mutations (order k¼ 1). In other words, sub-
stantial epistasis is observed in these data. Interestingly after
log-transformation, mean interactions terms are �100

smaller than mean individual mutational effects in these
two datasets (fig. 2, left: compare open and filled symbols).
This finding implies near additivity in mutational effect on
log-transformed data, a point to which we return in the
“Discussion” section. Mean epistatic terms for Tm are
�100
 smaller than mean effects of individual mutations
both before and after log-transformation (data not shown).
In other words, we observe almost no epistasis in Tm.

Figure 2, right presents another way of visualizing epistatic
contributions to these phenotypes. Here, we report the co-
efficient of determination (R2) between observed phenotypes
and those predicted by successive models incorporating only
the lowest k¼ 1, 2, . . . L interaction terms. Consistent with
results presented in figure 2, left, we observe that the additive
model (k¼ 1, accounting only for the effects of mutations in
isolation) does a poor job of explaining raw values of kcat/KM

or MIC (R2<0.60). On the other hand, the additive model
already does a very good job (R2>0.94) of predicting
observed phenotypes for log-transformed values of kcat/
KM and MIC. In both cases, R2 increases as additional
interaction terms are added to the model, and is numer-
ically equal to 1 when all terms are included (as it must;
Weinreich et al. 2013).

Sign Epistasis and Selective Constraints on kcat/KM

and MIC
Sign epistasis is necessary (though not sufficient) for multiple
maxima on any landscape, and always constrains natural se-
lection by reducing the number of selectively accessible tra-
jectories to high-fitness alleles [Weinreich et al. 2005; though
see Palmer et al. (2015) for a more nuanced perspective].
Cases of sign epistasis for kcat/KM and MIC are enumerated
in table 4. The density of sign epistasis (Methods) for kcat/KM

is 11/32¼ 34%; this figure drops slightly to 7/32¼ 22% for
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MIC
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FIG. 2. Epistasis in kcat/KM and MIC. Given the phenotype for each of the 2L combinations of L mutations, epistatic interactions associated with all
subsets of 0� k� L mutations can be computed as Walsh coefficients (see “Methods”). Interactions among subsets of k mutations are described as

kth-order. (Left) Mean squared Walsh coefficients (6 standard deviation across
L

k

 !
values; those that extend to the x-axis overlap 0) as a

function of order. For each phenotype, Walsh coefficients were normalized to the mean value across all alleles to allow comparisons across
phenotypes. First and second order terms are analogous to classical selection coefficients and classical pairwise epistatic terms, respectively (see
“Methods”). Filled symbols: raw phenotypic data; open symbols: log-transformed data. (Right) The coefficient of determination (R2) between
observed phenotypes and those predicted by successive models incorporating only the lowest order k¼ 1, 2, . . . L terms. Filled symbols: raw
phenotypic data; open symbols: log-transformed data.
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MIC. Moreover, our kcat/KM data (table 1) define a catalytic
landscape with two peaks (–þþþ andþ – –þ). Only
three of the eight mutational trajectories from TEM-1 to
the first of these are selectively accessible (i.e., exhibit a
monotonic increase in kcat/KM), although both trajectories
to the second are. The MIC data exhibit a single maximum
at (þþþþ), but only nine of the 24 mutational trajec-
tories from TEM-1 are selectively accessible. These results
are strongly reminiscent of earlier work in this system
(Weinreich et al. 2006).

Antagonistic Pleiotropy is Necessarily Responsible
for Gross Discrepancies between MIC and kcat/KM

Landscapes
The first objective of this study was to quantitatively dissect
mutational effects on MIC in terms of their underlying mech-
anistic components. However, a second motivation was to
identify the mechanistic underpinnings of the selective con-
straint on cefotaxime resistance evolution induced by sign
epistasis (Weinreich et al. 2006). We thus wondered, to
what extent does sign epistasis in kcat/KM explain sign epis-
tasis in MIC? [Trivially there are discrepancies, as we have just
seen that the maxima for these phenotypes occur for differ-
ent alleles (Weinreich et al. 2005).]

The answer necessarily lies in the incidence of antagonistic
pleiotropy (AP) between phenotypes. Given our interest in
adaptation, we follow Remold (2012) and restrict our defini-
tion of AP to those cases in which mutations significantly
improve only one of the two phenotypes. Such cases repre-
sent particularly noteworthy failures of the approach cap-
tured by Equation (3), and are also enumerated in table 4.
Mutations significantly affect kcat/KM and MIC in opposite
directions in 8/32¼ 25% of the mutationally adjacent

comparisons, and these cases of AP are distributed over three
of the four mutations examined.

Discussion
Natural selection acts simultaneously on variation in
diverse phenotypes that together determine an organism’s
fitness. Thus dissecting mutational effects on these com-
ponents of fitness is a central question in evolutionary
genetics. In general this suite of phenotypes will span tre-
mendous biological complexity, ranging from develop-
ment and morphology to biochemistry and physiology
to ecology. Proteins offer a much simplified model system
in which to decompose fitness into its constituent com-
ponents, because the relevant underlying phenotypes are
often easily identified and assessed (Dean and Thornton
2007; Harms and Thornton 2013). As outlined above, en-
zymes in particular need to be both catalytically active and
thermostable, and individual mutations commonly act
pleiotropically (i.e., simultaneously) on both phenotypes.
These facts motivate the widespread hypothesis that en-
zyme adaptation requires a succession of mutations that
improve activity at the expense of thermostability, com-
pensated for by mutations that restore thermostability
(Wang et al. 2002; DePristo et al. 2005; Tokuriki and
Tawfik 2009). Here we explicitly tested this hypothesis in
TEM-1 b-lactamase. In addition to our interest in under-
standing the mechanistic determinants of antibiotic resis-
tance evolution, we hoped to test a second hypothesis.
Namely, we wondered whether the need for compensa-
tory stabilizing mutations might provide a generically
important mechanistic explanation for sign epistasis in
enzymes (Camps et al. 2007; Weinreich 2010; Weinreich
and Knies 2013).

Table 4. Sign of Mutational Effect on kcat/KM and MIC against Cefotaxime, and Antagonistic Pleiotropy between These Two Phenotypes.

TEM-1 Genetic Background Mutational Effect on kcat/KM Mutational Effect on MICa Antagonistic Pleiotropyb

A42G E104K M182T G238S A42G E104K M182T G238S A42G E104K M182T G238S A42G E104K M182T G238S

– – – – "c " #c " 0 " " " No No Yes No
– – – þ " #c "c " " 0 No Yes No
– – þ – " " " # " " Yes No No
– – þ þ #c " " " Yes No
– þ – – " #c " " # " No No No
– þ – þ " " " " No No
– þ þ – " " " " No No
– þ þ þ # " Yes
þ – – – " " " " # " No Yes No
þ – – þ #c # " # Yes No
þ – þ – " " " " No No
þ – þ þ " " No
þ þ – – #c " # " No No
þ þ – þ "c " Yes
þ þ þ – " " No
þ þ þ þ
Sumsd 5 6 2 8 6 8 3 8 3 2 3 0

aAll differences in MIC are statistically different at P< 0.05 after sequential Bonferroni correction (Knies et al, in prep.).
bCases in which the sign of mutational effect is significantly (P< 0.05 after Bonferroni correction) positive on only one of kcat/KM and MIC.
cNo significant effect at P< 0.05 after sequential Bonferroni correction.
dFor mutational effects, the number of cases in which mean mutational effect is significantly beneficial (P< 0.05 after Bonferroni correction). For antagonistic pleiotropy, the
number of cases in which sign of mutational effect is significantly positive (P< 0.05 after Bonferroni correction) on only one of kcat/KM and MIC.
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Enzymatic Efficiency but Not Thermostability
Drives Cefotaxime Resistance Evolution in TEM-1
b-Lactamase
Perhaps our most surprising result is thus our first: that cefo-
taxime resistance evolution in TEM-1 is entirely unaffected by
differences in melting temperature (Tm) and thus thermody-
namic stability (DG) among enzyme variants (fig. 1). On the
contrary, melting temperature estimates for all 16 TEM-1
variants examined (table 1) are significantly (P< 0.05 after
Bonferroni correction) above 52 �C, i.e., greater than 15 �C
above physiological temperatures. Seen another way, all en-
zyme variants examined here appear to be fully stable
[Equation (2)], a finding corroborated computationally with
FoldX (Van Durme et al. 2011) and PoPMuSic (Dehouck et al.
2011) (data not shown). We acknowledge that our empirical
in vitro estimates for both DG and Tm imply modestly
(<10%) more thermostability than those made by others
for subsets of these alleles (Wang et al. 2002; Kather et al.
2008; Dellus-Gur et al. 2013). However, these small differences
are unable to reconcile the discrepancy between theory and
data. Indeed, we observe no positive rank correlation between
MIC and either DG or Tm values (Spearman rank correlation
coefficient q¼ 0.18, P¼ 0.25 and q¼	0.30, P¼ 0.90 by one-
tailed tests, respectively). This limits the possibility of a sys-
tematic bias between our in vitro stability assays and in vivo
conditions.

This result is particularly noteworthy inasmuch as work in
TEM-1 largely motivated the hypothesis that functionally
beneficial mutations need to be compensated by stabilizing
mutations (Orencia et al. 2001; see Fig. 6 in Wang et al. 2002).
Importantly, our results do not contradict several closely re-
lated empirical principles about enzyme evolution, many also
derived from work in TEM-1. First, there remains little doubt
that deleterious mutations often act by reducing thermosta-
bility (Bloom et al. 2005; Bershtein et al. 2008; Jacquier et al.
2013; Firnberg et al. 2014). Relatedly, our findings do not un-
dermine the idea that genetically increasing an enzyme’s ther-
mostability increases its robustness to deleterious mutations
(Bloom et al. 2005; Bershtein et al. 2006; Besenmatter et al.
2007). Similarly, our results cast no doubt that thermostabi-
lizing mutations are often beneficial on genetically destabi-
lized alleles (Huang and Palzkill 1997; Sideraki et al. 2001;
Hecky and Müller 2005; Kather et al. 2008; Brown et al.
2010), or when environmental temperature increases
(Cou~nago et al. 2006; Cou~nago et al. 2008). In short, func-
tional enzymes require adequate thermostability.

Rather, while catalytic residues per se substantially reduce
any enzyme’s thermostability (Zhi et al. 1991; Meiering et al.
1992; Shoichet et al. 1995), we find that the more modest
stability consequences of the adaptive mutations examined
here do not have appreciable physiological consequences.
Indeed our conclusion that the 16 TEM-1 alleles examined
are essentially fully folded echoes observations from several
other systems. Recently, Thomas et al. (2010) considered five
mutations in AmpC (another b-lactamase) that increase cat-
alytic activity against cefotaxime between 100- and 200-fold.
Those mutations were found to reduce stability by up to
�4.0 kcal/mol. However, as in the case of our TEM-1 results,

the AmpC wild type has substantial thermostability
(	14.0 kcal/mol; Beadle et al. 1999), implying again that
none of these mutations are capable of perturbing the phys-
iological concentration of native-form folded enzyme
[Equation (2)]. Similarly in CTX-M (yet another b-lactamase),
three catalytically beneficial mutations were found to reduce
Tm, but not below 47 �C (Chen et al. 2005; Patel et al. 2015),
i.e., not below 10 �C above physiological temperatures. And,
working in bacterial DHFR (the target of antifolates, another
class of antimicrobial compound), Rodrigues et al. (2016)
found that many beneficial alleles were destabilized, but in
only one case did Tm drop below 48 �C. Moreover, our finding
that TEM-1 thermostability is uncorrelated with MIC recapit-
ulate results in three meta-analyses. Two found almost no
correlation (positive or negative) between functional impor-
tance and DDG among beneficial mutations (S�anchez et al.
2006; Tokuriki et al. 2008) and a third found no clear pattern
between effect on substrate affinity and DDG (Teilum et al.
2011).

Of course some functionally beneficial mutations do have
physiologically significant pleiotropic effects on thermostabil-
ity. For example, the temperature sensitivity of a clorobiocin-
resistance mutation in the GyrB subunit of the DNA gyrase
enzyme in E. coli is mediated by thermostability (Blance et al.
2000). More recently, Gong et al. (2013) demonstrated that
five missense mutations (out of 39) that differentiate H3N2
influenza nucleoproteins separated by 39 years of evolution
reduce Tm to below 41.5 �C, with concomitant reductions in
activity and viral growth. [In this case, each of these mutations
was shown to have been compensated for by stabilizing mu-
tations (Gong et al. 2013).] And increasing an allele’s thermo-
stability often increases the number of beneficial mutations in
protein directed evolution experiments (Bershtein et al. 2006;
Bloom et al. 2006; Fasan et al. 2007).

However, cefotaxime resistance evolution in TEM-1 ap-
pears to be unaffected by pleiotropic effects on enzyme ther-
mostability, and in this respect TEM-1 is far from unique. This
finding calls for a critical evaluation of the widespread hy-
pothesis that the thermodynamically destabilizing effects of
functionally beneficial mutations are a central aspect of en-
zyme evolution.

Other Phenotypes that May Underlie Enzyme
Evolution
If the mutational effects on enzymatic efficiency and thermo-
stability modeled in Equation (3) are unable to fully explain
the evolution of increased cefotaxime resistance in TEM-1,
what other phenotypes might be involved? The first possibil-
ity is that mutational effects on thermostability are mediated
by a mechanism other than that represented by Equation (2).
Recently, elegant experimental work in a metallo-b-lacta-
mases has highlighted the role of loop destabilization as the
enzyme evolves to more effectively bind and hydrolyze a
novel substrate (Tomatis et al. 2008; Gonz�alez et al. 2016b).
Conversely, Cou~nago et al. (2008) have documented the im-
portance of loop stabilization in cofactor binding during the
evolution of thermotolerance by adenylate kinase. And,
Bershtein et al. (2012) find that destabilizing mutations
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facilitate increased soluble oligomerization during the course
of antifolate resistance evolution in the bacterial enzyme
DHFR. More abstractly, several authors have noted that ther-
mostability isn’t necessarily a global property of an enzyme
(Chen et al. 2005; Singh and Dominy 2012; Dellus-Gur et al.
2013); thus the mutational influence of DG may not be me-
diated entirely by the effect captured by Equation (2).

Another (non-exclusive) possibility is that mutations me-
diate their effect on MIC via their influence on enzyme ag-
gregation and degradation rates (DePristo et al. 2005). For
example, again using TEM-1 b-lactamase, Sideraki et al.
(2001) demonstrate that the L76N mutation causes roughly
half the enzyme’s periplasmic fraction to become insoluble
while also rendering the remaining fraction anomalously sus-
ceptible to proteolysis. However, adding M182T to the L76N
mutant increases periplasmic concentration while reducing
proteolysis-susceptibility, both to near wild-type levels.
Importantly, the deleterious effects of L76N (and their com-
pensation by M182T) are mediated not by native form ther-
mostability, but rather by misfolding, leading to aggregation
and proteolysis (Sideraki et al. 2001). Similarly, Gonz�alez et al.
(2016a, 2016b) demonstrate that lipidation and the resulting
membrane anchoring of the New Delhi metallo-b-lactamase
allele increases its thermostability and thus protects this en-
zyme from degradation.

More broadly, this line of thinking draws attention to the
role of kinetic stability, i.e., an enzyme’s propensity for mis-
folding (Baker and Agard 1994). The connection from mis-
folding, denaturation and aggregation to proteolysis (Sideraki
et al. 2001; DePristo et al. 2005) suggest the possibility that
kinetic stability may be an important component of enzyme
function in the crowded and complex intracellular milieu in
which they operate [see Pe~na et al. (2010) for a quantitative
treatment of this phenomenon in adenylate kinase; Sanchez-
Ruiz 2010; Meini et al. 2015]. Critically for our purposes, mu-
tational influence on kinetic and thermodynamic stability
need not be correlated (Vanhove et al. 1997; Sanchez-Ruiz
2010). Thus the poor correlation between thermostability
and MIC observed here does not necessarily undermine the
hypothesis that mutational effects on kinetic stability may be
an important component of TEM-1 evolution.

A third (again, non-exclusive) explanation for the poor
predictive value of Equation (3) is that substantial differences
exist between in vitro thermostability values and the corre-
sponding in vivo values underlying MIC assays. For example,
Meini et al. (2015) recently found that thermostability of
metallo-b-lactamase in crude periplasmic extracts explains
a great deal more of the observed variance in MIC than do
in vitro CD measurements of the sort employed here. In that
study, thermostability measured in periplasmic extracts were
up to 10 �C lower than (and again importantly for our pur-
poses, uncorrelated with) in vitro measurements.

Those authors hypothesize that interactions with other
periplasmic components may be responsible for these effects.
(See also Gonz�alez et al. 2016a) The same explanation has
been offered for a more modest (�1 kcal/mol) reduction in
in vivo thermostability compared with in vitro measurements
reported for a bacterial cellular retinoic acid binding protein

(Ignatova et al. 2007). And, recently, Sarkar et al. (2013) dem-
onstrated comparable differences in thermostability of chy-
motrypsin inhibitor 2 when cytosolic extracts were used in
favor of a dilute buffer such as that used here. [Though no
substantial differences between in vivo and in vitro thermo-
stability assays were observed for the k repressor protein
(Ghaemmaghami and Oas 2001).] Indeed, E. coli cells are
�30 to 40% macromolecules by weight (Zimmerman and
Trach 1991), and a considerable theoretical and experimental
literature exists on the entropic and enthalpic consequences
of this fact for protein folding [e.g., see recent reviews by Zhou
et al. (2008), Elcock (2010), Christiansen et al. (2013), Luby-
Phelps (2013), Kuznetsova et al. (2014)].

Overall then, we conclude that several additional experi-
mentally accessible phenotypes might plausibly contribute to
mutational effects on cefotaxime MIC in TEM-1, including
local stability and kinetic stability. Importantly for our pur-
poses, these phenotypes are often uncorrelated with in vitro
DG values, meaning that our negative results do not under-
mine the explanatory potential for these alternative candi-
dates. We also note that differences between in vitro and
in vivo conditions may complicate interpretation of assays
such as those employed here.

MIC Increases More Slowly than Linearly in kcat/KM

A second noteworthy result of ours is that our data are much
more closely modeled by a power relationship whose expo-
nent is less than unity (fig. 1 inset). As noted, a linear depen-
dence of MIC on kcat/KM is expected from first principles
[Equation (1b)], and this expectation has also received em-
pirical support from work with deleterious mutations in
TEM-1 b-lactamase (Cantu and Palzkill 1998; Firnberg et al.
2014) as well as in the wild-type kanamycin acetyltransferase
enzyme from E. coli against a panel of aminoglycosides
(Radika and Northrop 1984). What accounts for the discrep-
ancy between our data and previous theory and experiments?

We note first that the data in figure 1 inset can be divided
into two groups of eight alleles, those with serine and glycine
residues at residue 238. These correspond to alleles with cat-
alytic activity above and below�104 M	1 s	1, and resistance
above and below �102 mg/mL. (The eight G238 alleles are
indistinguishable in the main panel of fig. 1.) G238S has long
been recognized to sharply increase cefotaxime MIC [re-
viewed in Salverda et al. (2010)]. Interestingly, the linear re-
gression of MIC against kcat/KM among just the eight G238
alleles has a steeper slope (0.0135 vs. 0.0105) and a much
better fit (R2¼0.93 vs. 0.54) than seen among all 16 alleles
in figure 1.

Taken together these observations imply that MIC satu-
rates for large values of kcat/KM. One possible explanation for
this saturation lies in the assumption underlying Equation
(1b), that substrate is limiting relative to the Michaelis con-
stant. In fact, Equation (1b) overestimates the true Michaelis–
Menten reaction rate by a factor 1þ [S]lethal/KM [compare
with Equations (1a) and (1b)]. For those alleles for which we
were able to independently estimate KM, this quantity is just
�1.01 for G238 alleles but �1.14 for 238S alleles [KM esti-
mates from table 1; [S]lethal taken as equal to the MIC of cells
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lacking b-lactamase (Zimmermann and Rosselet 1977), re-
ported to be 11.3 mg/mL at 25 �C (Knies et al, in prep.) or
2.4 
 10	5 M]. Adjusting the predicted MIC values by this
factor (i.e., using Equation (1a) instead (1b) while holding
[E]active constant) raises the exponent on the power relation-
ship between catalytic velocity and antibiotic resistance
across all 16 alleles examined from 0.87 to 0.92 (i.e., closer
to 1, the linear expectation).

Another possible explanation for the observed saturation
is that some of our best b-lactamase alleles may approach the
diffusion limit, as previously observed for TEM-1 in other
bacterial species (Hardy and Kirsch 1984; Christensen et al.
1990; Bulychev and Mobashery 1999). Classically (Albery and
Knowles 1976), this condition requires kcat/KM values on the
order of 108–109 M	1 s	1. However, it has also long been
appreciated that viscosity resulting from macromolecular
crowding within bacterial cells can reduce this threshold by
two log-orders (Benner 1989). Moreover, enzymatic velocity is
attenuated in a continuous fashion as kcat/KM approaches the
relevant physical diffusion-limitation rate (Brouwer and
Kirsch 1982; Hardy and Kirsch 1984; Bulychev and
Mobashery 1999). As the mean kcat/KM among 238S alleles
is 2.78 
 105 M	1 s	1 (though only 1.11 
 103 M	1 s	1 for
G238 alleles; table 1), it seems reasonable to suppose that
in vivo diffusion may further contribute to the fact that for
large values of kcat/KM, observed MIC values are lower than
predicted.

Admittedly, more recent work has raised two caveats to
this line of reasoning. First, for many enzymes kcat/KM exhibits
a non-linear response to increasing concentration of crowd-
ing agent (e.g., see recent reviews by Zhou et al. 2008; Luby-
Phelps 2013; Kuznetsova et al. 2014). Moreover, as noted
above, Sarkar et al. (2013) find that using inert, synthetic
polymers rather than cellular extracts to simulate intracellular
crowding can substantially affect thermostability estimates.
To the best of our knowledge, the role of crowding on en-
zyme kinetics has only been explored with inert, synthetic
polymers (Luby-Phelps 2013; Kuznetsova et al. 2014), raising
the possibility of still greater complexity in this response.

Overall then, we conclude that while the consideration of
TEM-1 b-lactamase’s behavior in isolation motivates predic-
tions of a linear response in MIC to variation in the kcat/KM

[Equation (1b)], the complexity of the cellular milieu in which
the enzyme operates suggests the opportunity for more so-
phisticated models. However, addressing these considerations
is well beyond the scope of the present study.

The Mechanistic Determinants of Sign Epistasis in MIC
Remain Obscure
Beyond our interest in the mapping from biochemistry and
biophysics to cefotaxime resistance in TEM-1 b-lactamase, we
also sought the mechanistic basis of the sign epistasis previ-
ously described in this system (Weinreich et al. 2006).
Specifically, sign epistasis emerges generically from the
hypothesis that beneficial mutations commonly require
compensatory, stabilizing mutations (Camps et al. 2007;
Weinreich 2010; Weinreich and Knies 2013). However, our
finding that cefotaxime resistance is unaffected by mutational

effects on thermostability is fatal to that explanation. Others
(Martin et al. 2007; Rokyta et al. 2011) have observed that
stabilizing selection on a single underlying phenotype can also
give rise to sign epistasis. However, in the case of TEM-1
b-lactamase, there is little evidence to support the notion
that MIC is maximized for any intermediate value of kcat/KM

(fig. 1).
Instead, we find considerable sign epistasis already present

in kcat/KM (table 4), pushing the mechanism more deeply into
the molecular biology of the enzyme. Moreover, we observe
substantial antagonistic pleiotropy between kcat/KM and MIC:
natural selection favors only one but not the other of the two
phenotypes in roughly 25% of the cases examined here (table
4). In other words, the sign epistasis in kcat/KM itself is not
sufficient to explain much of the sign epistasis observed in
MIC. Importantly, neither of these observations are artifacts
of poor experimental resolution (table 3).

Sign Epistasis and Antagonistic Pleiotropy are “Brittle”
Biological Properties
Sign epistasis is a statement about phenotypic rank ordering,
and thus survives log transformation of the data.
Consequently the sign epistasis in cefotaxime MIC observed
in table 4 and previously (Weinreich et al. 2006) already re-
sides in the less than 10% of variance in log-transformed
phenotype left unexplained by a purely additive model
(fig. 2). While sign epistasis is synonymous with the frustration
(in the physicist’s sense) imposed on natural selection by
the fitness landscape, it thus can already emerge on com-
paratively “well-behaved” (nearly non-epistatic) fitness
landscapes.

To confirm the generality of this observation, we examined
several other suitable datasets (Weinreich et al. 2013). For
each, we computed the density of sign epistasis and R2 of
the non-epistatic model of mutational effect (supplementary
table S1, Supplementary Material online, which in each case
conservatively reports the larger of the two R2 values com-
puted for the raw and log-transformed data). As one might
expect, the explanatory power of an additive model is nega-
tively correlated with the density of sign epistasis. On the
other hand, the seven independent datasets in which a
non-epistatic model is most successful (shown in bold in
supplementary table S1, Supplementary Material online, all
with R2 greater than 0.80) exhibit a mean density of sign
epistasis (see “Methods”) of 11%. In other words, appreciable
sign epistasis does not require dramatic deviations from
mutational additivity.

Similarly, antagonistic pleiotropy (AP) frustrates (in the
quotidian sense) our attempts to understand the mechanistic
basis of sign epistasis. As above, AP is also a statement about
discrepancies between rank orders, and therefore also sur-
vives log transformation. Thus the 25% density of AP reported
in table 4 already resides in the�8% of variance in phenotype
left unexplained by the power relationship in the inset of
figure 1. This in no way undermines the evolutionary impor-
tance of AP, which again captures real complexities that ge-
netics can impose on natural selection. Rather, we note that
at least in TEM-1 b-lactamase, rank order discrepancies
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between phenotypes reflect comparatively small (though sig-
nificant, table 3) numeric differences. We are unaware of any
other datasets in which to test the generality of this
observation.

Summary
Two empirical findings in this study are particularly notewor-
thy. First, contrary to widely held expectations, in vitro mea-
surement of the thermodynamic effects of beneficial
mutations are uncorrelated with cefotaxime resistance in
TEM-1 b-lactamase. We suggest that mutational effects on
localized thermostability, as well as kinetic stability may in-
stead make important contributions to antibiotic resistance
evolution. Moreover, we emphasize the possibility that com-
ponents of the cellular milieu, lost during purification, may
substantially influence in vivo protein stability. Second, MIC
appears to saturate as TEM-1 variants achieve increasingly
good catalytic kinetics. The saturation of MIC may also reflect
important differences between in vitro assays and in vivo con-
ditions. Both these empirical findings are likely to be echoed
in other mechanistic studies of enzyme evolution. Finally and
of particular interest for theoreticians, we observe that be-
cause both sign epistasis and antagonistic pleiotropy reflect
discrepancies in phenotypic rank order, they can emerge from
comparatively small quantitative differences in phenotype.
Consequently, sign epistasis (both necessary and sufficient
for constraint on the number of selectively accessible trajec-
tories to high-fitness genotypes, Weinreich et al. 2005) can
already be observed in systems exhibiting comparatively
modest deviations from mutational additivity (supplemen
tary table S1, Supplementary Material online). And, antago-
nistic pleiotropy (representing discrepancies in identity of the
favored allele for two phenotypes) is shown here for the first
time to be widespread in a system in which one phenotype
[log(kcat/KM)] explains 92% of the variance in another
[log(MIC)].

Materials and Methods

Cloning
Weinreich et al. (2006) employed 32 b-lactamase alleles de-
fined by five point mutations. Because one of those five mu-
tations (g4205, numbering as in Watson 1988) is upstream of
the gene’s start codon, that study only employed 16 distinct
protein-coding alleles. These protein-coding alleles, on an
arabinose-inducible over-expression and purification vector
(pBAD Directional TOPO expression kit, Invitrogen,
Carlsbad, CA), were kindly provided by Kyle Brown and
Mark DePristo. The pBAD vector provides a 28 residue C-
terminal linker including a 6xHis tag to facilitate protein bind-
ing on a nickel-affinity column. Each construct was trans-
formed into E. coli strain DH5a (Life Technologies, Grand
Island, NY).

Enzyme Purification
b-Lactamase purification was performed as follows. Cells
grown overnight at 37 �C were diluted 100-fold in Terrific
Broth and grown at 37 �C to an OD600¼0.6. At this point, the

medium was supplemented with 0.02% arabinose and cells
were grown overnight at 18 �C, pelleted, and periplasmic
extract was obtained by osmotic shock in 30 mL ice-cold
5 mM MgSO4. This extract was sequentially incubated with
two 1 mL volumes of equilibrated nickel beads (Qiagen,
Valencia, CA) at 4 �C for 60 min, after which combined bound
bead volumes were incubated in 30 mL wash buffer (50 mM
sodium phosphate pH 6.0, 300 mM NaCl, 10% glycerol) sup-
plemented with 20 mM imidazole. Next, beads were packed
in disposable columns (Bio-Rad, Herculese, CA) and washed
with five column volumes of wash buffer again supplemented
with 20 mM imidazole. Finally, bound b-lactamase was eluted
with 5 column-volumes wash buffer supplemented with
100 mM imidazole. Quantity, purity, and activity were con-
firmed respectively by Bradford assay, SDS-PAGE gel and cat-
alytic activity against ampicillin (k¼ 235 nm). In our hands
this yielded 2–20 mg purified b-lactamase per mL of over-
night culture, which was then dialyzed into 200 mM potas-
sium phosphate buffer pH 7.0, combined with an equal
volume of glycerol, and stored at 	80 �C.

Enzyme Kinetics
The in vitro catalytic activity against cefotaxime (Sigma-
Aldrich, St. Louis, MO) for each of the 16 alleles of b-lacta-
mase was measured by n¼ 10 replicate measurements at
25 �C. Absorbance was measured at 260 nm for each en-
zyme at each substrate concentration for 200 s on a Biotek
Synergy HT spectrophotometer (Winooski, VT) using
Corning UV-transparent 96-well flat bottom microtiter plates
(Corning, NY). Eight different concentrations of substrate (0,
25, 50, 100, 200, 400, 600, and 800 mM) were prepared in
100 mM sodium phosphate buffer. (Optimal enzyme concen-
trations of each allele were determined empirically by screen-
ing over the range 103–105 pg/mL of soluble protein.)

For each allele, Michaelis-Menten kinetic parameters kcat

and KM were estimated by fitting nonlinear [Equation (1a)]
and linear [Equation (1b)] models to each replicate velocity
measurement as a function of substrate concentration. For
each replicate, the best fitting Michaelis Menten model (linear
or nonlinear) was chosen by small sample AIC (AICc,
Burnham and Anderson 2002) and for each allele, the
mean and standard error of kcat/KM across best-model-fit
estimates were recorded. Additionally, mean and standard
error of individual kcat and KM values were recorded across
those replicates for which the nonlinear model had the better
(lower) AICc score.

We follow Xiao et al. (2015) in assuming that the presence
of a histidine affinity tag on the TEM-1 b-lactamase does not
substantially influence catalytic kinetic data, although we are
unaware of any systematic examinations of this hypothesis.

Enzyme Native-Form Thermodynamic Stability
Native-form thermodynamic stability was determined for
each allele by circular dichroism (CD) on a Jasco J-815 CD
(Easton, MD). Briefly, purified enzyme was dialyzed into
200 mM potassium phosphate pH 7.0 supplemented with
4% glycerol and diluted to 1 mM, which we found maximized
signal to noise ratio. After equilibrating each enzyme at room
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temperature for 10 min, circular dichroism at 223 nm was
characterized by raising sample temperature 5 �C/min from
25 to 70 �C. We then determined melting temperature (Tm)
and van’t Hoff enthalpy (DH) by fitting data to a two-state
transition melting curve in PSIPLOT (Pearl River, NY). Because
b-lactamase CD profiles are reversible (not shown), Gibbs free
energy (DG) of unfolding was calculated from the van’t Hoff
enthalpy at 25 �C as DG¼DH(1 – T/Tm) (see Equation 5 in
Greenfield 2006, where T¼ 298.15�K and DCp¼ 0). In total,
three experimental replicate measures for each of one biolog-
ical replicate was performed for each allele.

Cefotaxime MIC Assays
MIC assays for all 32 b-lactamase constructs previously de-
scribed (Weinreich et al. 2006), were performed at 25 �C by
the broth microdilution method (NCCLS 2004; Weinreich
et al. 2006). Briefly, starting from single colonies, cells were
grown to stationary phase (OD600>1.8, �1 
 109 cfu/mL)
with shaking at 25 �C in cation-adjusted Mueller Hinton
Broth (MHB) or Luria Broth (LB; both Becton Dickenson,
Franklin Lakes, NJ). Experimental strains (but not control
strains, NCCLS 2004) were grown in media supplemented
with 50 lg/mL of ampicillin to maintain the plasmid.
Cultures were next supplemented with glycerol (15% v/v),
divided into enough aliquots to perform all assays, and frozen
at 	80 F.

39 �2-fold dilutions of cefotaxime (Sigma-Aldrich, St. Louis,
MO) in 0.1M phosphate buffer were prepared from a single
81.9 mg/mL stock, and stored in single-use aliquots at	80�F
to guarantee long-term stability (Nickolai et al. 1985).

Finally, each �2-fold antibiotic dilution (further diluted 1:10
in MHB after thawing) and cells (diluted 1:1000 in MHB after
thawing) were combined (1:1 v/v; total volume 200 ml) in
sterile 96-well flat-bottom polystyrene plates (VWR, West
Chester, PA). These were sealed with sealing film (Thermo-
Fisher Scientific, Waltham, MA) and incubated at 25 �C.
OD600 was assayed 96 times at 30 min intervals, each after
shaking for 30 s, on an Envision 2013 Multilabel Plate Reader
(Perkin-Elmer, Waltham, MA). MIC was recorded as the min-
imum antibiotic concentration that displayed no change in
OD600 after 48 h. One allele (–þþþþ; mutations enumer-
ated in 50-to-30 order as in Weinreich et al. 2006) exhibited
growth even at this highest cefotaxime concentration (4096
mg/mL). Consequently, we prepared two additional �2-fold
dilutions (8.19 and 5.79 mg/mL) to identify its MIC.

All MIC assays were performed in triplicate.
Our protocol differs from the CLSI/NCCLS standard in

three respects. First, �2-fold dilutions were employed
(Weinreich et al. 2006) to increase resolution of the assay.
Second, cells went through a single freeze-thaw cycle before
the assay was performed. This work was part of a larger study
(Knies et al., in prep) to spectrophotometrically measure full
growth kinetics of these same 32 alleles at six temperatures
between 20 �C and 41 �C. Because this larger experiment
couldn’t be performed on a single day, we introduced a single
freeze-thaw cycle in order to avoid variability across replicate
liquid culture growth within strains. Third, test cultures were
incubated for 48 h rather than 24 h because the no-antibiotic

positive control cultures took 48 h to reach stationary phase
at 25 �C. Importantly, all positive control MIC assay results
(NCCLS 2004) were as expected.

MIC data were then subdivided into two sets of 16 alleles
each: those with and without the non-coding g4205a muta-
tion. This allows direct comparisons between biochemical
and biophysical phenotypes (naturally assessed for just 16
protein-coding alleles) and MIC in two genetic backgrounds
(designated g4205 and 4205a). Because analyses based on
these two sets of alleles were largely indistinguishable, and
for simplicity we only report results based on MIC values from
the g4205 genetic background. On both backgrounds, these
four missense mutations increase cefotaxime MIC �1500-
fold.

Characterizing Epistasis with the Walsh
Transformation
Epistasis describes non-linear interaction(s) among mutations
in determining phenotype (Phillips 1998, 2008). More collo-
quially, epistasis represents our surprise at the phenotype
conferred by some set of mutations given the phenotypes
observed for subsets of those same mutations (Weinreich
et al. 2013). Interest has traditionally focused on epistasis be-
tween pairs of mutations. However given L mutations, inter-
actions may in principle exist among any of the 2L possible
subsets of these. An interaction involving k> 1 mutations
is said to be kth order; among L mutations there are thus

L

k

 !
interactions of order k.

A dataset containing phenotypic data for all combinations
of L mutations is called combinatorially complete (Weinreich
et al. 2013). The Walsh transformation (Goldberg 1989) con-
verts a vector containing a combinatorially complete pheno-
typic dataset into a new vector containing orthogonal,
independent components corresponding to the phenotypic
contributions of each of the 2L subsets of these mutations.
First order terms represent the contribution to phenotype
of each mutation in isolation and terms of order k> 1 rep-
resent epistatic interactions. [This new vector is easily com-
puted, e.g., with the hadamard() function in MATLAB,
MathWorks, Natick, MA. See Box 1 in Weinreich et al.
(2013) for further details.] The Walsh transformation is nu-
merically equivalent to computing each main effect and in-
teraction term in a fully factorial ANOVA design (Reeves and
Wright 1995; Li et al. 2006) and also to the discrete Fourier
decomposition of a function defined on a hypercube (Pumir
and Shraiman 2011; Neidhart et al. 2013). The interested
reader is directed to Poelwijk et al. (2016) for two other
schemes to compute higher-order epistatic effects.

When the phenotype in question is fitness, first order
Walsh coefficients are proportional to classical selection co-
efficients and second order Walsh coefficients are propor-
tional to classical pairwise epistasis coefficients (Weinreich
et al. 2013). Consequently, Weinreich et al. (2013) proposed
using this framework to allow computation of epistatic coef-
ficients of all order. And regardless the phenotype, perfect
additivity among mutations is equivalent to all second- and
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higher-order Walsh coefficients (i.e., all epistatic terms) being
equal to zero.

To summarize the magnitude of epistasis underlying each
phenotype examined, we report the mean squared values

(6 standard deviation) of the
L

k

 !
Walsh coefficients at

each interaction order. Values are squared because individual
Walsh coefficients can be positive or negative. Values were
also normalized by the grand average of each phenotype, in
order to allow comparison across phenotypes. Additionally,
we report the coefficient of determination (R2) between ob-
served phenotypes and those predicted by successive models
incorporating only the lowest order k¼ 1, 2, . . . L terms. To
do this, we took advantage of the fact that the Walsh trans-
form of a vector of Walsh coefficients recovers the initial
phenotypic vector (Weinreich et al. 2013). Thus, for each
vector of Walsh coefficients computed from our data, we
set the appropriate higher-order terms to zero, computed a
new vector of phenotypes, and computed R2 between the
new vector and the original data. (This approach is formally
equivalent to computing the explanatory power of additive
terms in an analysis of variance.)

The Density of Sign Epistasis and Antagonistic
Pleiotropy
Sign epistasis means a mutation fails to influence some phe-
notype in the same direction on all genetic backgrounds ex-
amined. Of particular interest for evolutionary genetics are
cases of mutations that are beneficial on only some genetic
backgrounds. We define the density of sign epistasis at a locus
as the fraction of genetic backgrounds on which that muta-
tion fails to be significantly beneficial. For example, table 4
illustrates that the A42G mutation significantly increases kcat/
KM on five backgrounds but not on the other three examined.
On the assumption that increasing catalytic efficiency is ben-
eficial, the density of sign epistasis for this phenotype ascribed
to A42G is thus 3/8¼ 37.5%. In contrast the density of sign
epistasis for kcat/KM is 0% at G238S. Finally, the density of sign
epistasis for a phenotype across a dataset is defined as the
average mean density of sign epistasis among all mutations in
the dataset.

Antagonistic pleiotropy (AP) means that a mutation af-
fects two phenotypes in opposite directions. Given our inter-
est in adaptation, we follow Remold (2012) and restrict our
definition of AP to those cases in which mutations are signif-
icantly beneficial for only one of the two phenotypes. We
define the density of antagonistic pleiotropy in a dataset as
the fraction of genetic backgrounds on which that a mutation
exhibits antagonistic pleiotropy.

Statistics
Statistical significance of differences in phenotypes (kcat/KM,
kcat, KM, Tm, and DG) between b-lactamase alleles was calcu-
lated by Welch’s or Student’s t-test (Sokal and Rohlf 1995).
Significance values were corrected for multiple tests using
the Holm–Bonferroni method (Holm 1979). Significance in
rank correlations were computed with the Spearman rank

correlation q (Sokal and Rohlf 1995) and statistical signifi-
cance was assessed by purpose-built MATLAB permutation
test over 106 realizations.

DDG Computation
DDG values of all protein-coding alleles were computed rel-
ative to the 1BTL PDB crystal structure of TEM-1 (Jelsch et al.
1993) using two public domain software packages. The graph-
ical user interface version of FoldX (Van Durme et al. 2011,
downloaded May 31, 2015) was run from inside YASARA
(Krieger and Vriend 2014, downloaded May 31, 2015) using
standard parameter values (3 runs at 298�K in pH 7.0 with
ionic strength 5 
 100 and Van der Waal design 2). Queries
were also performed with the web-based interface for
PoPMuSiC 2.1 (Dehouck et al. 2011, last accessed May 31,
2015) in manual mode.

Supplementary Material
Supplementary data is available at Molecular Biology and
Evolution online.
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