

Corrigendum: Total Flavonoids of Rhizoma Drynariae Promotes Differentiation of Osteoblasts and Growth of Bone Graft in Induced Membrane Partly by Activating Wnt/β-Catenin Signaling Pathway

OPEN ACCESS

Edited and reviewed by:

Dieter Steinhilber, Goethe University Frankfurt, Germany

*Correspondence:

Leilei Chen yutian_1010@sina.com Qishi Zhou zhouqishi@139.com

Shuyuan Li^{1,2}, Hongliang Zhou^{1,2}, Cheng Hu^{1,2}, Jiabao Yang^{1,2}, Jinfei Ye^{1,2}, Yuexi Zhou^{1,2}, Zige Li^{1,2}, Leilei Chen³* and Qishi Zhou⁴*

¹Guangzhou University of Chinese Medicine, Guangzhou, China, ²Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China, ³Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China, ⁴First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China

Keywords: total flavonoids of rhizoma drynariae, induced membrane, wnt/β-catenin, bone defect, osteogenic efficacy

Specialty section:

This article was submitted to Inflammation Pharmacology, a section of the journal Frontiers in Pharmacology

Received: 17 June 2021 **Accepted:** 29 June 2021 **Published:** 16 July 2021

Citation:

Li S, Zhou H, Hu C, Yang J, Ye J, Zhou Y, Li Z, Chen L and Zhou Q (2021) Corrigendum: Total Flavonoids of Rhizoma Drynariae Promotes Differentiation of Osteoblasts and Growth of Bone Graft in Induced Membrane Partly by Activating Wnt/ β-Catenin Signaling Pathway. Front. Pharmacol. 12:726831. doi: 10.3389/fphar.2021.726831

A Corrigendum on

Total Flavonoids of Rhizoma Drynariae Promotes Differentiation of Osteoblasts and Growth of Bone Graft in Induced Membrane Partly by Activating Wnt/β-Catenin Signaling Pathway by Li S., Zhou H., Hu C., Yang J., Ye J., Zhou Y., Li Z., Chen L. and Zhou Q. (2021). Front. Pharmacol. 12:675470. doi: 10.3389/fphar.2021.675470

In the original article, there was a mistake in **Figures 1E**, **4A** as published. The carelessness in combining the images caused the repetition of the images (**Figure 1E** H-TFRD and L-TFRD; **Figure 4A** cyclinD and **Figure 6D** COL1A1). The corrected **Figures 1**, **4** appear below.

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

Copyright © 2021 Li, Zhou, Hu, Yang, Ye, Zhou, Li, Chen and Zhou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

1

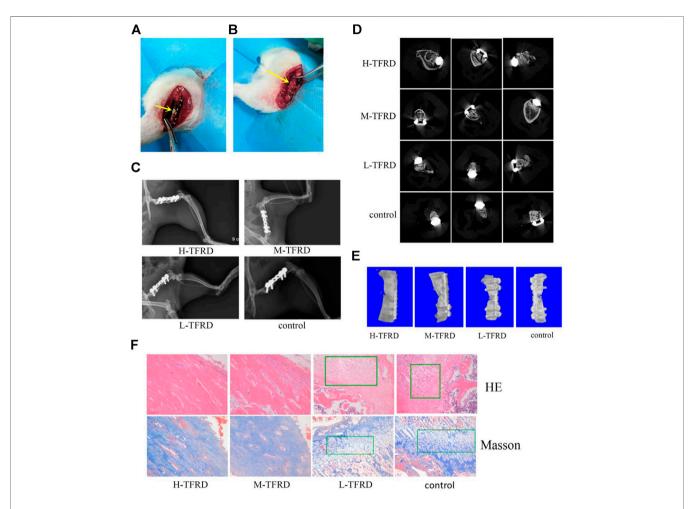


FIGURE 1 | TFRD accelerates the growth and mineralization of bone graft. (A) The yellow arrow in the picture refers to the 6 mm bone defect constructed in the right femur of rats during the first stage operation. PMMA spacer was implanted in this area to induce formation of biofilm. (B) The yellow arrow refers to the area of bone graft in the right femur of rats at the second stage operation. (C) X-ray was performed on the right femur of rats. Among them, the amount of callus and cortical bone shaping in the H-TFRD and M-TFRD groups were more obvious than those in the L-TFRD and control groups. (D) was the result of Micro-CT cross-sectional scanning of the bone graft in the right femur of rats. (E) was the results of three-dimensional reconstruction of the right femur of rats. (F) shows the histological and structural characteristics of bone graft in the right femur of rats (magnification, ×200). The green boxes show the cartilage area, and other parts in pictueres show the osteogenic area.

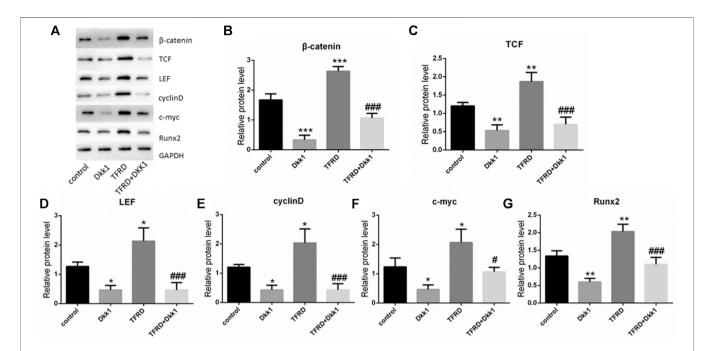


FIGURE 4 | Effect of TFRD on proteins related to Wnt/β-catenin signaling pathway in osteoblasts. (A) The relative protein expression levels of β-catenin, TCF, LEF, cyclinD, c-myc, and Runx2 were detected by Western blot. (B–G) Semi-quantitative analysis of protein expression. N = 3/group. Each value was presented as the mean \pm SD. ***p < 0.001, *p < 0.001, *p < 0.05 vs. the control group; *##p < 0.001, *p < 0.05 vs. the TFRD group.