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Single-molecule FRET (smFRET) is a versatile technique to study the dynamics
and function of biomolecules since it makes nanoscale movements detectable
as fluorescence signals. The powerful ability to infer quantitative kinetic
information from smFRET data is, however, complicated by experimental
limitations. Diverse analysis tools have been developed to overcome these
hurdles but a systematic comparison is lacking. Here, we report the results of a
blindbenchmark study assessing eleven analysis tools used to infer kinetic rate
constants from smFRET trajectories. We test them against simulated and
experimental data containing the most prominent difficulties encountered in
analyzing smFRET experiments: different noise levels, varied model com-
plexity, non-equilibrium dynamics, and kinetic heterogeneity. Our results
highlight the current strengths and limitations in inferring kinetic information
from smFRET trajectories. In addition, we formulate concrete recommenda-
tions and identify key targets for future developments, aimed to advance our
understanding of biomolecular dynamics through quantitative experiment-
derived models.

How does biomolecular function arise from structural dynamics? This
largely unsolved question is central for the understanding of life at the
molecular scale. However, the transitions between various conforma-
tional states have remained challenging to detect, quantify, and
interpret. Over the past two decades, single-molecule Förster reso-
nance energy transfer (smFRET) detection has emerged as a powerful
technique to study the dynamics of single biomolecules under phy-
siological conditions using fluorescence as a readout1. A unique aspect
of smFRET is its ability to link space and time, i.e., to connect structural
with kinetic information under both equilibrium and non-equilibrium

conditions, which is often unachievable using ensemble methods. By
measuring the distance-dependent energy transfer from a donor to an
acceptor fluorophore, distances in the range of 4 to 12 nm can be
measured with sub-nanometer precision and accuracy2. Various
experimental implementations exist that allow one to measure
smFRET on diverse timescales from picoseconds to hours. All of this
makes smFRET an ideal tool in the growing field of dynamic structural
biology3.

To study conformational dynamics of one single molecule for an
extended time (seconds to minutes), dye-labeled biomolecules are
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most commonly immobilized on passivated glass slides and imaged
using camera-based brightfield detection, or confocal detection using
avalanchephotodiodes (APDs)2. The resulting fluorescence time traces
have a time resolution of about 10ms − 100ms for the most common
camera-based studies, and picoseconds for single-photon counting
APDs. The observation time per single molecule is limited by photo-
bleaching, leading to an average bandwidth of less than three orders of
magnitude in time4–6. Conformational transitions of the biomolecule
change the inter-dye distance leading to discrete steps in the fluores-
cence signal and the FRET efficiency (Fig. 1). This desired time-resolved
distance information is convoluted with largely Gaussian noise in the
experiment (from autofluorescence background, detector noise, laser
fluctuations, etc.). Moreover, noise and photobleaching are intrinsi-
cally coupled: increasing the laser power for a better signal-to-noise
ratio causes faster photobleaching, which reduces the temporal
bandwidth of the experiment. As a result, signal interpretation in terms
of biomolecular states and specific transitions between them is not
trivial.

A multitude of analytical approaches have been developed to
infer the number of functional states and quantify kinetic rate con-
stants from noisy experimental data. Frequently, hidden Markov
models (HMMs)7 are used to infer an idealized state sequence from
which dwell-time distributions are compiled, which are then fit (with
exponentials) to obtain kinetic rate constants8,9. Alternatively, the
transition matrix that is part of every HMM can directly be converted
to kinetic rate constants. The HMM formalism is based on a discrete
memoryless Markov process that infers a set of parameters (prob-
abilities of states, transitions, and observations) to describe the
observed sequence of FRET efficiencies. Many extensions of the HMM
formalism have been developed10–15 including Bayesian
approaches16–19, and very fast kinetics (low energy barrier crossings)
can be inferred from single-photon arrival times20–22.

Often, multiple input models are compared based on a scarcity
criterion to avoid bias in the selection of the optimal model size (i.e.,
the number of states and rate constants), andhence the number of free
parameters8,23–25. Other analysis approaches, such as correlation
analysis26–30 and discretization methods based on cluster analysis31–34,
may treat the raw data in a model-free way while the extraction of
individual rate constants (rather than residence times only) still relies
on an initial guess of a model. The growing number of analytical
methods renders it increasingly difficult to decide on the optimal tool

for a specific application and to judge whether the described
improvements justify the time cost of implementation. Hence, it was
identified during a round table discussion of the smFRET community
(Fluorescence subgroup, Biophysical SocietyMeeting 2019, Baltimore,
US) that a critical assessment of the available tools is needed.

Here, we present the results of a comparative multi-laboratory
study that provides a systematic evaluation of eleven analysis tools
(summarized in Table 1) using simulated as well as experimental data
of varied complexity. Three of the analysis tools were utilized under
different conditions, leading to a comparison of 14 different analyses.
While clearly not all existing analysis tools could be covered (new tools
are released continuously), this blind study (illustrated in Fig. 1) allows
us to directly assess the performance of the different analysis
approaches for the inference of kinetic information from single-
molecule FRET trajectories and to identify their strengths and weak-
nesses. Specifically, we assess the accuracy of the inferred kinetic
model (i.e., the kinetic rate constants and their connectivity) plus the
associated uncertainties, and this for kinetic models of varied size,
from the simple caseof a two-state system (Fig. 2) to themore complex
case of a non-equilibrium three-state system (Fig. 3), and finally to
degenerate multi-state systems (Figs. 4, 5). All analyses were per-
formed by the expert labs of each tool to ensure optimal imple-
mentation (see Methods for details).

Results
The archetypal 2-state system
We first consider the simplest case of a kinetic 2-state system, which
could represent alternation between two conformations of a biomo-
lecule in dynamic equilibrium, or transient biomolecular interactions.
The kinetics of this system are described by two rate constants
(Fig. 2a). In a blind study, we analysed simulated and experimental
smFRET data using the diverse set of analysis tools summarized in
Table 1 and detailed in the Supplementary Methods. Simulated test
data (described in Methods) has the advantage that the underlying
ground truth (GT, i.e., the simulation input) is known, which facilitates
the evaluation of the inferred results, while, for experimental data, the
GT is naturally not known. Figure 2b depicts an example of the simu-
lated traces.Wenote that it closely resembles the experimental trace in
Fig. 2e. Based on a dataset of such simulated traces (n = 75), all
laboratories inferred FRET efficiencies (Fig. 2c) and rate constants
(Fig. 2d), which agree very well: the FRET efficiencies deviate by less
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Fig. 1 | This blind study reports on the performance of diverse analysis tools to
describe single-molecule dynamics with quantitative kinetic rate constants.
Biomolecular dynamics of proteins and nucleic acids can be detected by smFRET
and other single-molecule techniques. Extracting testable kinetic rate models from

the experimental time traces is complicated by experimental shortcomings. Mul-
tiple labs joined forces to directly test the performance of diverse analytical
approaches to infer kinetic rate constants in a blind study.
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than 17% from the GT (1% average deviation), and the inferred rate
constants deviate with a maximum of 12% from the GT (5% average
deviation), with a slight systematic underestimation inmost cases, i.e.,
the determined rate constants were slower. Pomegranate, FRETboard,
and Step finding infer the most accurate rate constants under the
tested conditions (Table 3). The equilibrium constants K = k21=k12 vary
generally less since systematic deviations balance each other in this
case (Supplementary Fig. 1a). In contrast, the reported uncertainty
measures vary greatly, independent of the analysis type (0.4% to 21%
relative to the inferred rate constant). For comparison, we estimated
the minimal uncertainty given the finite size of the dataset, by quan-
tifying the standard deviation of the rate constants obtained from one
million simulated samples (see Methods). This standard deviation is
≥3% of the rate constants for the provided dataset (gray and light gray
bars in Fig. 2b shown for 1σ and 2σ, respectively). Thus, most analysis
tools reported reasonable uncertainty estimates, while some tools
reported uncertainties that are smaller than this lower limit (Tracy,
Correlation, STaSI) orprovidednouncertaintymeasures (Edgefinding).
FRETboard version 0.0.2 reported consistently very large uncertain-
ties, which was solved in their latest software version 0.0.3 (ref. 35, cf.
Supplementary Datafiles). Step finding version 0.0.1 initially found
erroneously large uncertainties that have been corrected in the latest
software version 0.0.2 (cf. Supplementary Datafiles). We note that

various methods are currently in use for estimating uncertainties
which complicates the direct comparison.

Next, we consider experimental data (see Methods), which natu-
rally contains all typical noise sources and experimental artefacts
(Fig. 2e–g). As there is no GT for experimental data, we assessed the
consistency of the inferred FRET efficiencies and rate constants using
the coefficient of variation (CV, i.e., the standard deviation divided by
the mean). We found excellent agreement for all inferred FRET effi-
ciencies (CV ≤ 2%). The rate constants vary by 12% and 16% (CV for k12
and k21, respectively), consistentwith the variation found for simulated
data (Fig. 2d). Again, no correlation of the rate constants with respect
to the analysis approach is evident, but the tendency of a given tool for
large or small uncertainties is conserved (Fig. 2d, g), with FRETboard
and Step finding reporting the largest uncertainties, and STaSI,MASH-
FRET (prob.), postFRET, and Correlation the smallest uncertainties. In
most cases, the equilibrium constants (Supplementary Fig. 1b) agree
well with each other and with the equilibrium populations of the FRET
histogram, while some results are inconsistent with the latter (Hidden-
Markury, Correlation, STaSI, and postFRET).

One important factor in dynamic smFRET data is the signal-to-
noise ratio (SNR), which depends on the acquired signal per data point
and can be controlled by the integration time (also known as exposure
time). We explicitly tested the effect of a ten-fold shorter integration

Fig. 2 | Quantification of simulated and experimental kinetics between two
states. a Illustration of the kinetic model with two states (circles) connected by
forward andbackward rate constants: k12 and k21.bA simulated FRET trace showing
the donor and acceptor fluorescence intensity (green, red) and the FRET efficiency
(FRET, black), representative for the dataset used in (c, d): n(traces) = 75, n(data-
points) = 59,486, sampling rate = 5Hz, time per datapoint = 200ms. c FRET effi-
ciency histogram (gray) with assigned states on top and inferred FRET efficiencies
in red and blue. Numbers on the right axis refer to the analysis tools specified in (d).
Vertical lines indicate the mean over all tools. Sample size as in (b). The error bars
represent standarddeviations.dRate constants anduncertainties inferred fromthe
dataset in c by different labs using the respective analysis tools. The ground truth
(GT) is indicated by horizontal red and blue lines, the intrinsic uncertainty of the
dataset (see text) is represented by dark gray (1σ) and light gray (2σ) intervals.
Sample size as in (b). Uncertainty measures (CI, SD) as listed in Table 1. e An

experimental time trace with colors as in (b), representative for the dataset used in
(f, g) with n(traces) = 19, n(datapoints) = 226,100, using 10ms time bins resulting in
100Hz sampling, kindly provided by B. Schuler. f FRET histogram with color code
and axis labels as in (c). Sample size as in (e). The error bars represent standard
deviations. No uncertainties were submitted for tool #5. g Inferred rate constants
from the experimental dataset in (f). Color code as in (d). Horizontal red and blue
lines indicate the mean of the inferred rate constants. Sample size as in e. Uncer-
tainty measures (CI, SD) as listed in Table 1. Supplementary Fig. 2 shows the
experimental data and analysis with ten times higher time resolution. ‡ denotes
results that were submitted after the GT was known. The model size was restricted
to two states. FRETboard and Step finding found erroneously large uncertainty
intervals, which has been corrected in their latest software versions. See Supple-
mentary Datafiles. Source data are provided as a Source Data file for panels
(c, d, f, and g).
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time. On the one hand, this offers better sampling of fast kinetics due
to the increased time resolution (1 kHz instead of 0.1 kHz sampling),
but, on theother hand, it results in a lower signal-to-noise ratiowhich is
more challenging for state identification. In addition, at 1 kHz sam-
pling, the data shows single-photon discretization and non-Gaussian
noise (Supplementary Fig. 2a, b), thus deviating from the basic
assumptions underlyingmost of the considered analysis tools. Indeed,
the overall agreement of the rate constants at this lower SNR was
reduced: CV = 33% and 45% for k12 and k21, respectively (Supplemen-
tary Fig. 2c), indicating that thebenefit of the increased time resolution
is minor in this case. Nevertheless, the equilibrium constants agree
very well again (CV = 2%, when excluding the two clear outliers in
Supplementary Fig. 2d) due to the cancelation of systematic shifts for
both rate constants (Supplementary Fig. 2e). Comparing the rate
constants inferred at 1 kHz and 0.1 kHz sampling, pomegranate, Tracy,
Correlation, MASH-FRET, and Step finding reported similar values
(Supplementary Fig. 2e), while STaSI inferred slower rate constants for
faster sampling. Conversely, FRETboard, and SMACKS inferred faster
rate constants for faster sampling, either due to fitting noise or due to
short events that are missed at lower time resolution. The latter is less
plausible, given that the inferred rate constants are 20-fold smaller
than the 0.1 kHz sampling rate. Thus, a comparison between 0.1 kHz
and 1 kHz sampling can serve to estimate the robustness of the analysis
tools towards non-Gaussian noise. Taken together, fundamentally
different analysis approaches inferred consistent rate constants and
FRET efficiencies from a simple, two-state system both for simulated
data and experimental data with varied SNR.

Directional sequences in a non-equilibrium steady-state system
Many biomolecular systems involve more than just two functionally
relevant states, leading tomore intricate kineticmodels withmore rate

constants and, hence, more degrees of freedom. Such systems with
three or more states can show a conceptually unique thermodynamic
phenomenon: the non-equilibrium steady-state, in which a biomole-
cule, such as amotor protein or amolecular machine such as F0F1-ATP
synthase, is driven by continuous external energy input, e.g. in the
form of a chemical gradient36, light37,38, or ATP. As a result, con-
formational statesmayappear in apreferred sequenceorder, causing a
non-zero net flow, e.g. for the 3-state system depicted in Fig. 3a:

ΔG1!2!3!1 = � kBT * ln
k21�k32�k13

k12�k23�k31

� �
≠0 ð1Þ

The unique ability to directly observe the non-equilibrium steady-state
is a prime example of the merits of single-molecule studies. Hence, we
investigated it explicitly, using smFRET data simulated with a kinetic
3-state model and a non-zero counter-clockwise flow: ΔG1!2!3!1 < 0
(Fig. 3a, b).As anadditional challenge, this data containedfluorescence
intensity variation between individual dye molecules, as observed in
experimental data due to varied local dye environment and orienta-
tion, inhomogeneities in excitation intensity and polarisation, and also
variations in detection efficiency39.

All analysis tools found the three clearly separated FRET efficiency
populations (Fig. 3c), while the inferred rate constants varied more
than for the 2-state systems above (Fig. 3d). Most tools systematically
underestimated k13 and k31 and overestimated all other rate constants.
This may be attributed to the inevitable effect of time discretization
and related intensity averaging: time-weighted averaging (e.g. camera
blurring) of the FRET efficiencies can lead to mid-FRET observations
that are indistinguishable from those caused by a bona fide biomole-
cular conformation. While, at the single datapoint level this dis-
cretization artefact cannot be prevented, the inference accuracy may

Fig. 3 | Quantitative analysis of a non-equilibrium steady-state system. a An
illustration of the simulated three-state model with a counter-clockwise net flow.
States (circles) are connected by forward and reverse rate constants as specified.
bA simulated smFRET tracewith donor and acceptorfluorescence intensity (green,
red) and FRET efficiency (FRET, black), representative for the dataset used in
(c, d, e): n(traces) = 150, n(datapoints) = 82,594, sampling rate = 10Hz, time per
datapoint = 100ms. c SmFRET histogram overlaid with the inferred FRET effi-
ciencies (right axis, numbers as in e) and assigned states on top. Sample size as in
(b). The error bars represent standard deviations. d Inferred rate constants are
shown in red and blue as specified. Vertical lines indicate the GT. The intrinsic
uncertainty of the dataset is represented by dark gray (1σ) and light gray (2σ)

intervals. Sample size as in (b). Uncertainty measures (CI, SD) as listed in Table 1.
Analysis tools are numbered as in (e). e The inferred cyclic flow in the counter-
clockwise direction determined by calculating ΔG from Eq. (1) and compared with
the GT value (solid vertical line). The uncertainty intervals (dark and light gray) are
plotted as in (d). Sample size as in (b). Uncertainty measures (CI, SD) as listed in
Table 1. Additional simulations to validate the dataset are shown in Supplementary
Fig. 3. ‡ denotes results that were submitted after the GT was known. Edge finding
did not report uncertainties. § denotes that the misassignment of start and end
states was corrected after the GT was known. Source data are provided as a Source
Data file for panels (c, d, and e).
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be improved by treating discretization-induced averaging explicitly in
the analysis33,40; or using pulsed illumination to reduce blurring41,42.
Overall, postFRET and Tracy inferred the most accurate rate constants
with average GT deviations of 9% and 14%, respectively. As shown in
Fig. 3e, qualitatively, the net flow was correctly resolved (most accu-
rately by postFRET, Tracy, and FRETboard), while quantitatively it was
mostly underestimated, which we attribute to the aforementioned
systematic misallocation of transitions between states 1 and 3. For this
simulated dataset, the theoretical lower limit of the uncertainty (as
introduced above for the 2-state system) is smaller because the dataset
is larger. About half of the tools reported uncertainties that are in line
with this lower limit (grey intervals),while the other half reported none
or too small uncertainties. We would like to stress that such a quanti-
fication of net flow is only meaningful when no detailed balance con-
straints are imposed during the rate inference, which was the case for
the tools considered here. Altogether, the rate constants of the non-
equilibrium 3-state system with intensity variation were less accurate
than those of the 2-state system, and also the uncertainty estimation
was challenging in this case. Nevertheless, the steady-state flow was
qualitatively well resolved by most tools.

States with overlapping FRET efficiencies
Many biological systems show multi-exponential dwell-time distribu-
tions with long and short dwell times for the same apparent FRET
state6,43–45. This can, for example, arise when the one-dimensional

reaction coordinate spanned by the FRET pair is not sufficient to
uniquely identify structural states in 3D space. Such kinetic hetero-
geneity is difficult to interpret because transitions between states with
identical or overlapping FRET efficiencies cannot be directly observed
in the recorded time traces, while they canoftenbe inferred kinetically.
To investigate this case, we simulated kinetic heterogeneity based on a
four-statemodel (Fig. 4a) where states 1 and 2 have the same low-FRET
efficiencies, and states 3 and 4 have the same high-FRET efficiencies.
Again, the fluorescence traces included intensity variations between
FRET pairs as observed in the experiment (introduced in the previous
section), and also donor and acceptor blinking was included, as an
additional imperfection of the data. Figure 4b shows example traces
from the simulation and Fig. 4c shows the FRET efficiency histogram
with two peaks. Without a priori knowledge of the model size, most
tools identified the correct number of two apparent FRET states, while
FRETboard used three FRET states to describe the data. Edge finding
was not developed to deal with such kinetic heterogeneity, and
Pomegranate, Correlation, STaSI and MASH-FRET (bootstrap) reported
FRET efficiencies but no kinetic models. In the following, we use
cumulative dwell-time distributions derived from each inferred model
(Fig. 4d, detailed in Methods) to compare models with the correct
number of FRET states but differences in the kineticmodel, such as the
connectivity of states or the number of hidden states (rate constants of
all inferred models are reported in the Supplementary Table 1, and in
the Supplementary Datafiles). Out of the seven independently inferred

Fig. 4 | Resolving kinetic heterogeneity: states with indistinguishable FRET
efficienciesbutdifferentkinetics. aAn illustrationof the simulatedGTmodelwith
states (circles) connected by forward and reverse rate constants. States 1 and 4 as
well as states 2 and 3 have indistinguishable FRET efficiencies, causing kinetic
heterogeneity.b Two simulated FRET traces offset in timewith donor and acceptor
fluorescence intensity (green, red) and FRET efficiency (FRET, black) are shown,
representative for the dataset used in (c,d): n(traces) = 250, n(datapoints) = 56,794,
sampling rate = 5Hz, time per datapoint = 200ms. c FRET histogram with inferred
FRET efficiencies overlaid (right axis: legend as in Table 1 and in all Figures). Sample
size as in (b). The error bars represent standard deviations. d Comparison of
cumulative dwell time distributions derived from the kineticmodels with two FRET
states (detailed inMethods). The GT histogram is shown as a bold black line. Insets
show zoomed-in views of the data indicated by the squares. e Quantitative

comparison of the four most accurately inferred kinetic models: the GT values are
represented as red and blue vertical lines. Sample size as in (b). Uncertainty mea-
sures (CI, SD) as listed inTable 1. The intrinsic uncertainty of the dataset is shownas
dark gray (1σ) and light gray (2σ) intervals. Beyond the six displayed rate constants,
these additional rate constants were inferred: for Hidden Markury k31 = 0.045 and
k34 = 0.003, for SMACKS k13 = 0.0001, k31 = 0.0055, k34 = 0.0034, for MASH-FRET
(prob.) k31 = 0.033. All inferred values of all models are reported in the Supple-
mentary Tables 1 and in the Supplementary Datafiles. ‡ denotes results that were
submitted after the GT was known. No results were reported by Edge finding. Par-
ticipants were informed that kinetic heterogeneity may be involved, but not in
which configuration. Source data are provided as a Source Data file for panels
(c, d, and e).
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kinetic models, the twomodels without kinetic heterogeneity (by Step
finding andpostFRET) show the largestdeviations from theGT, as these
models cannot reproduce the multi-exponential nature of the dwell-
time distribution. On the other hand, the four models inferred by the
HMM-based Hidden-Markury, SMACKS, SMACKS(SS), as well as MASH-
FRET (prob.) show good agreement with the GT and overlay the GT in
the low- and high-FRET case (compare Fig. 4d). A quantitative com-
parison of these four models and their uncertainties with the GT is
provided in Fig. 4e. It shows accurate rates and some collective
underestimation of rates k12, k21, k32, likely due tomissed fast events. In
addition, some rates were inferred that are not present in the GT (see
Fig. 4e caption). Taken together, several tools inferred the correct
model size (number of states) and accurate cumulative dwell-time
distributions, but model selection – and in particular the selection of
the correct connectivity of states – remains a main challenge in
inferring kinetic information from smFRET trajectories. It is, however,
encouraging that several analysis tools can already deduce kinetic
models that closely reproduce the GT even under difficult conditions
involving kinetic heterogeneity.

Full complexity of a black-box experiment
Encouraged by the previous results, we tested all tools vis-à-vis the full
experimental complexity to see if they perform similarly as in the
simulated case (Fig. 4). Three experimental datasets of the same

biological system (protein binding to a fluorescently labelled DNA, see
Methods), under different experimental conditions and thus different
kinetic behaviour, served as a test case. However, the analysts had no
prior information on themolecular system causing the dynamics. This
means that all the effects discussed so far could potentially be present
in these experimental datasets: multiple FRET states, diverse noise
sources, fluorophoreblinking, directional steady-state flow and kinetic
heterogeneity. In addition, the fluorescence intensity variation
between single molecules was particularly high in these datasets (see
Fig. 5a, d, g), which complicated the inference of the number of states
and rates involved (subsequently referred to as model selection).
Under these complex conditions, the inferred number of FRET states
(Fig. 5b, e, h) varied more than in the simulated case (discussed in
Fig. 4). Most tools found two FRET states (Fig. 5b, e, h, some of them
including kinetic heterogeneity), but also three, four, ormore different
FRET states were reported (Supplementary Fig. 4), and the kinetic rate
constants varied accordingly. Given the inherent lack of GT informa-
tion in experimental data,we cannotquantitatively assess the accuracy
in this comparison. To balance this fact, we qualitatively compare the
inferred results for all three datasets. The 6–7 models with two FRET
states (and possibly more hidden states) are compared in (Fig. 5c, f, i).
Other models with three, four, or more FRET states are compared in
Supplementary Figs. 4–6. (All inferred rate constants are given in
Supplementary Tables 2–4 and Supplementary Datafiles). Again, we

Fig. 5 | Increased experimental complexity. Results inferred from three experi-
mental datasets where naturally no GT exists. a, d, g Experimental traces, offset in
time and separated by dashed vertical lines, with donor and acceptor fluorescence
intensity (green, red) and FRET efficiency (FRET, black), representative for the
datasets used in (b, c), (e, f), (h, i), respectively, with n(traces): 134, 163, 118; and
n(datapoints): 36,604, 37,067, 43,512; sampling rate = 33Hz, time per datapoint =
30ms. All threedatasetswere kindly providedbyM. Schlierf.b, e,h FRET efficiency
histograms and FRET efficiencies inferred by the analysis tools numbered as in (j).
Sample sizes as in (a, d, g), respectively. The error bars represent standard devia-
tions. For clarity, only the smallest reported model is shown for each analysis tool,

up to a maximum of four FRET states. All inferred FRET efficiencies are shown in
Supplementary Fig. 4, and all inferred results are provided in the Supplementary
Tables 2–4 and in the Supplementary Datafiles. Purple arrow in (e): the error bar
extends to 1.61. Teal arrow in (h): the error bar extends to −0.53. c, f, i Cumulative
distribution functions (CDF) of the dwell-times simulated using the inferred kinetic
models with two FRET states, obtained with the tools numbered as in (j). j Legend
with all analysis tools. No results were reported by Edge finding. ‡ denotes results
that were submitted after all other results were known. Source data are provided as
a Source Data file for panels (b, c, e, f, h, and i).
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use cumulative dwell-time distributions (cf. last section) derived from
each inferredmodel (Fig. 5c, f, i) to facilitate the comparison ofmodels
with the same number of FRET states but possibly different state
connectivity. The distributions are thus single- or double-exponential
depending on the reported kinetic model. The five tools that inferred
two FRET states and qualitatively similar kineticmodels under all three
conditions despite different analysis approaches, are the HMM-based
Hidden-Markury and SMACKS, as well as Step finding, postFRET and
MASH-FRET (prob.). While postFRET consistently inferred slower rate
constants, the qualitative agreement among the other five tools is
surprisingly good (CV ≤ 25% for the average residence time) despite
the complexity of the input data, the missing prior knowledge about
the system, and the different analysis approaches used.

Altogether, we conclude thatmodel selection and state allocation
are currently the key challenges in the analysis of kinetic data. In this
study, we focused only on the analysis of fluorescence intensity and
FRET efficiency data. The addition of complementary information
from simulations or experiments (e.g., static molecular structures and
other observables, such as fluorescence lifetimes, anisotropy, and
more) may help to elucidate complicated or otherwise under-
determined systems30,46,47.

Discussion
In this blind study, we compared eleven kinetic analysis tools for the
inference of quantitative kinetic rate constants based on single-
molecule FRET trajectories. We explicitly considered the major
(kinetic) challenges that the single-molecule experimentalists are
typically confronted with: determining the best model to describe the
data, especially with multiple FRET states, a varying signal-to-noise
ratio, directional non-equilibrium steady-state flow, and kinetic het-
erogeneity (i.e., states with indistinguishable FRET efficiency but dis-
tinct kinetics). We assessed the inferred FRET efficiencies, rate
constants, and the reported uncertainties, based on three simulated
datasets and four experimental datasets from two biological systems
measured using two different setups in different laboratories. The
simulated data allowed us to directly assess the accuracy of the
inferred rate constants using the known ground truth model and to
judge the plausibility of the reported uncertainty measures, while the
experimental data shows the relevance and validity of this study.

We found that the number of states was correctly inferred by all
tools, as long as their FRET efficiencies were clearly separated (Figs. 2
and 3). In the presence of kinetic heterogeneity with overlapping FRET
states,model selectionwasmorechallenging (Fig. 4). In this case, three
tools successfully inferredmodels that accurately reproduce thedwell-

time distribution of the GT despite overlapping FRET states (Hidden-
Markury, MASH-FRET, SMACKS). In general, the accuracy of the rate
constants inferred by all tools decreased with increasing model size
and complexity, where time discretization artefacts and inter-trace
intensity variation become increasingly challenging. The equilibrium
constants and steady-state flow were more accurately inferred than
individual rate constants due to the cancellation of systematic errors
(Supplementary Figs. 1 and 2d, e, Fig. 3). Caution is advised with the
uncertainties of rate constants since different uncertainty measures
are reported by different approaches. Even for small models (Figs. 2
and 3), we found that some uncertainty estimates were smaller than
the uncertainties caused by the finite dataset size, while interestingly,
more plausible uncertainties were reported for the more complex
model in Fig. 4 (Supplementary Fig. 4). In general, the comparison of
uncertainties is complicated by the fact that no common standard
exists and themathematical interpretation of the reported uncertainty
intervals differs from tool to tool.

When comparing various analysis frameworks, model-free
approaches are generally considered advantageous for an unbiased
data analysis. However, HMM-based tools (that compare several input
models based on scarcity criteria) were found to be more robust
towards data heterogeneity (Figs. 4 and 5, Supplementary Fig. 2).
Nevertheless, we did not observe a clear overall clustering of the
inferred rate constants with the underlying analysis framework, likely
due to differences in the data handling beyond the used algorithms
(e.g. supervised, semi-supervised, or unsupervised inference). The
total analysis durations (processing and computation) ranged from a
few minutes to several hours depending on the analysis tool and the
model size, with StaSI and Step finding ranking among the fastest, and
SMACKS among the slower tools. In the course of this study, multiple
conceptual oversights could be found and solved in a number of tools,
which is a direct constructive result of this collaborative comparison
study that led to the general recommendations stated in Table 2.
Additionally, a simple shareable smFRET data format was introduced
(Supplementary Note 1) and utilized by all twelve labs working in
diverse software environments.We anticipate that this data formatwill
facilitate future collaborations and significantly lower the barrier for an
experimentalist to adopt a newly developed analysis tool if it supports
the accepted format.

Looking ahead, a particularly promising outlook is the possibility
to characterize individual states with individual noise patterns more
accurately, using machine learning. Recently, deep learning approa-
ches have been developed for the unbiased selection of single mole-
cule traces for further kinetic analysis48,49. Similar approaches could be

Table 2 | General recommendations for users and developers of kinetic inference toolsa

(i) As a general consistency test, the inferred kinetic model (connectivity and rate constants) can be simulated and the output of the simulation compared to the
original input data. For example, the simulator used herein is publicly available as a simple and powerful (MATLAB) tool to testwhether the proposedmodel can
generate data analogous to the original input, e.g. regarding FRET histogram, smFRET traces, etc.

(ii) Potential biases in the analysis (e.g. regardingmodel size, state occupation, etc.) can be revealed by subjecting the re-simulated data (with knownground truth)
to the same analysis approach as the experimental data.

(iii) Where possible, kineticmodels with a specific number and connectivity of states are preferred over mean residence times, since the latter leave the individual
transition rate constants undetermined for more than 2 states.

(iv) Uncertainty measures are necessary indicators of significance, and a unified standard would greatly improve their comparability. The 95% confidence interval
was the most frequently used uncertainty measure in this study, and we encourage its use as a common standard for the future.

(v) Benchmarking new analysis tools using datasets of varied complexity – includingmodels withmore than 2 states – can reveal systematic errors, e.g. regarding
the weighting of multiple rate constants that depopulate a given state, an issue encountered in this study.

(vi) Benchmarking new software with established test data helps the potential users to judge the added benefits of newly introduced analysis tools. The diverse
datasets used herein are publicly available and can serve to assess a tool’s performance under varied experimental conditions.

(vii) Supporting broadly accepted file formats for newly developed analysis tools facilitates fast dissemination in the field. We offer the simple format described in
Supplementary Note 1, which proved to be very useful for this study.

aIn the course of this study, several difficulties with the analysis of kinetic data have become apparent. Out of this experience, we have compiled a list of recommendations for those developing and
using kinetic analysis tool.
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envisioned for a model-free kinetic analysis, which bears the potential
to improve model selection significantly18,50. Demonstrating such new
tools using public training datasets and supporting the simple file
format introduced in this study, will accelerate the dissemination of
the newest theoretical developments within the community of single-
molecule experimentalists. Additional important aspects for future
benchmark studies include the ‘data greediness’of a given tool, e.g. the
amount of data and the number of transitions-per-trace (given by the
relation of biomolecular dynamics versus bleach rate) that are
required for accurate rate inference.

In conclusion, this blind study on kinetic inference from smFRET
data further validates the use of smFRET in deciphering biomolecular
rates. It unequivocally reveals the current strengths andweaknesses of
the various analysis approaches when tested against frequently
encountered phenomena in smFRET experiments, and provides a
reference standard for the continuous developments in this active
field. We anticipate that this study will serve the community as a guide
for data interpretation, spark futuredevelopments in kinetic inference,
and therefore help to advance our understanding of biomolecular
dynamics leading to function.

Methods
Procedure of this benchmark study
The need for a comparison of analysis tools for smFRET trajectories
has grown with the increasing number of smFRET users and published
tools. This was addressed at the Biophysical Society Meeting 2019
(Baltimore, US) by initiating a kinetic software challenge, short kin-
SoftChallenge. In line with more efforts to assess, promote, and
potentially standardize experimental and analytical smFRET proce-
dures (Refs. 2,3, 51 in preparation), the kinSoftChallenge represents an
important step aimed to improve the reliability and accuracy of kinetic
inference from smFRET trajectories. In a first round of the study (July
2019 to November 2019), the participants received three simulated
datasets (shown in Figs. 2, 3, and 4). In the second round (December
2019 to February 2020), the participants analyzed the experimental
dataset shown in Fig. 5. Experimental data with high and low SNR was
compared in a third round (November to December 2020, shown in
Fig. 2, and Supplementary Fig. 2). The individual test conditions are
described in the text and summarized in Table 3. All challenge rounds
were conducted as blind studies, i.e., the participants did not have
ground truth information during data analysis (exceptions are labeled
with a dagger in all Figures).

Simulation of smFRET trajectories
In short, simulated smFRET datasets were generated to mimic fluor-
escence traces obtained by TIRF-based experiments. State trajectories
were modeled with a continuous-time approach and later discretized.
Similar to experiments, this allows state transitions to occur during the
integration timewindow (timebinof the detector). Noisewas added to
thefluorescence intensity traces using experiment-derivedparameters
to generate realistic data.

In more detail, for each molecule a continuous-time state
trajectory was simulated based on the kinetic model, as specified
by a transition rate matrix. A summary of the specific simulation
parameters is given in the Supplementary Table 5 and all config-
uration files with all parameters are provided as Supplementary
Datafiles. First, the trace length was determined from an expo-
nential distribution described by the rate of photobleaching. The
trace length was rejected if it was shorter than a minimal trace
length and truncated to a maximal trace length (see Supplemen-
tary Table 5). Then, a random initial state was chosen based on the
probability of being in a particular state given the transition rate
matrix. Starting from this state, dwell times for all possible tran-
sitions to the other states were drawn randomly from exponential
distributions defined by the transition rates, and the shortest dwell
time determined the transition and the new state of the system.
This process was repeated until the full trace length was reached.
This state trajectory was then converted into discrete-time fluor-
escence intensity traces using a specified sampling rate. For each
time bin (i.e., camera frame), the donor and acceptor intensities
upon donor excitation and the intensity of the acceptor upon
acceptor excitation were drawn from state-specific Gaussian dis-
tributions (specified by the means μI and covariance matrices
given in the configuration file). The intensity in each channel
during a time bin is given by the weighted average of all states
visited during this specific time bin.

Typically, single-molecule fluorescence traces show variations in
the fluorescence level between individual molecules, due to, amongst
others, local variations in excitation power and local dye
environment13. To take these variations into account, two additional
sources of per-trace intensity variations were considered for the
simulated data shown in Figs. 3 and 4. First, for each molecule, indi-
vidual intensity levels for each state were chosen. To do so, the
intensity levelwasdrawn fromanempirically determined state-specific
Gaussian distribution (with mean μI and standard deviation 5*

ffiffiffiffiffi
μI

p
).

Second, for each molecule, an individual brightness factor was deter-
mined by 1:20r where r was randomly chosen from the interval [−1, 1].
Thus, this factor is distributed in the interval [0.83, 1.20] and all
channels were multiplied by the same factor. For the simulated data
shown in Fig. 4, independent blinking of the donor and acceptor dye
was modeled by a simple 2-state system (“bright”, “dark”). In the case
of an acceptor dark state, the FRET efficiency was set to zero. Details
are given in Supplementary Table 5.

Five hundred additional datasets from the same parameter set
were created and compared, to validate that the dwell time distribu-
tion of the dataset used in this study shows the expected behaviour
(see Supplementary Fig. 3). Configuration files with all simulation
parameters (including the ground truth for the kinetic models) for the
synthetic data in Figs. 2, 3, and 4 can be found in the Supplementary
Datafiles. The MATLAB scripts used for the simulation are publicly
available at: www.kinSoftChallenge.com and https://doi.org/10.5281/
zenodo.5701310. A Supplementary Table with the simulation

Table 3 | Summary of the test conditions for the individual datasets, including the prior information on ground truth (GT) and
number (N) states, as well as three data characteristics: kinetic heterogeneity, photo-physics, and signal-to-noise ratio (SNR)

GT known?a N states predefined? Kinetic heterogeneity Photo- physicsb SNRc

Fig. 2 (sim.) No Yes, 2. No Clean 4

Fig. 2 (exp.) No Yes, 2. Not observed Mainly clean 4

Fig. 3 (sim.) No No No Intensity variation 3

Fig. 4 (sim.) No No Yes Intensity variation & blinking 4

Fig. 5 (exp.) No No Yes observed Intensity variation & blinking 3
aExceptions are labelled with a dagger in all figures.
bSee simulation parameters in Supplementary Table 5.
cThe SNR was obtained from the FRET efficiency histogram using Gaussian fits and SNR = μ1 � μ2

�� ��= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1

2 + σ2
2

p
.
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parameters and a Supplementary Note on the file format used herein
are provided in the Supplementary Information file.

Estimated minimal uncertainty of rate constants inferred from
simulations
Because of the finite number of traces per datasets, only a limited
random sample of dwell times is observed for each given transi-
tion, resulting in a variation of the rate constants inferred from
different datasets with identical ground truth. In order to estimate
this lower bound of the uncertainty for the inference of rate con-
stants from a finite dataset, we randomly drew the same number of
dwell times as provided in the simulated challenge dataset from an
exponential distribution with time constant τ = 1=k. The maximum
likelihood estimator (MLE) for the rate constant that produced this
set of dwell times Δt is given by 1=Δt. This calculation of the MLE
was repeated one million times. The standard deviation of these 1
million MLEs is a function of the number of dwell times present in
the challenge data set – the more dwell times are observed,
the narrower the MLE distribution – and hence, it depends on
the transition rate constants and the total observation time. We
used this standard deviation as an estimate of the lower bound for
the uncertainty of inferred rate constants from the simulated
datasets.

Simulation of cumulative dwell-time distributions from inferred
kinetic models
In order to compare submissions with the same number of FRET states
but different underlying kinetic models (i.e., number of hidden states
and connectivity), we simulated dwell times from the submitted
kineticmodels for the three datasets shown in Figs. 4 and 5. This yields
cumulative dwell-time distributions that are characteristic for the
kinetic model. Dwell times were accumulated from simulations of
continuous time state trajectories (Supplementary Note 1) that inclu-
ded roughly 200x (Fig. 4d) or 400x (Fig. 5c, f, i) more time points than
the original datasets.

Origin of the experimental datasets
The experimental data shown in Fig. 2 and Supplementary Figs. 1,
2 was kindly provided by Benjamin Schuler. It shows the inter-
action between the nuclear-coactivator binding domain of CBP/
p300 (NCBD) and the intrinsically disordered activation domain
of the steroid receptor coactivator 3 (ACTR), measured using
confocal single-photon detection5. The experimental data shown
in Fig. 5 and Supplementary Fig. 4 was kindly provided by Michael
Schlierf. It shows binding of single-strand binding proteins (SSB)
to a fluorescently labelled DNA hairpin, measured in prism-type
total-internal reflection fluorescence (TIRF) mode using camera-
based detection (EMCCD)4.

Procedures of the kinetic analyses
Detailed descriptions of all analysis tools are provided in the Supple-
mentary Methods in the Supplementary Information file. All inferred
results are provided as Supplementary Datafiles.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The simulated and experimental smFRET data used in this study are
available at www.kinsoftchallenge.com and https://doi.org/10.5281/
zenodo.5701310. All inferred results are provided in the Supplemen-
tary Data files. Supplementary figures, notes, and methods are pro-
vided in the Supplementary Information file. Source data are provided
with this paper.

Code availability
The simulation code and parameters to generate the simulated data-
sets are available at https://doi.org/10.5281/zenodo.5701310. All soft-
ware tools are available: Pomegranate v0.0.1 at https://github.com/
hatzakislab/DeepFRET-GUI; Tracy v4.4.8 upon request as it is being
replaced by a new program for multi-color analysis (contact: Don C.
Lamb [d.lamb@lmu.de], requests will be addressed as soon as possi-
ble, typically within 1 week); FRETboard v0.0.3 at https://github.com/
cvdelannoy/FRETboard; Hidden-Markury v0.0.1 at https://github.com/
ChristianGebhardt/Hidden-Markury; SMACKS v1.4 at https://github.
com/sciSonja/SMACKS; Correlation v0.1b at https://doi.org/10.5281/
zenodo.5512005; Edgefinding (CK and k-means) v0.0.1 at https://www.
physics.ncsu.edu/weninger/KinSoft.html; Step finding v0.0.2 at
https://github.com/SMB-Lab/PyStepFinder; StaSI v0.0.1 at https://
github.com/LandesLab/StaSI; MASH-FRET v.1.3.2 (bootstrap and
probabilistic) at https://github.com/RNA-FRETools/MASH-FRET; post-
FRET v4.0 at https://github.com/nkchenjx/postFRET.
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